
Classifiers
Instructor: Proserpio Davide

A few things before we start

Final exam
• USC requires me to do something on the date and time of the final exam,

even if there is no final
• We are going to meet on Zoom on:

• 16546: Friday, December 12, 11am – 1pm
• 16547: Friday, December 12, 2pm – 4pm

• Everyone must be present
• No participation points will be given to those who miss the meeting

• What are we going to do? Two things:
• Complete and submit the peer evaluations
• Write a short paragraph in which you ask for and motivate why you deserve

participation points (max 10 points)

A few things before we start

• HW2 will be graded by Wednesday
• Next week's readings

Why do we Need Classifiers?

Why do we Need Classifiers?

• Which customer will churn? (Yes/No)
• Which consumers are more likely to use a coupon?
• Which ad will they click? (Ad A, B, or C)
• What star rating will they leave? (1–5)
• Which reviews are fake and which are organic?
• Marketing payoff:

• Better targeting
• Less wasted spend
• Better ads
• Improved personalization.
• Fight platform manipulation

What s a Classifier?

• A model that assigns each customer (or observation) to a
class/bucket.

• Binary classification: 2 classes (e.g., churn vs no churn).
• Multi-class classification: more than 2 (e.g., which product

category).
• Ordinal classification: ordered categories (e.g., star ratings).

How Does Classification Work?

• Inputs = features (age, income, past purchases, ad impressions).
• Output = predicted class (churn = Yes/No).
• Example: Predict coupon usage

• “If income > $50k and #purchases > 5 → high chance to respond to
coupon.”

Common Classifiers

• Logistic Regression
• Interpretable, usually used as the baseline model
• Odds ratios, coefficients

• Decision Trees
• Intuitive, rules-based (“if age > 30 and income > 50k…”)

• Random Forests / Gradient Boosting
• Ensemble methods, higher accuracy

• Support Vector Machines (SVM)
• Separating hyperplanes

• Neural Networks
• More complex, less interpretable

Logistic Regression (The Workhorse)

• Outputs probability (0 to 1).
• Decision rule: if p > 0.5 → predict “Yes.”
• Very interpretable
• Marketing example: Probability of clicking an ad = 0.72 → predict

click.

Decision Trees

• Split customers using simple rules.
• Easy to explain to managers.
• Very interpretable
• Marketing example:

• “If age < 30 and visited site > 3 times → likely to purchase.”

Ensembles (Random Forest, Boosting)
• Combine many trees → better predictions.
• Tradeoff: higher accuracy, lower interpretability.

Random Forest Boosting (Gradient Boosting / XGBoost)

How it works Many trees built in parallel on random
samples; predictions are averaged

Trees built one after another; each new
tree fixes previous mistakes;
predictions are added up

What it improves Stability (reduces variance) Accuracy (reduces bias)

Tuning Few parameters; works well “out of the
box”

More parameters (learning rate, depth,
#trees); needs careful tuning

Overfitting risk Lower Higher if not regularized/early-stopped

Interpretability Medium–Low Low

When to use Fast, strong baseline; noisy data; want
reliability

Aim for top accuracy and you can tune
a bit

Support Vector Machines (SVM)

• A model that draws the cleanest possible line between two
groups, leaving the biggest gap (margin) so it generalizes well.

• Think of two crowds on a field. SVM puts a rope between them and
pulls it so there’s maximum space from both crowds. That space
helps us make safer decisions on new people.

• Interpretability: Not as easy to say which feature matters most.

Neural Network (NN)

• A model that learns layers of patterns. Each layer finds useful
combinations of your inputs to predict the outcome.

• When it helps:
• Behavior likely depends on interactions (e.g., tenure × inactivity × price

change).
• You have enough data and want a model that can capture complex

patterns.

• Black-box, i.e., hard to interpret

Model Training

• The Goal of Prediction
• We care about whether the model can predict new, unseen customers.

