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Recommendations are everywhere



Why are recs important for marketing?

• Engagement: More relevant suggestions = more time spent on 
platform.

• Conversion: Better targeting = higher sales.
• Customer lifetime value: Stronger loyalty when users feel 

understood.
• Trade-offs: Over-personalization can create “filter bubbles.”



Clustering vs. recommendations
Aspect Clustering Recommendation Systems

Goal Group similar items or people 
into clusters

Predict what a specific user will 
like or interact with

Output Segment labels (e.g., “high 
spenders,” “price-sensitive”)

Ranked list of personalized 
suggestions

Approach Finds structure in data without 
labels (unsupervised learning)

Uses user-item interactions, 
ratings, or behavior to make 
predictions (can be supervised or 
unsupervised)

Personalization Same cluster members treated 
similarly Individualized for each user

Typical Use in Marketing Customer segmentation for 
targeting strategies

Product/content 
recommendations for each 
customer



Clustering vs. recommendations

• Clustering → “Organizing your customers into a few big buckets 
based on similarity”

• Recommendations → “Telling this customer what they’re most 
likely to want next”



How can we implement recommendations

Tons of options based on simple data mining or more complex 
machine learning algorithms



How can we implement recommendations

Tons of options based on simple data mining or more complex 
machine learning algorithms

Aspect Data mining Machine learning

Primary goal Discover patterns, segments, 
anomalies, associations

Learn a model to predict or 
decide on unseen cases

Typical output Rules, clusters, summaries, 
dashboards, hypotheses

A trained model (e.g., classifier, 
regressor, recommender)

Orientation Descriptive/explanatory (“what’s 
in there?”)

Predictive/optimization (“what will 
happen?”)

Examples Association rules (A→B), clustering 
segments, outlier detection

Churn prediction, demand 
forecasting, recommendations, 
Natural Language Processing

Evaluation
Interestingness, 
support/confidence/lift, business 
interpretability

Accuracy/AUC/RMSE, calibration, 
loss, offline/online metrics



Data mining recommenders



Association rule mining

Helpful for finding “what goes with what”
• A data mining technique to discover relationships between items in 

large datasets
• Often used to find patterns of co-occurrence in transactions
• Classic example: Customers who buy bread often also buy butter
• Marketing Applications

• Market basket analysis → Which products are often bought together?
• Cross-selling → “Frequently bought together” recommendations
• Store layout → Place associated products near each other
• Promotion bundling → Offer discounts on items often purchased together



Association rule mining

Transaction ID Bread Butter Milk Beer Diapers
1 1 1 0 0 0
2 0 0 1 1 1
3 1 0 1 0 0
4 1 1 1 0 0
5 0 0 0 1 1

From here, the algorithm looks for frequent itemsets and then generates rules like:
• Rule: {Diapers} → {Beer}

• Support: 2% of all transactions contain both
• Confidence: 60% of diaper buyers also buy beer
• Lift: 1.5 → diaper buyers are 50% more likely to buy beer than average



Association rule mining
Given the rule: A → B:



Example

100 total transactions
•2 transactions: diaper + beer
•1 transaction: diaper only
•38 transactions: beer only
•59 transactions: neither

Let’s compute support, confidence, and lift for diapers → beers



Example

100 total transactions
•2 transactions: diaper + beer
•1 transaction: diaper only
•38 transactions: beer only
•59 transactions: neither

Let’s compute support, confidence, and lift for diapers → beers

 Support = 2 / 100 = 2% 
 Confidence = 2 / 3 = 66.7%
 P(beer) = 40 / 100 = 40%
 Lift = 0.667 / 0.40 = 1.67 ≈ 1.5



Machine Learning



Main approaches

• Collaborative filtering: “People like you also liked these.” (e.g., 
MBA/Marketing students like R → recommend Python).

• Content-based filtering: “What you liked in the past predicts 
what you’ll like in the future.” (e.g., you liked a sci-fi book → 
recommend another sci-fi book).

