
Recommender systems
MKT 566

Instructor: Davide Proserpio

Recommendations are everywhere

Recommendations are everywhere

Why are recs important for marketing?

• Engagement: More relevant suggestions = more time spent on
platform.

• Conversion: Better targeting = higher sales.
• Customer lifetime value: Stronger loyalty when users feel

understood.
• Trade-offs: Over-personalization can create “filter bubbles.”

Clustering vs. recommendations
Aspect Clustering Recommendation Systems

Goal Group similar items or people
into clusters

Predict what a specific user will
like or interact with

Output Segment labels (e.g., “high
spenders,” “price-sensitive”)

Ranked list of personalized
suggestions

Approach Finds structure in data without
labels (unsupervised learning)

Uses user-item interactions,
ratings, or behavior to make
predictions (can be supervised or
unsupervised)

Personalization Same cluster members treated
similarly Individualized for each user

Typical Use in Marketing Customer segmentation for
targeting strategies

Product/content
recommendations for each
customer

Clustering vs. recommendations

• Clustering → “Organizing your customers into a few big buckets
based on similarity”

• Recommendations → “Telling this customer what they’re most
likely to want next”

How can we implement recommendations

Tons of options based on simple data mining or more complex
machine learning algorithms

How can we implement recommendations

Tons of options based on simple data mining or more complex
machine learning algorithms

Aspect Data mining Machine learning

Primary goal Discover patterns, segments,
anomalies, associations

Learn a model to predict or
decide on unseen cases

Typical output Rules, clusters, summaries,
dashboards, hypotheses

A trained model (e.g., classifier,
regressor, recommender)

Orientation Descriptive/explanatory (“what’s
in there?”)

Predictive/optimization (“what will
happen?”)

Examples Association rules (A→B), clustering
segments, outlier detection

Churn prediction, demand
forecasting, recommendations,
Natural Language Processing

Evaluation
Interestingness,
support/confidence/lift, business
interpretability

Accuracy/AUC/RMSE, calibration,
loss, offline/online metrics

Data mining recommenders

Association rule mining

Helpful for finding “what goes with what”
• A data mining technique to discover relationships between items in

large datasets
• Often used to find patterns of co-occurrence in transactions
• Classic example: Customers who buy bread often also buy butter
• Marketing Applications

• Market basket analysis → Which products are often bought together?
• Cross-selling → “Frequently bought together” recommendations
• Store layout → Place associated products near each other
• Promotion bundling → Offer discounts on items often purchased together

Association rule mining

Transaction ID Bread Butter Milk Beer Diapers
1 1 1 0 0 0
2 0 0 1 1 1
3 1 0 1 0 0
4 1 1 1 0 0
5 0 0 0 1 1

From here, the algorithm looks for frequent itemsets and then generates rules like:
• Rule: {Diapers} → {Beer}

• Support: 2% of all transactions contain both
• Confidence: 60% of diaper buyers also buy beer
• Lift: 1.5 → diaper buyers are 50% more likely to buy beer than average

Association rule mining
Given the rule: A → B:

Example

100 total transactions
•2 transactions: diaper + beer
•1 transaction: diaper only
•38 transactions: beer only
•59 transactions: neither

Let’s compute support, confidence, and lift for diapers → beers

Example

100 total transactions
•2 transactions: diaper + beer
•1 transaction: diaper only
•38 transactions: beer only
•59 transactions: neither

Let’s compute support, confidence, and lift for diapers → beers

 Support = 2 / 100 = 2%
 Confidence = 2 / 3 = 66.7%
 P(beer) = 40 / 100 = 40%
 Lift = 0.667 / 0.40 = 1.67 ≈ 1.5

Machine Learning

Main approaches

• Collaborative filtering: “People like you also liked these.” (e.g.,
MBA/Marketing students like R → recommend Python).

• Content-based filtering: “What you liked in the past predicts
what you’ll like in the future.” (e.g., you liked a sci-fi book →
recommend another sci-fi book).

• Hybrid models: Most platforms mix both.

Core idea: Embeddings

• Embeddings are a vector representation of a user or item
• Similarity measures how close are two vectors

• Dot product
• Cosine similarity

• Learned embeddings capture latent factors (taste for
genre/price/brand).

• Nearby items/users share behavior even without identical histories
• Rec systems differ in how they learn and create these vectors
• Different models, same idea: get vectors for users/items and

recommend using nearest neighbors in embedding space.