• The Risk of Overfitting
• If we only evaluate on the same data we trained on:

• The model may memorize noise or quirks in that data.
• Example: tree learns “Customer ID #123 always buys” → useless for future data.

• Looks great in training (100% accuracy), but fails with new data.

Model Training

• Train/Test Split (generally 80%/20%)
• Training set: Used to estimate the model (fit parameters, learn patterns).
• Test set: Held out, never seen by the model → simulate new data.

• Compare performance:
• If train accuracy >> test accuracy → overfitting.
• If similar → model generalizes well.

Model Training

• Goal: Predict churn.
• Train on historical customers (2019–2023).
• Test on recent customers (2024).
• If the model performs well on the 2024 test set → confident we can

use it in 2025.

Model Training: Cross-validation

• It is often helpful to perform cross-validation:
• A way to estimate out-of-sample performance by repeatedly training on

part of the data and validating on the rest.
• Prevents overfitting to one lucky split.
• Allows tuning model parameters (e.g., tree depth) and compare models

fairly.

• Uses all data for both training and validation (rotating).

Model Training: Cross-validation

How it works (standard k-fold)
• Split data into k equal folds (e.g., k=5).
• For each fold: train on k–1 folds, validate on the held-out fold.
• Average the chosen metric across folds (e.g., Precision).
• Pick the model with the best average
• Refit on the full training set.

Evaluation Metrics

• Accuracy: overall % correct.
• Precision: % of predicted “yes” that were correct.
• Recall: % of actual “yes” caught.
• F1
• AUC: Are under the ROC curve

Computing metrics

• Suppose we predict whether a customer will churn (Yes/No).
• Here’s the confusion matrix from our classifier on the test set:

•True Positive (TP): predicted Yes, actually Yes → 50

•False Positive (FP): predicted Yes, actually No → 20

•False Negative (FN): predicted No, actually Yes → 10

•True Negative (TN): predicted No, actually No → 120

Predicted: Yes Predicted: No

Actual: Yes 50 (True Positive) 10 (False Negative)

Actual: No 20 (False Positive) 120 (True Negative)

Computing metrics

• Accuracy =

• Precision =

• Recall =

Predicted: Yes Predicted: No

Actual: Yes 50 (True Positive) 10 (False Negative)

Actual: No 20 (False Positive) 120 (True Negative)

Accuracy: overall % correct.
Precision: % of predicted “yes” that were correct.
Recall: % of actual “yes” caught.

Computing metrics

• Accuracy = (TP + TN)/ (TP + TN + FP + FN) = .85
• Overall, the model gets 85% of churn/stay predictions correct.

• Precision = TP/(TP + FP) = .71
• When the model predicts a customer will churn, it’s correct 71% of the time.
• Marketing implication: If we target “predicted churners” with retention offers, 29% of

offers are wasted on customers who weren’t going to churn.

• Recall = TP/(TP + FN) = .83
• Of all the customers who actually churned, the model successfully identified 83%.
• Marketing implication: We save most of the at-risk customers, but 17% slipped through

and churned without being flagged.

Predicted: Yes Predicted: No

Actual: Yes 50 (True Positive) 10 (False Negative)

Actual: No 20 (False Positive) 120 (True Negative)

Computing metrics

Computing metrics
Intuition
• Your model gives each customer a churn score

(estimated probability).
• You predict “churn” when score ≥ threshold 𝑡.
• Raise 𝑡→ you only flag the very high scores

• False positives (FP) drop → precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃
 tends

to increase.
• But some true positives (TP) also get filtered out →

recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁
 decreases.

Problems with accuracy

• Highly imbalanced classes: say positive class (e.g., churn) is 5%
• 10,000 customers; 5% churners = 500 positives, 9,500 negatives.

Model Pred
Pos TP FP FN TN Accuracy Precision Recall

Trivial
“always
No”

0 0 0 500 9,500 95% — 0%

Problems with accuracy

• Highly imbalanced classes: say positive class (e.g., churn) is 5%
• 10,000 customers; 5% churners = 500 positives, 9,500 negatives.

