Regressions

MKT 566
Instructor: Davide Proserpio



A few things

 Homework 1 and the next homework

 Groups
* Section 16546 (1 student w/o group)
* Section 16547 (2 students w/o group)

* Project proposal presentations (Oct. 13/15)

* “l'would like each group to submit and present (approximately 10-15 minutes) a

PowerPoint presentation proposal outlining the problem you propose to study and
your general approach to the problem.”

* Guest speakers:

* Jonathan Elliot, Director, Data Science at StubHub (Sept. 29)
* Yang Wang, Principal Economist at Amazon (Nov. 5)
* Giovanni Marano: Analytics Senior Director at FanDuel (Nov. 17/19)



What we will learn

* We continue to talk about covariation and learn how to model it
using regressions

* We are going to cover linear regressions and important concepts
associated with them

* Chapter 3.4 of R for Marketing Students
* (Advanced & optional) Lecture 6 of Data Storytelling for Marketers



https://bookdown.org/content/6ef13ea6-4e86-4566-b665-ebcd19d45029/secondarydata.html#linear-regression
https://raw.githack.com/dadepro/mkt-615/main/lectures/08-regression/08-regressions.html#1

What is a Linear Regression

* In simple terms, a regression allows us to predict a variable Y
using one or a set of variables X; (j = 1: N)

* We referto Y as outcome or dependent variable
* We refer to X; as predictors or independent variables

* For example:
* Income (Y) as a function of education (X)
* Sales (Y) as a function of ad spend (X)
* Revenue (Y) as a function of review ratings (X)
* House prices (Y) as a function of mortgage interest rates (X)



What is a Linear Regression

Y = F(X)

* Where Y is some function of X, i.e., Y depends on X in some way.

* Alinearregression simply assumes that the relationship between
XandYis linear

* Machine learning is just building methods to better approximate
F(X)



Basic setup and quantities of interest

Data

Vi=Fot PXite oy x
3 1
 Xis the independent variable. ? °
* Yis the dependent variable.
2 4

* By Is the intercept.
* 4 Is the coefficient for variable X.
* €; Is the error term.

I =1:N are the rows of the data



Basic setup and quantities of interest

lllustration of an OLS Fit
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Estimating the coefficient

Ordinary least squares (OLS) estimates the beta coefficients that

produce the lowest sum of squared differences between actual and
predicted values of the dependent variable

lllustration of an OLS Fit

Outcome Y




What is Hypothesis Testing?

Hypothesis testing is a way to use data to decide between two
claims:

* Null hypothesis HO: the default assumption, such as no effect or no
difference

* Alternative hypothesis H1: the claim we want to test, such as thereis an
effect or there is a difference

Steps:
* Collect data and compute a test statistic, such as a t-value
* Calculate a p-value, which tells us how likely our datais if HO were true

* Make a decision:
* Small p-value - reject HO and conclude there is evidence for H1
* Large p-value - fail to reject HO and conclude there is not enough evidence



Hypothesis Testing for regressions

* What we test
* Hy :No effect (f = 0)
* H, :Thereis an effect (f # 0)

* How we test
« Compute the p-value

* Decision rule
* |f p-value <0.05 - reject H, (evidence of effect)
* If p-value = 0.05 - fail to reject Hy (no strong evidence)



Regression: Quantities of interest

* Coefficients are estimates, therefore, they come with an error

* Standard Error (SE) of coefficient: “How precisely have | pinned down
this slope or intercept?” Smaller 2 more confidence.

* From SE we can get the t-statistics = 5; /SE;

* From t-stat, we can get the p-value

* “If there really is no effect (the nullis true), what’s the probability I’d see data this
unusual (or more) just by random luck?”

* Low p-value (e.g., 0.05): Only 5in 100 random datasets under “no effect” would
look this extreme = so you start to doubt the “no effect” story.

* Generally speaking, if p-value < 0.05, we say the coefficient is statistically
significant, i.e., different from zero.

 Smaller SE > larger t-stat > smaller p-value = stronger
evidence against the null hypothesis



A little more technical summary

* Coefficients
* Estimated effects of predictors on the outcome
* Always estimates > subject to sampling error

e Standard Error (SE)

* Precision of coefficient estimate
e Smaller SE = more confidence in the estimate
e t-statistic
SE(Bi)
* Measures how many SEs away the coefficient is from zero
* p-value

* Probability of observing a t-stat as extreme as this if the true effectis O
 Smaller p-value = stronger evidence against the null hypothesis




Measure of fit

How do we know if our regression is doing a good job at predicting
Y?

R-squared (Rz) IS @ summary statistic in regressions that tells you
how well your model’s predictions match the actual data

Explained Sum of Squares

R = - =
Total Sum of Squares Yoy u)e

= Z(yz o 3')1-)2 = residual (unexplained) variance

« > (y; — y)? = total variance in the outcome



Measure of fit

How do we know if our regression is doing a good job at predicting
Y?

