Classifiers

Instructor: Proserpio Davide

A few things before we start

Final exam

* USC requires me to do something on the date and time of the final exam,
even if there is no final

* We are going to meet on Zoom on:

* 16546: Friday, December12,11am-1pm

* 16547: Friday, December 12, 2pm -4pm
* Everyone must be present

* No participation points will be given to those who miss the meeting
* What are we going to do? Two things:

« Complete and submit the peer evaluations

* Write a short paragraph in which you ask for and motivate why you deserve
participation points (max 10 points)

A few things before we start

* HW2 will be graded by Wednesday
* Next week's readings

Why do we Need Classifiers?

Why do we Need Classifiers?

* Which customer will churn? (Yes/No)

* Which consumers are more likely to use a coupon?
 Which ad will they click? (Ad A, B, or C)

* What star rating will they leave? (1-5)

* Which reviews are fake and which are organic?

* Marketing payoff:
* Bettertargeting
* Less wasted spend
* Better ads
* Improved personalization.
* Fight platform manipulation

What s a Classifier?

* Amodel that assigns each customer (or observation) to a
class/bucket.

* Binary classification: 2 classes (e.g., churn vs no churn).

* Multi-class classification: more than 2 (e.g., which product
category).

* Ordinal classification: ordered categories (e.g., star ratings).

How Does Classification Work?

* Inputs = features (age, income, past purchases, ad impressions).
* Output = predicted class (churn =Yes/No).

* Example: Predict coupon usage
* “Ifincome > $50k and #purchases > 5 - high chance to respond to
coupon.”

Common Classifiers

* Logistic Regression
* Interpretable, usually used as the baseline model
e Odds ratios, coefficients

* Decision Trees
* Intuitive, rules-based (“if age > 30 and income > 50k...”)

* Random Forests / Gradient Boosting
* Ensemble methods, higher accuracy

* Support Vector Machines (SVM)
* Separating hyperplanes

* Neural Networks
* More complex, less interpretable

Logistic Regression (The Workhorse)

* Qutputs probability (0 to 1).
* Decisionrule: if p > 0.5 > predict “Yes.”

* Very interpretable

* Marketing example: Probability of clicking an ad =0.72 > predict
click.

Decision Trees

* Split customers using simple rules.
* Easy to explain to managers.
* Very interpretable

* Marketing example:
* “If age <30 and visited site > 3 times - likely to purchase.”

Ensembles (Random Forest, Boosting)

* Combine many trees > better predictions.

* Tradeoff: higher accuracy, lower interpretability.

Random Forest

Boosting (Gradient Boosting / XGBoost)

How it works

Many trees built in parallel on random
samples; predictions are averaged

Trees built one after another; each new
tree fixes previous mistakes;
predictions are added up

What it improves

Stability (reduces variance)

Accuracy (reduces bias)

Tuning

Few parameters; works well “out of the
box”

More parameters (learning rate, depth,
#trees); needs careful tuning

Overfitting risk

Lower

Higher if not regularized/early-stopped

Interpretability

Medium-Low

Low

When to use

Fast, strong baseline; noisy data; want
reliability

Aim for top accuracy and you can tune
a bit

Support Vector Machines (SVM)

* Amodel that draws the cleanest possible line between two
groups, leaving the biggest gap (margin) so it generalizes well.

* Think of two crowds on a field. SVM puts a rope between them and
pulls it so there’s maximum space from both crowds. That space
helps us make safer decisions on new people.

* Interpretability: Not as easy to say which feature matters most.

Neural Network (NN)

* A model that learns layers of patterns. Each layer finds useful
combinations of your inputs to predict the outcome.

* When it helps:
* Behavior likely depends on interactions (e.g., tenure x inactivity x price
change).
* You have enough data and want a model that can capture complex
patterns.

* Black-box, i.e., hard to interpret

Model Training

* The Goal of Prediction
* We care about whether the model can predict new, unseen customers.

* The Risk of Overfitting

* |f we only evaluate on the same data we trained on:
* The model may memorize noise or quirks in that data.
 Example: tree learns “Customer ID #123 always buys” - useless for future data.

* Looks great in training (100% accuracy), but fails with new data.

Model Training

* Train/Test Split (generally 80%/20%)

* Training set: Used to estimate the model (fit parameters, learn patterns).
* Test set: Held out, never seen by the model > simulate new data.

 Compare performance:

* |f train accuracy >> test accuracy > overfitting.
* |f similar > model generalizes well.

Model Training

* Goal: Predict churn.
* Train on historical customers (2019-2023).

* Test on recent customers (2024).

* If the model performs well on the 2024 test set > confident we can
useitin 2025.

