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A few things

• Homework 1 and the next homework
• Groups

• Section 16546 (1 student w/o group)
• Section 16547 (2 students w/o group)
• Project proposal presentations (Oct. 13/15)

• “I would like each group to submit and present (approximately 10-15 minutes) a 
PowerPoint presentation proposal outlining the problem you propose to study and 
your general approach to the problem.”

• Guest speakers:
• Jonathan Elliot, Director, Data Science at StubHub (Sept. 29)
• Yang Wang, Principal Economist at Amazon (Nov. 5)
• Giovanni Marano: Analytics Senior Director at FanDuel (Nov. 17/19)



What we will learn

• We continue to talk about covariation and learn how to model it 
using regressions

• We are going to cover linear regressions and important concepts 
associated with them

• Chapter 3.4 of R for Marketing Students
• (Advanced & optional) Lecture 6 of Data Storytelling for Marketers

https://bookdown.org/content/6ef13ea6-4e86-4566-b665-ebcd19d45029/secondarydata.html#linear-regression
https://raw.githack.com/dadepro/mkt-615/main/lectures/08-regression/08-regressions.html#1


What is a Linear Regression

• In simple terms, a regression allows us to predict a variable Y 
using one or a set of variables 𝑋𝑗 (𝑗 = 1: 𝑁)

• We refer to Y as outcome or dependent variable
• We refer to 𝑿𝒋 as predictors or independent variables

• For example:
• Income (Y) as a function of education (X)
• Sales (Y) as a function of ad spend (X)
• Revenue (Y) as a function of review ratings (X)
• House prices (Y) as a function of mortgage interest rates (X)



What is a Linear Regression

𝑌 = 𝐹(𝑋)
• Where Y is some function of X, i.e., Y depends on X in some way.

• A linear regression simply assumes that the relationship between 
X and Y is linear

• Machine learning is just building methods to better approximate 
F(X)



Basic setup and quantities of interest

𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑋𝑖 + 𝜖𝑖

• X is the independent variable.
• Y is the dependent variable.
• 𝜷𝟎 Is the intercept.
• 𝜷𝟏 Is the coefficient for variable X. 
• 𝝐𝒊 Is the error term.
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i = 1:N are the rows of the data



Basic setup and quantities of interest

𝛽0

𝛽1 (slope)
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Estimating the coefficient

Ordinary least squares (OLS) estimates the beta coefficients that 
produce the lowest sum of squared differences between actual and 
predicted values of the dependent variable

𝜖𝑖



What is Hypothesis Testing?

Hypothesis testing is a way to use data to decide between two 
claims:

• Null hypothesis H0: the default assumption, such as no effect or no 
difference

• Alternative hypothesis H1: the claim we want to test, such as there is an 
effect or there is a difference

Steps:
• Collect data and compute a test statistic, such as a t-value
• Calculate a p-value, which tells us how likely our data is if H0 were true
• Make a decision:

• Small p-value → reject H0 and conclude there is evidence for H1
• Large p-value → fail to reject H0 and conclude there is not enough evidence



Hypothesis Testing for regressions

• What we test
• 𝐻0 :No effect (𝛽 = 0)
• 𝐻1 :There is an effect (𝛽 ≠ 0)

• How we test
• Compute the p-value

• Decision rule
• If p-value < 0.05 → reject 𝐻0 (evidence of effect)
• If p-value ≥ 0.05 → fail to reject 𝐻0 (no strong evidence)



Regression: Quantities of interest

• Coefficients are estimates, therefore, they come with an error
• Standard Error (SE) of coefficient: “How precisely have I pinned down 

this slope or intercept?” Smaller → more confidence.
• From SE we can get the t-statistics = 𝛽𝑖/SE𝑖

• From t-stat, we can get the p-value
• “If there really is no effect (the null is true), what’s the probability I’d see data this 

unusual (or more) just by random luck?”
• Low p-value (e.g., 0.05): Only 5 in 100 random datasets under “no effect” would 

look this extreme → so you start to doubt the “no effect” story.
• Generally speaking, if p-value ≤ 0.05, we say the coefficient is statistically 

significant, i.e., different from zero.

