DiscontinuityElement_M Class

This class defines a mechanical discontinuity element that extends the DiscontinuityElement base class. It includes additional functionality for handling stretching and relative rotation modes, as well as methods for initializing integration points and computing element data.

Contents

Methods

Author

Danilo Cavalcanti

Version History

Version 1.00: Initial version (January 2024).

Class Definition

classdef DiscontinuityElement_M < DiscontinuityElement

Public attributes

    properties (SetAccess = public, GetAccess = public)
        stretchingMode  = false;
        relRotationMode = false;
    end

Constructor method

    methods
        %------------------------------------------------------------------
        function this = DiscontinuityElement_M(node, mat)
            this = this@DiscontinuityElement(node, mat)
            this.ndof = 2;
        end
    end

Public methods

    methods

        %------------------------------------------------------------------
        % Enables the stretching mode. If enables, the number of degrees of
        % freedom increases by 1
        function addStretchingMode(this,flag)
            this.stretchingMode = flag;
            if flag == true
                this.ndof = this.ndof + 1;
            end
        end

        %------------------------------------------------------------------
        % Enables the rotation mode. If enables, the number of degrees of
        % freedom increases by 1
        function addRelRotationMode(this,flag)
            this.relRotationMode = flag;
            if flag == true
                this.ndof = this.ndof + 1;
            end
        end

        %------------------------------------------------------------------
        % Initializes the integration points for the element obtaining the
        % coordinates and weights
        function initializeIntPoints(this)

            % Get integration points coordinates and weights
            [X,w,this.nIntPoints] = this.shape.getIntegrationPoints(1);

            % Initialize the integration points objects
            intPts(this.nIntPoints,1) = IntPoint();
            for i = 1:this.nIntPoints
                constModel = MaterialDiscontinuity_M(this.mat);
                intPts(i) = IntPoint(X(:,i),w(i), constModel);
                intPts(i).initializeMechanicalAnalysisModel('Interface');
            end
            this.intPoint = intPts;

        end

        %------------------------------------------------------------------
        % Computes the element stiffness matrix, internal force vector and
        % other optional outputs using numerical integration over the
        % element
        %
        % Outputs:
        %   Ke    - Element stiffness matrix.
        %   Ce    - Element damping matrix.
        %   fi    - Internal force vector.
        %   fe    - External force vector.
        %   dfidu - Derivative of internal force with respect to
        %           displacement.
        function [Ke, Ce, fi, fe, dfidu] = elementData(this, ae)

            % Declare output matrices that won't be used
            Ce = []; fe = []; dfidu = [];

            % Initialize the matrices for the numerical integration
            Ke = zeros(this.ndof,this.ndof);
            fi = zeros(this.ndof,1);

            % Get the lenght of the discontinuity
            ld = this.ld();

            % Get the discontinuity reference point
            Xr = this.referencePoint();

            % Get the discontinuity tangential vector
            m = this.tangentialVector();

            % Initialize output matrices
            for i = 1:this.nIntPoints

                % Cartesian coordinates of the integration point
                X = this.shape.coordNaturalToCartesian(this.node,this.intPoint(i).X);

                % Get the shape function matrix
                Nd = this.enrichmentInterpolationMatrix(X,Xr,m);

                % Compute the strain vector
                this.intPoint(i).strain = Nd * ae;

                % Compute the stress vector and the constitutive matrix
                [td,Td] = this.intPoint(i).mechanicalLaw();

                % Numerical integration term. The determinant is ld/2.
                c = 0.5 * ld * this.intPoint(i).w * this.t;

                % Compute the stiffness sub-matrix
                Ke = Ke + Nd' * Td * Nd * c;

                % Compute the internal force vector
                fi = fi + Nd' * td * c;

            end
        end

        %------------------------------------------------------------------
        % Computes the enrichment interpolation matrix for the given
        % integration point coordinates, reference point and tangential
        % vector
        function Nd = enrichmentInterpolationMatrix(this,X,Xr,m)
            Nd = zeros(2,this.ndof);
            Nd(1,1) = 1.0;
            Nd(2,2) = 1.0;
            if this.ndof > 2
                s = m' * (X' - Xr');
                c = 3;
                if this.stretchingMode
                    Nd(1,c) = s;
                    c = c + 1;
                end
                if this.relRotationMode
                    Nd(2,c) = s;
                end
            end
        end
    end
end