Model Training: Cross-validation

* |tis often helpful to perform cross-validation:

* Away to estimate out-of-sample performance by repeatedly training on
part of the data and validating on the rest.

* Prevents overfitting to one lucky split.
* Allows tuning model parameters (e.g., tree depth) and compare models
fairly.

* Uses all data for both training and validation (rotating).

Model Training: Cross-validation

How it works (standard k-fold)
* Split data into k equal folds (e.g., k=5).
 For each fold: train on k=1 folds, validate on the held-out fold.
* Average the chosen metric across folds (e.g., Precision).
* Pick the model with the best average
* Refit on the full training set.

Evaluation Metrics

* Accuracy: overall % correct.

* Precision: % of predicted “yes” that were correct.
* Recall: % of actual “yes” caught.

* F1

* AUC: Are under the ROC curve

Computing metrics

 Suppose we predict whether a customer will churn (Yes/No).
e Here’s the confusion matrix from our classifier on the test set:

Predicted: Yes Predicted: No
Actual: Yes 50 (True Positive) 10 (False Negative)
Actual: No 20 (False Positive) 120 (True Negative)

*True Positive (TP): predicted Yes, actually Yes — 50
‘False Positive (FP): predicted Yes, actually No — 20
‘False Negative (FN): predicted No, actually Yes — 10
*True Negative (TN): predicted No, actually No — 120

Computing metrics

Predicted: Yes Predicted: No
Actual: Yes 50 (True Positive) 10 (False Negative)
Actual: No 20 (False Positive) 120 (True Negative)
* Accuracy =
* Precision =
* Recall =

Accuracy: overall % correct.
Precision: % of predicted “yes” that were correct.
Recall: % of actual “yes” caught.

Computing metrics

Predicted: Yes Predicted: No
Actual: Yes 50 (True Positive) 10 (False Negative)
Actual: No 20 (False Positive) 120 (True Negative)

- Accuracy = (TP +TN)/ (TP + TN + FP + FN) = .85

* Overall, the model gets 85% of churn/stay predictions correct.

* Precision=TP/(TP + FP) = .71
* When the model predicts a customer will churn, it’s correct 71% of the time.

* Marketing implication: If we target “predicted churners” with retention offers, 29% of
offers are wasted on customers who weren’t going to churn.

* Recall =TP/(TP + FN) = .83

* Of all the customers who actually churned, the model successfully identified 83%.

* Marketing implication: We save most of the at-risk customers, but 17% slipped through
and churned without being flagged.

Computing metrics

Precision—-Recall Trade—off in Churn Prediction

1.0
E High precision, low recall
2 = few wasted offers,
E 0.8 miss many churners
g0
=]
c
o
=
B 0.6
(41
High recall, low precision
= gatch most churners,
0.4 waste many offers

=
_
=
2
)
(4]

0.50 0.75 1.00
Recall (catch churners)

Precision (offers not wasted)

0.8

0.6

0.00

Computing metrics

Precision—-Recall Trade—off in Churn Prediction

High precision, low recall

= few wasted offers,

miss many churners

0.25

High recall, low precision
= catch most churners,
waste many offers

0.50
Recall (catch churners)

0.75

Intuition

Your model gives each customer a churn score
(estimated probability).

You predict “churn” when score = threshold ¢.
Raise t-> you only flag the very high scores
* False positives (FP) drop - precision =
toincrease.
 But some true positives (TP) also getfiltered out >
recall =

tends
TP+FP

decreases.
TP+FN

Problems with accuracy

* Highly imbalanced classes: say positive class (e.g., churn) is 5%
* 10,000 customers; 5% churners = 500 positives, 9,500 negatives.

Pred

Model Pos TP FP FN TN Accuracy | Precision Recall
Trivial
‘“always 0 0 0 500 9,500 95% — 0%

No”

Problems with accuracy

* Highly imbalanced classes: say positive class (e.g., churn) is 5%
* 10,000 customers; 5% churners = 500 positives, 9,500 negatives.

Model Pred Pos TP FP FN TN Accuracy | Precision Recall
Trivial
“always 0 0 0 500 9,500 95% — 0%
No”
Useful
600 300 300 200 9,200 95% 50% 60%
model

F1

* F1is a single number that balances precision and recall:

B Precison X Recall

~ Precision + Recall

* When positives are rare (e.g., churners), raw accuracy can be
misleading.

* F1 rewards models that keep both precision (few wasted offers)
and recall (catch churners) reasonably high.

ROC (Receiver Operating Characteristic)

* A curve showing model performance as you move the decision
threshold from strict > lenient.

