library(readr)
taitung_county <- read_csv("data/taitung_county.csv")

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
cols(
  .default = col_double(),
  `選區(95-100年)` = col_character(),
  議員 = col_character(),
  族群別 = col_character(),
  人口數 = col_number(),
  所屬選區鄉鎮市 = col_character(),
  `利益座落地點(鄉鎮市)` = col_character()
)
ℹ Use `spec()` for the full column specifications.
taitung_county
head(taitung_county, n = 2)
taitung_county$建議筆數
  [1]  2  2  2  2  9  1  1  1  1  4  5  1  1  1  1  5  5  5  1  4  4  4  4  4  4  3  3  2  2  2  0  0  2  2  2  5  2  2  2  2  2  2  2  7  6 18 22 16  0  2  2  2
 [53]  2  2  2  1  1  1  0  0  0  0  0  2  2  2  8  1  1  2  2  2  5  5  5  5  6  6  6  1  1  2  2 15 15 10 15 15  3  1  6  5  5  5 14 19  1 17 17  1  2  2  2  2
[105]  6 15  3  3  3  3  3  3  7  7  7  7 35 35 35 35 35 35 35 35 35 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 24 24 24 24 24 24 24 24
[157] 24 24 24 24 24 24 24 24 24  9  9  9  9  9  9  9  9  9  9 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 35 28 28 18 18 18 18 18 18 18 18 18 18 18 18 18 18
[209] 18 36 36 36 36 11 11 11 11 11 11 39 39 39 39 22 22 22  4 14 14 10 10 10 20 31 31 31 31 31 31 41 41 48 48 48 48  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
[261]  1  1  1 22 22 22 22 22 22 22 22 22 22 22 22 22 22 16 16 16 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 17 17 17 17 17 17 17 17 17 17 17 17
[313] 17 17 17 17 17 17 17 17 17 17 17 17  8  8  8  8  8  8  8  8  8  8  8 35 35 27 27 27 27 27 27 27 27 27 27 27 27  8  8  8  8  8  8 22 22 22 22 22 22 22 22 22
[365]  6  6  6  6  6  6  6  6 13 13 13 13 21 21 21 21  8  8  8  8  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6 23 23  6  6  6  6  6  6  6  6 15 15 15
[417] 15 15 15 15 15 15 15 15 15 13 13 13 13  5  5  5  5  5  5  5  5  5  5  5  9  9  9  9  9  9  9 33 33 33  3  3  3  3  3  3  3  3 25 25 25 25 25 25 25 25 25 25
[469] 25 25 25 25 14 14 14 14 14 14 14 14 14 14 14 14 14 14  6  6  6  6  6  6 19 19 19 19 19 19 19 19 19 22  8  8  8  8  8  8  8  8  8  8  8  8  8  8 18 18 18 18
[521] 18 18 18 18 21 21 15 15 15 15 15 15 15 15 15 15 10 10 10 19 19 19 19 19 19 19  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6  9  9  9  9  9  9  9  9  9 15
[573] 15 15 15 15 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12  8  8
[625]  8  8  8  8  8  8  8  8  8  8  8  8  8 36 36 36 36  9  9  9 20 20 20 20 20 20 20 20 20 20  5  5  5  5  5  5  8  8  8  8  8  8  8 23 23 23  7  7  7  7  7  7
[677]  7  7  7  7  7 19 19 19 19 19 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 15 15 15 15 15 15 18 18 18 18 18 18  7  7  7  7  7  7 19 19 19 19 19 19 19 19 19
[729] 19 22 22 22 22 22  5  5  5  5  5  5  5  5  5  5  5  6  6  6 17 17 17 17 17 17 17 17 17 17 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
names(taitung_county)
 [1] "選區(95-100年)"               "議員"                         "年"                           "建議筆數"                     "建議金額(單位:千元)"        
 [6] "顧別人建議金額(千元)"         "顧別人人均建議金額(千元)"     "族群別"                       "性別"                         "政黨"                        
[11] "族群"                         "委員會召集人"                 "委員會副召集人"               "召集人"                       "委員會召集人類別"            
[16] "縣長、議員與鄉鎮市首長選舉年" "勝選幅度DQ"                   "選區規模"                     "選區類型"                     "人口數"                      
[21] "政治獻金金額 (單位:千元)"    "資深程度"                     "自由財源"                     "自由財源比"                   "代表性 (單位:千)"         
[26] "所屬選區鄉鎮市"               "利益座落地點(鄉鎮市)"      
unique(taitung_county$族群別)
[1] "達悟族" "排灣族" "卑南族" "阿美族" "漢族"   "布農族"
LS0tCnRpdGxlOiAi5Y+w54Gj6K2w5ZOh57ij6KOc5Yqp5qy+IgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgotIOiugOizh+aWmQpgYGB7cn0KbGlicmFyeShyZWFkcikKdGFpdHVuZ19jb3VudHkgPC0gcmVhZF9jc3YoImRhdGEvdGFpdHVuZ19jb3VudHkuY3N2IikKYGBgCgotIOafpemWseaVtOWAi+izh+aWmee1kOaniwpgYGB7cn0KdGFpdHVuZ19jb3VudHkKYGBgCi0g55SoYGhlYWQoKWDnnIvnnIvmnIPmgI7mqKMKYGBge3J9CmhlYWQodGFpdHVuZ19jb3VudHksIG4gPSAyKQpgYGAKCi0g55SoYCRg6YG45Y+W6K6K5pW4CmBgYHtyfQp0YWl0dW5nX2NvdW50eSTlu7rorbDnrYbmlbgKYGBgCgoKLSDnnIvmiYDmnInorormlbjlkI3nqLEKYGBge3J9Cm5hbWVzKHRhaXR1bmdfY291bnR5KQpgYGAKCi0g55SoYHVuaXF1ZSgpYOeci+aXj+e+pOWIpQpgYGB7cn0KdW5pcXVlKHRhaXR1bmdfY291bnR5JOaXj+e+pOWIpSkKYGBgCgo=