Mental picture (movies example)

Let’s assume we have two-dimensional vectors (x, y) where:
• X: measure the continuum action → romance
• Y: measure the continuum budget →premium

Action Romance

Premium

Budget

Bob

Crazy stupid love

Collaborative filtering

• A recommendation method that predicts a user’s interests by
learning from the preferences of other users

• It requires user-items interactions

• Assumes that similar users will like similar things
• The “collaborative” part: the system utilizes the collective

behavior of multiple users to make predictions

Collaborative filtering

User-Based Collaborative Filtering: Recommendations are made
to a user based on what similar other users have liked.

User / Movie The Matrix Titanic Toy Story The Godfather Inception
User 1 1 0 1 0 1
User 2 1 1 0 1 0
User 3 0 1 1 0 0
User 4 1 0 0 1 1
User 5 0 1 0 1 1

Main issue with collaborative filtering

“Cold start” problem: If I don’t have data about a user past
choices, it is difficult to know what they will like

Content based recommenders
• Recommend items similar to a user's past choices

• Example: Movie recommender
• A content-based recommendation system recommends movies to a user by

considering the similarity of movies.
• For example, we can recommend movies based on movie description similarity.

• Risk: “filter bubble” → recommendations are too similar to past
choices so consumers do not try anything ”new” or “different”

• Great to address the cold start problem since they don’t require too
much past user behavior

Deep learning & Large Language Models

Deep learning & Large Language Models

• What is Deep Learning?
• A type of machine learning that uses neural networks with many layers

(“deep”).
• Each layer learns to extract more complex patterns from data.
• Works on images, text, audio, clicks, videos → almost any type of data.

• What are LLMs?
• Large Language Models are deep learning models trained on vast

amounts of text.
• Can understand, generate, and reason with language (e.g., ChatGPT,

Claude, Gemini).

Deep learning & Large Language Models

Deep learning & Large Language Models

They optimize/improve how we “embed” consumers/products
because they rely on much more, and complex, data

Deep learning: content based

• Build “item” vectors from text/images/attributes of the items
• E.g., movie vector: description + video + dialogues + cast + ratings + box

office

• “Simple” approach for text data: Word2Vec, Doc2Vec, any LLM
model these days:

• E.g., Movie recommender: https://github.com/devalindey/Recommender-
Systems-using-Word-Embeddings

https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings
https://github.com/devalindey/Recommender-Systems-using-Word-Embeddings

Evaluation: Offline Metrics

• Accuracy-based
• Precision@k → % of top-k recommendations that are relevant
• Recall@k → % of relevant items captured in top-k

• Coverage & Diversity
• How much of the catalog is recommended?
• Are recommendations varied or too narrow?

• Novelty
• Are users exposed to less popular / surprising items?

Evaluation: Offline Metrics

Precision@k:
• Precision@k = # relevant items in top−𝑘

𝑘
• (Fraction of recommended items that are relevant.)

Recall@k:
• Recall@k = # relevant items in top−𝑘

all relevant items
• (Fraction of relevant items that are recommended.)

Evaluation: Online metrics

• CTR (Click-Through Rate) → Do users click on recommended
items?

• Conversion / Revenue Lift → Do recs increase sales, bookings,
streams?

• Engagement / Retention → Do users come back more often?

Beyond Metrics

• Fairness / Bias → Do recs treat products & users equitably?

• Explainability / Transparency → Can users understand “why” an
item is recommended?

• Long-Term Value → Do recs build loyalty, not just short-term
clicks?

	Slide 1: Recommender systems
	Slide 2: A few things
	Slide 4: Class survey: What you like
	Slide 5: Class survey: Areas for Improvement
	Slide 6: Overall Impression
	Slide 7: Recommendations are everywhere
	Slide 8: Recommendations are everywhere
	Slide 9: Why are recs important for marketing?
	Slide 10: Clustering vs. recommendations
	Slide 11: Clustering vs. recommendations
	Slide 12: How can we implement recommendations
	Slide 13: How can we implement recommendations
	Slide 14: Data mining recommenders
	Slide 15: Association rule mining
	Slide 16: Association rule mining
	Slide 17: Association rule mining
	Slide 18: Example
	Slide 19: Example
	Slide 20: Machine Learning
	Slide 21: Main approaches
	Slide 22: Core idea: Embeddings
	Slide 23: Mental picture (movies example)
	Slide 24: Collaborative filtering
	Slide 25: Collaborative filtering
	Slide 26: Main issue with collaborative filtering
	Slide 27: Content based recommenders
	Slide 28: Deep learning & Large Language Models
	Slide 29: Deep learning & Large Language Models
	Slide 30: Deep learning & Large Language Models
	Slide 31: Deep learning & Large Language Models
	Slide 32: Deep learning: content based
	Slide 33: Evaluation: Offline Metrics
	Slide 34: Evaluation: Offline Metrics
	Slide 35: Evaluation: Online metrics
	Slide 36: Beyond Metrics