* Axes
* TPR/Recall (y-axis): % of actual positives correctly flagged.
* FPR (x-axis): % of actual negatives incorrectly flagged.

* Howto read it
* Each point = athreshold.
* Top-leftis best (high TPR, low FPR).
* The diagonal is random guessing.

* Why it’s useful
* You can see the precision-recall trade-off indirectly
* Helps pick a threshold that fits your tolerance for false positives.

AUC (Area Under the ROC Curve)

* A single number (0-1) summarizing the overall ranking power of
your model across all thresholds.

* AUC = chance the model gives a higher score to a random
positive than to a random negative.

* 0.5 =random; 1.0 = perfect separation.
* Why it’s useful

* Threshold-free way to compare models early on.
* Relatively insensitive to class imbalance

ROC-AUC example

True Positive Rate (Recall)

1.0

o
o

o
o

o
I

o
N

0.0

ROC Curve Example

T
\

T
\

e Model A (AUC = 0.96)

/"' Model B (AUC = 0.46)
- - -~ Random

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Interpreting Classifiers Output

* Coefficients & odds ratios (logit)
* Feature importance (tree-based models)
* SHAP / LIME for black-box models

Coefficients & Odds Ratios (Logistic
Regression)

* How each feature changes the odds of being in the positive class
(e.g., churn).

* Turn coefficients into odds ratios by exp(f).
* a T-unitincrease in the feature multiplies the odds by exp(f) (holding
everything else constant).

Logistic Regression — Odds Ratios (lllustrative)

* Show a bar chart ordered by odds Fan downgrade (v |

Support tickets (per +1) F 1.55
Days since last login (per +7) 1.40
Price increase (last 60d) | 1.25
Tenure (per +12 mo) | 0.78

Email engagement rate (per +10 pp) | 0.72

0.00 025 050 075 1.00 1.25 1.50 1.75
Odds Ratio (exp(B))

Feature Importance (Tree-Based Models)

* Which features did the model rely on overall to make accurate
predictions?

* |dentify top predictors to guide policy levers and data collection
(e.g., “tickets” and “inactivity trend” matter most).

i Sh OW a ba r Cha rt by im porta nce Feature Importance (Permutation) — Churn Model Example

Days since last login | 0.071
Plan downgrade (Y/N) | 0.048
Support tickets (30d) | 0.036
Price increase (60d) | 0.019
Tenure (months) f 0.013
Email engagement rate [0.011
Region | 0.006

Device type | 0.003

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
Permutation importance (A PR-AUC)

SHAP / LIME (Explaining Black-Box Models)

* Breaks a model’s score into feature contributions for each row of
the data.

e SHAP: consistent, additive attributions.

 Waterfall plot : baseline risk > add (+) and subtract (-) contributions to
final Score. SHAP-style Local Explanation (Waterfall) — Why this customer is high risk

Baseling, = 0.42

Plan downgrade (Y/N)
+0.18

Support tickets (30d)
+0.12

Days since last login
+0.10
|

Email engagement rate
-0.04

Tenure (months)
-0.02
|

. . . Final= 0.76
0.0 0.2 0.4 0.6 0.8
Predicted churn probability contribution

	Slide 1: Classifiers
	Slide 2: A few things before we start
	Slide 3: A few things before we start
	Slide 4: Why do we Need Classifiers?
	Slide 5: Why do we Need Classifiers?
	Slide 6: What s a Classifier?
	Slide 7: How Does Classification Work?
	Slide 8: Common Classifiers
	Slide 9: Logistic Regression (The Workhorse)
	Slide 10: Decision Trees
	Slide 11: Ensembles (Random Forest, Boosting)
	Slide 12: Support Vector Machines (SVM)
	Slide 13: Neural Network (NN)
	Slide 14: Model Training
	Slide 15: Model Training
	Slide 16: Model Training
	Slide 17: Model Training: Cross-validation
	Slide 18: Model Training: Cross-validation
	Slide 19: Evaluation Metrics
	Slide 20: Computing metrics
	Slide 21: Computing metrics
	Slide 22: Computing metrics
	Slide 23: Computing metrics
	Slide 24: Computing metrics
	Slide 25: Problems with accuracy
	Slide 26: Problems with accuracy
	Slide 27: F1
	Slide 28: ROC (Receiver Operating Characteristic)
	Slide 29: AUC (Area Under the ROC Curve)
	Slide 30: ROC-AUC example
	Slide 31: Interpreting Classifiers Output
	Slide 32: Coefficients & Odds Ratios (Logistic Regression)
	Slide 33: Feature Importance (Tree-Based Models)
	Slide 34: SHAP / LIME (Explaining Black-Box Models)