R-squared (Rz) IS @ summary statistic in regressions that tells you
how well your model’s predictions match the actual data

Model error
/
R? Explained Sum of Squares ] S (yi — 9i)°
- Total Sum of Squares > Ay — 9)?
« Y (y; — 9;)* = residual (unexplained) variance Error using the mean

« > (y; — y)? = total variance in the outcome



What does [;tell us?

* All else equal (ceteris paribus), how much Y changes as a
function of X

* The interpretation depends on the regression functional form

Model Form Regression Equation Interpretation of 3;
1. Level-Level Y =8+ %X A one-unit increase in X = a 31-unitchangeinY.
2. Log-Level InY =By + 51X A one-unit increase in X = an approximately 3; X

100% change in Y.

. Level-Log — 11n o increase in X = an approximately ==L -uni

3. Level-L 1 4 +/nX A% in X imately -7 —unit
changeinY.

4. Log-lLog InY =8+ B81InX A 1% increase in X = an approximately 81 %
changeinY.

Note: for model 2-4, these approximations hold for small changes in X and/or 3



Why log numeric variables?

* Linearizes Nonlinear Relationships

* Many relationships in economics and social science are multiplicative or
curved, not straight lines.

 Example: A $1 increase in price affects demand very differently when
price goes from:
* $5-> $6vs.
« $100~> $101
* Taking the log of, say price, linearizes this relationship, making it easier
for a linear model to fit.



Why log numeric variables?

Reduces Skewness

* Variables like price and income variables are often right-skewed (many
small values, few large ones).
* Taking the log:
« Compresses large values

* Expands small differences among low values > Makes the distribution more
symmetric and closer to normal

* This can improve model performance and make OLS assumptions (like
normality of errors) more realistic.



Why log numeric variables?

Reduces the influence of outliers

* Large numeric variables can dominate the regression, especially if they
contain outliers.
* Logging reduces their influence, which can help with:

* Numerical stability
* More robust coefficient estimates



Why log numeric variables?

Interpretability: Elasticities
* When you use log of, e.g., price, coefficients are easier to interpret:

* |In a log-log model, the coefficient is an elasticity: "A 1% increase in price
> X% change in demand”

* In a log-level model, the coefficient tells you the percentage change in
the outcome from a one-unit change in price.

* These interpretations are more intuitive, especially in economics or
marketing



Multiple independent variables

Vi = Bo + B1X1,; + Baxe; + -+ Bixj i + €

* Everything | just discussed applies!



Estimating linear models in R

model = Im(y ~ x, data = yourdata)
summary (model)

Library for creating pretty tables: stargazer



Example: Airbnb dataset

* A cross-sectional dataset of about 50k Airbnb listings in the U,S
with some variables describing the listing

* Cities: Austin, Boston, Los Angeles, Miami, NYC

> head(airbnb)

listing_id price bathrooms bedrooms cancellation_policy guests_included property_type zipcode star_rating reviews_count city
<int> <int> <num> <int> <char> <int> <char> <char> <hum> <int> <char>

1: 147 238 1 2 strict 4 House 90291 5.0 79 Los Angeles
2: 1078 89 1 1 flexible 2 Apartment 78705 5.0 117 Austin
3: 2055 89 1 1 moderate 1 House 33145 5.0 91 Miami
4: 2265 175 2 2 strict 2 House 78702 4.5 15 Austin
5: 3021 120 1 1 strict 2 House 90046 4.5 4 Los Angeles
6: 3319 119 1 1 strict 1 Apartment 90048 5.0 298 Los Angeles

room_type
<char>

Entire
Entire
Private
Entire
Entire
Entire

home
home
room
home
home
home



Example: Airbnb dataset

* Let’s predict price as a function of the number of reviews a listing
has

* What do you expect the relationship to be?



Example: Airbnb dataset

Price vs Number of Reviews
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Example: Airbnb dataset

ml = 1lm(price ~ reviews_count, data = airbnb)
summary (ml)

Call:
Im(formula = price ~ reviews_count, data = airbnb)

Residuals:
Min 1Q Median 3Q Max
-145.0 -74.9 -39.5 23.3 9855.4

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 148.040066 0.90102 164.30 <0.0000000000000002 ***
reviews_count -0.34672 0.03195 -10.85 <0.0000000000000002 ***

Signif. codes: @ ‘***’ @.001 ‘**’ 90.01 ‘*’ .05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 165.9 on 50834 degrees of freedom
Multiple R-squared: 0.002311, Adjusted R-squared: 0.002291
F-statistic: 117.8 on 1 and 50834 DF, p-value: < 0.00000000000000022



Example: Airbnb dataset

ml = 1lm(price ~ reviews_count,

summary (ml)
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Residuals:
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-145.0 -74.9 -39.5 23.3 9855.4