Model Pred Pos TP FP FN TN Accuracy Precision Recall

Trivial
“always
No”

0 0 0 500 9,500 95% — 0%

Useful
model 600 300 300 200 9,200 95% 50% 60%

F1

• F1 is a single number that balances precision and recall:

𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

• When positives are rare (e.g., churners), raw accuracy can be
misleading.

• F1 rewards models that keep both precision (few wasted offers)
and recall (catch churners) reasonably high.

ROC (Receiver Operating Characteristic)

• A curve showing model performance as you move the decision
threshold from strict → lenient.

• Axes
• TPR/Recall (y-axis): % of actual positives correctly flagged.
• FPR (x-axis): % of actual negatives incorrectly flagged.

• How to read it
• Each point = a threshold.
• Top-left is best (high TPR, low FPR).
• The diagonal is random guessing.

• Why it’s useful
• You can see the precision–recall trade-off indirectly
• Helps pick a threshold that fits your tolerance for false positives.

AUC (Area Under the ROC Curve)

• A single number (0–1) summarizing the overall ranking power of
your model across all thresholds.

• AUC = chance the model gives a higher score to a random
positive than to a random negative.

• 0.5 = random; 1.0 = perfect separation.

• Why it’s useful
• Threshold-free way to compare models early on.
• Relatively insensitive to class imbalance

ROC-AUC example

Interpreting Classifiers Output

• Coefficients & odds ratios (logit)
• Feature importance (tree-based models)
• SHAP / LIME for black-box models

Coefficients & Odds Ratios (Logistic
Regression)
• How each feature changes the odds of being in the positive class

(e.g., churn).
• Turn coefficients into odds ratios by exp(𝛽).

• a 1-unit increase in the feature multiplies the odds by exp(𝛽) (holding
everything else constant).

• Show a bar chart ordered by odds

Feature Importance (Tree-Based Models)

• Which features did the model rely on overall to make accurate
predictions?

• Identify top predictors to guide policy levers and data collection
(e.g., “tickets” and “inactivity trend” matter most).

• Show a bar chart by importance

SHAP / LIME (Explaining Black-Box Models)

• Breaks a model’s score into feature contributions for each row of
the data.

• SHAP: consistent, additive attributions.
• Waterfall plot : baseline risk → add (+) and subtract (–) contributions to

final score.

	Slide 1: Classifiers
	Slide 2: A few things before we start
	Slide 3: A few things before we start
	Slide 4: Why do we Need Classifiers?
	Slide 5: Why do we Need Classifiers?
	Slide 6: What s a Classifier?
	Slide 7: How Does Classification Work?
	Slide 8: Common Classifiers
	Slide 9: Logistic Regression (The Workhorse)
	Slide 10: Decision Trees
	Slide 11: Ensembles (Random Forest, Boosting)
	Slide 12: Support Vector Machines (SVM)
	Slide 13: Neural Network (NN)
	Slide 14: Model Training
	Slide 15: Model Training
	Slide 16: Model Training
	Slide 17: Model Training: Cross-validation
	Slide 18: Model Training: Cross-validation
	Slide 19: Evaluation Metrics
	Slide 20: Computing metrics
	Slide 21: Computing metrics
	Slide 22: Computing metrics
	Slide 23: Computing metrics
	Slide 24: Computing metrics
	Slide 25: Problems with accuracy
	Slide 26: Problems with accuracy
	Slide 27: F1
	Slide 28: ROC (Receiver Operating Characteristic)
	Slide 29: AUC (Area Under the ROC Curve)
	Slide 30: ROC-AUC example
	Slide 31: Interpreting Classifiers Output
	Slide 32: Coefficients & Odds Ratios (Logistic Regression)
	Slide 33: Feature Importance (Tree-Based Models)
	Slide 34: SHAP / LIME (Explaining Black-Box Models)