• Hybrid models: Most platforms mix both.



Core idea: Embeddings

• Embeddings are a vector representation of a user or item
• Similarity measures how close are two vectors

• Dot product
• Cosine similarity

• Learned embeddings capture latent factors (taste for 
genre/price/brand).

• Nearby items/users share behavior even without identical histories
• Rec systems differ in how they learn and create these vectors
• Different models, same idea: get vectors for users/items and 

recommend using nearest neighbors in embedding space.



Mental picture (movies example)

Let’s assume we have two-dimensional vectors (x, y) where: 
• X:  measure the continuum action → romance
• Y: measure the continuum budget →premium

Action Romance

Premium

Budget

Bob 

Crazy stupid love



Collaborative filtering

• A recommendation method that predicts a user’s interests by 
learning from the preferences of other users

• It requires user-items interactions

• Assumes that similar users will like similar things
• The “collaborative” part: the system utilizes the collective 

behavior of multiple users to make predictions



Collaborative filtering

User-Based Collaborative Filtering: Recommendations are made 
to a user based on what similar other users have liked.

User / Movie The Matrix Titanic Toy Story The Godfather Inception
User 1 1 0 1 0 1
User 2 1 1 0 1 0
User 3 0 1 1 0 0
User 4 1 0 0 1 1
User 5 0 1 0 1 1



Main issue with collaborative filtering

“Cold start” problem: If I don’t have data about a user past 
choices, it is difficult to know what they will like



Content based recommenders
• Recommend items similar to a user's past choices

• Example: Movie recommender
• A content-based recommendation system recommends movies to a user by 

considering the similarity of movies. 
• For example, we can recommend movies based on movie description similarity.

• Risk: “filter bubble” → recommendations are too similar to past 
choices so consumers do not try anything ”new” or “different”

• Great to address the cold start problem since they don’t require too 
much past user behavior



Deep learning & Large Language Models



Deep learning & Large Language Models

• What is Deep Learning?
• A type of machine learning that uses neural networks with many layers 

(“deep”).
• Each layer learns to extract more complex patterns from data.
• Works on images, text, audio, clicks, videos → almost any type of data.

• What are LLMs?
• Large Language Models are deep learning models trained on vast 

amounts of text.
• Can understand, generate, and reason with language (e.g., ChatGPT, 

Claude, Gemini).



Deep learning & Large Language Models



Deep learning & Large Language Models

They optimize/improve how we “embed” consumers/products 
because they rely on much more, and complex, data



Deep learning: content based

• Build “item” vectors from text/images/attributes of the items
• E.g., movie vector: description + video + dialogues + cast + ratings + box 

office 

• “Simple” approach for text data: Word2Vec, Doc2Vec, any LLM 
model these days:

• E.g., Movie recommender: https://github.com/devalindey/Recommender-
Systems-using-Word-Embeddings
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Evaluation: Offline Metrics

• Accuracy-based
• Precision@k → % of top-k recommendations that are relevant
• Recall@k → % of relevant items captured in top-k

• Coverage & Diversity
• How much of the catalog is recommended?
• Are recommendations varied or too narrow?

• Novelty
• Are users exposed to less popular / surprising items?



Evaluation: Offline Metrics

Precision@k:
• Precision@k = # relevant items in top−𝑘

𝑘
• (Fraction of recommended items that are relevant.)

Recall@k:
• Recall@k = # relevant items in top−𝑘

# all relevant items
• (Fraction of relevant items that are recommended.)



Evaluation: Online metrics

• CTR (Click-Through Rate) → Do users click on recommended 
items?

• Conversion / Revenue Lift → Do recs increase sales, bookings, 
streams?

• Engagement / Retention → Do users come back more often?



Beyond Metrics

• Fairness / Bias → Do recs treat products & users equitably?

• Explainability / Transparency → Can users understand “why” an 
item is recommended?

• Long-Term Value → Do recs build loyalty, not just short-term 
clicks?
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