

Regressions

MKT 566

Instructor: Davide Proserpio

What we will learn

- We continue to talk about **covariation** and learn how to model it using regressions
- We are going to cover regressions for binary outcomes, i.e., logistic regressions
- Chapter [3.6](#) of R for Marketing Students

Binary outcomes: Logistic regression

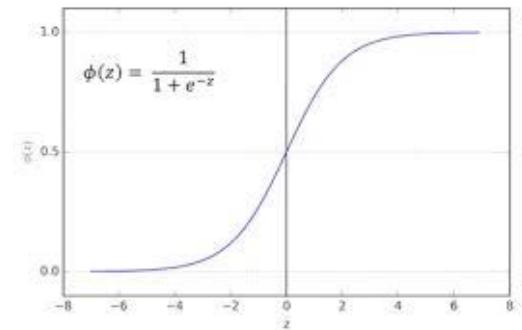
- Let's assume Y is binary, e.g.: 1 if consumer i buys a product, 0 otherwise
 - Linear regression can return predictions outside $[0,1]$
- We need a different functional form that can force predictions between $[0,1]$

Binary outcomes: Logistic regression

Solution: use the **logistic (sigmoid) function**, which maps any real number into $[0, 1]$:

$$p = P(Y = 1 | X) = \frac{1}{1 + e^{-z}}$$

Where: $z = \beta_0 + \beta_1 X$

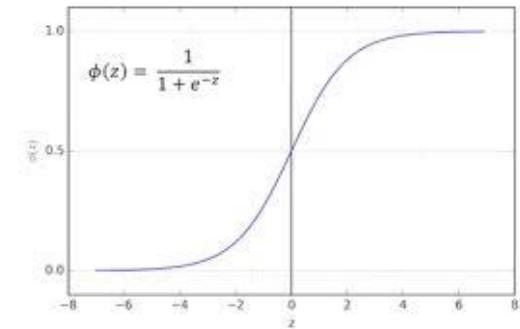


Binary outcomes: Logistic regression

Solution: use the **logistic (sigmoid) function**, which maps any real number into $[0, 1]$:

$$p = P(Y = 1 | X) = \frac{1}{1 + e^{-z}}$$

Where: $z = \beta_0 + \beta_1 X$



Odds and Log-Odds:

- The **odds** of success are: $\frac{p}{1-p} = e^z$
- Taking the natural log gives the **log-odds (logit)**: $\log\left(\frac{p}{1-p}\right) = z = \beta_0 + \beta_1 X$
- So, the logistic regression models the **log-odds** of success as a linear function of the predictors.

Proof

1. Write out the odds

$$\frac{p}{1-p} = \frac{\frac{1}{1+e^{-x}}}{1 - \frac{1}{1+e^{-x}}} = \frac{1}{1+e^{-x}} \Big/ \frac{(1+e^{-x})-1}{1+e^{-x}} = \frac{1}{1+e^{-x}} \Big/ \frac{e^{-x}}{1+e^{-x}} = \frac{1}{e^{-x}} = e^x.$$

2. Take the natural log

$$\ln\left(\frac{p}{1-p}\right) = \ln(e^x) = x.$$

So when $p = 1/(1 + e^{-x})$, its log-odds $\ln(p/(1 - p))$ simplifies exactly to x .

Binary outcomes: Logistic regression interpretation

- Logistic regression estimates changes in log (odds)
- To get changes in odds we can exponentiate both sides
- Given $y_i = \beta_0 + \beta_1 X_{1,i} + \epsilon_i$
 - A one unit increase in X_1 **multiplies** the odds of Y by e^{β_1} , i.e., odds change by $(e^{\beta_1} - 1) * 100\%$
 - (again, **for small β_1 we can approximate it with $\beta_1 * 100\%$**)

Estimation

Unlike linear regression (which minimizes squared errors), logistic regression **maximizes the likelihood** of observing the actual outcomes, given the model.

Model fit

- R^2 does not work well with binary outcomes.
- Binary outcomes are about **yes/no decisions**, not “how much” → the **usual R^2 just doesn’t work well**.
- There are alternative measures of fit, e.g.,
 - **Pseudo- R^2** : How much better is this model at predicting 0s and 1s compared to guessing the average?
 - It's useful for checking if your logistic model is doing better than chance.
 - **Log Likelihood**: is a measure of how well the model's predicted probabilities match the actual 0/1 outcomes.
 - The higher the better.

Logistic regression in R

```
# Crate the variable gem which identifies very good listings
airbnb[, gem:=as.integer(star_rating>=4.5 &
reviews_count>20)]
# Predict probability of being a gem using logistic
regression
m_logit = glm(gem ~ price + guests_included + city +
room_type, data = airbnb, family = binomial)
# Print results
stargazer(m_logit, type = "text",
          omit.stat = c("f", "ser", "aic", "bic"))
```

Logistic regression in R

```
# Create the variable gem which identifies very
# good listings

airbnb[, gem:=as.integer(star_rating>=4.5 &
reviews_count>20)]

# Predict probability of being a gem using
# logistic regression

m_logit = glm(gem ~ price + guests_included + city
+ room_type, data = airbnb, family = binomial)

# Print results

stargazer(m_logit, type = "text",
          omit.stat = c("f", "ser", "aic", "bic"))
```

Dependent variable: gem	
price	-0.002*** (0.0001)
guests_included	0.112*** (0.008)
cityBoston	0.167*** (0.040)
cityLos Angeles	0.162*** (0.029)
cityMiami	-0.195*** (0.042)
cityNew York City	0.188 (0.569)
room_typePrivate room	-0.008 (0.026)
room_typeShared room	-0.707*** (0.064)
Constant	-1.393*** (0.035)
<hr/>	
Observations	50,836
Log Likelihood	-25,430.070

Logistic regression in R

```
# Crate the variable gem which identifies very
good listings

airbnb[, gem:=as.integer(star_rating>=4.5 &
reviews_count>20)]

# Predict probability of being a gem using
logistic regression

m_logit = glm(gem ~ price + guests_included + city
+ room_type, data = airbnb, family = binomial)

# Print results

stargazer(m_logit, type = "text",
          omit.stat = c("f", "ser", "aic", "bic"))
```

The coefficient of **-0.002** means each **\$1 increase in price decreases the odds of being a gem by about 0.2%**.

Dependent variable: gem	
price	-0.002*** (0.0001)
guests_included	0.112*** (0.008)
cityBoston	0.167*** (0.040)
cityLos Angeles	0.162*** (0.029)
cityMiami	-0.195*** (0.042)
cityNew York City	0.188 (0.569)
room_typePrivate room	-0.008 (0.026)
room_typeShared room	-0.707*** (0.064)
Constant	-1.393*** (0.035)
<hr/>	
Observations	50,836
Log Likelihood	-25,430.070