Coefficients:
Estimate Std. Error t va

data = airbnb)

a = airbnb)

lue Pr(>1tl)

(Intercept) 148.040066 0.90102 164.30 <0.0000000000000002 ***
reviews_count -0.34672 0.03195 -10.85 <0.0000000000000002 ***

Signif. codes: @ ‘***’ @.Q01 ‘**’ @.01

%' 0.05 <.’ 0.1 ¢ 1

Multiple R-squared: 0.002311, Adjuste
F-statistic: 117.8 on 1 and 50834 DF,

Residual standard error: 165.9 on 50834 degrees of freedom

d R-squared: 0.002291
p-value: < 0.00000000000000022




Example: Airbnb dataset

ml = 1lm(price ~ reviews_count,
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Understanding Regression Output

* Residual Standard Error: 165.9
* On average, model predictions are about $166 off from the actual values

* Multiple R-squared: 0.0023
* The model explains 0.23% of the variation in the outcome
* Very low explanatory power

* Adjusted R-squared: 0.0023

« Same as R?, but penalizes adding useless predictors

* F-statistic: 117.8, p-value < 2.2e-16

* Tests whether the predictor(s) together explain anything at all
* Large F and tiny p-value mean: Yes, the predictor matters statistically



Example: Airbnb dataset

library(stargazer)

Regression of Price on Number of Reviews

Dependent variable:

ml = 1lm(price ~ reviews count, data = airbnb) oo

Price
Number of Reviews -0 .35%%*
stargazer(ml, (0.03)
type = "'tEXt", Constant 148.04%**
: " : : : " (0.90)
title = "Regression of Price on Number of Reviews
dep.var.labels = "Price",  mmmmmmmmmmmeem
. . Observations 50,836
covariate.labels = "Number of Reviews", R2 0.002
omit.stat = c("f", "ser”, “adj.rsq”), Note: *p<@.1; **p<0.05; ***p<0.01

digits = 2)



Including categorical variables

* How does R deal with categorical variables? Using factors

* Afactoris R’s special way of storing categorical variables (things like
city, gender, yes/no, etc.).

 Under the hood, a factoris just numbers with labels.

* Example: city <- factor(c("NYC", "LA", "Miami", "NYC"))
city

e Here, LA=1, Miami= 2, NYC = 3 internally.
* R stores numbers, but shows you labels.



Example: Airbnb dataset

Regression of Price on City

Dependent variable:

* Let’sregress price on city Price
* Wehavefivevalues: s

. . . cityBoston -17.60*%**
* Austin, Boston, Los Angeles, Miami, NYC (2.67)
cityLos Angeles -36.77%**
. . . (1.91)
ml = lm(price ~ city, data = airbnb)
cityMiami -4Q . 93%**
(2.59)
stargazer(ml, type = "text", title = CityNew York City 817
"Regression of Price on City", (39.03)
dep.var.labels = "Price", Constant 169.95%*+
‘ 1n n 1" n (1.63)
omit.stat = c("f", "ser",
"adj.rsq"), digits = 2) Observations s0,83%
R2 0.01

Note: *p<@.1; **p<@.05; ***p<@.01



Example: Airbnb dataset

Why do we see only four coefficients?

Obs | City Austin | Boston Los Angeles | Miami
1 Austin 1 0 0 0)
2 Boston 0 1 0 0)
3 Los Angeles |0 0 1 0
4 Miami 0 0 0 1
5 New York City | O 0 0 0




Example: Airbnb dataset

Regression of Price on City

Dependent variable:

* Let’sregress price on city Price
* Wehavefivevalues: s

. . . cityBoston -17.60*%**
* Austin, Boston, Los Angeles, Miami, NYC (2.67)
cityLos Angeles -36.77%**
. . . (1.91)
ml = lm(price ~ city, data = airbnb)
cityMiami -4Q . 93%**

(2.59) Austin
stargazer(ml, type = "text", title = CityNew York City 1,  avg. price
"Regression of Price on City", 9.0  /

dep.var.labels = "Price", Constant [m&%ﬂ* ]
' 1n n 1" n (1.63)
omit.stat = c("f", "ser",
"adj.rsq"), digits = 2) Observations s0,8
R2 0.01

Note: *p<@.1; **p<@.05; ***p<@.01



Example: Airbnb dataset

Change the base level city:

airbnb$city =
as.factor(airbnb%$city)

airbnb$city =
relevel (airbnb$city, ref = "New
York City")

Dependent variable:

Price
cityAustin 28.17
(39.03)
cityBoston 10.57
(39.05)
citylLos Angeles -8.61
(39.01)
cityMiami -12.76
(39.05)
Constant 141 .78***
(38.99)
Observations 50,836
R2 0.01
Note: *p<@.1; **p<0.05; ***p<0.01
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