• Smaller SE →  larger t-stat → smaller p-value → stronger 
evidence against the null hypothesis



A little more technical summary

• Coefficients
• Estimated effects of predictors on the outcome
• Always estimates → subject to sampling error

• Standard Error (SE)
• Precision of coefficient estimate
• Smaller SE ⇒ more confidence in the estimate

• t-statistic
• 𝑡𝑖 =

෡𝛽𝑖

𝑆𝐸 ෡𝛽𝑖

• Measures how many SEs away the coefficient is from zero
• p-value

• Probability of observing a 𝑡-stat as extreme as this if the true effect is 0
• Smaller p-value ⇒ stronger evidence against the null hypothesis



Measure of fit

How do we know if our regression is doing a good job at predicting 
Y?
R-squared (𝑹𝟐) is a summary statistic in regressions that tells you 
how well your model’s predictions match the actual data



Measure of fit

How do we know if our regression is doing a good job at predicting 
Y?
R-squared (𝑹𝟐) is a summary statistic in regressions that tells you 
how well your model’s predictions match the actual data

Error using the mean

Model error



What does 𝛽1tell us?

• All else equal (ceteris paribus), how much Y changes as a 
function of X

• The interpretation depends on the regression functional form

Note: for model 2-4, these approximations hold for small changes in X and/or 𝛽

1.

2.

3.

4.



Why log numeric variables?

• Linearizes Nonlinear Relationships
• Many relationships in economics and social science are multiplicative or 

curved, not straight lines.
• Example: A $1 increase in price affects demand very differently when 

price goes from:
• $5 → $6 vs.
• $100 → $101

• Taking the log of, say price, linearizes this relationship, making it easier 
for a linear model to fit.



Why log numeric variables?

Reduces Skewness
• Variables like price and income variables are often right-skewed (many 

small values, few large ones).
• Taking the log: 

• Compresses large values
• Expands small differences among low values → Makes the distribution more 

symmetric and closer to normal
• This can improve model performance and make OLS assumptions (like 

normality of errors) more realistic.



Why log numeric variables?

Reduces the influence of outliers
• Large numeric variables can dominate the regression, especially if they 

contain outliers.
• Logging reduces their influence, which can help with:

• Numerical stability
• More robust coefficient estimates



Why log numeric variables?

Interpretability: Elasticities
• When you use log of, e.g., price, coefficients are easier to interpret:
• In a log-log model, the coefficient is an elasticity: "A 1% increase in price 

→ X% change in demand"
• In a log-level model, the coefficient tells you the percentage change in 

the outcome from a one-unit change in price.
• These interpretations are more intuitive, especially in economics or 

marketing



Multiple independent variables

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖 + ⋯ + 𝛽𝑗𝑥𝑗,𝑖 + 𝜖𝑖

• Everything I just discussed applies!



Estimating linear models in R

# estimate the linear model

model = lm(y ~ x, data = yourdata)

# print the results

summary(model)

Library for creating pretty tables: stargazer



Example: Airbnb dataset

• A cross-sectional dataset of about 50k Airbnb listings in the U,S 
with some variables describing the listing

• Cities: Austin, Boston, Los Angeles, Miami, NYC



Example: Airbnb dataset

• Let’s predict price as a function of the number of reviews a listing 
has

• What do you expect the relationship to be?



Example: Airbnb dataset



Example: Airbnb dataset
m1 = lm(price ~ reviews_count, data = airbnb)

summary(m1)
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summary(m1)



Example: Airbnb dataset
m1 = lm(price ~ reviews_count, data = airbnb)

summary(m1)



Understanding Regression Output

• Residual Standard Error: 165.9
• On average, model predictions are about $166 off from the actual values

• Multiple R-squared: 0.0023
• The model explains 0.23% of the variation in the outcome
• Very low explanatory power

• Adjusted R-squared: 0.0023
• Same as R², but penalizes adding useless predictors

• F-statistic: 117.8, p-value < 2.2e-16
• Tests whether the predictor(s) together explain anything at all
• Large F and tiny p-value mean: Yes, the predictor matters statistically



Example: Airbnb dataset
library(stargazer)

# estimate the model

m1 = lm(price ~ reviews_count, data = airbnb)

# create a pretty table

stargazer(m1, 

 type = "text", 

 title = "Regression of Price on Number of Reviews", 
dep.var.labels = "Price", 

 covariate.labels = "Number of Reviews", 

 omit.stat = c("f", "ser”, “adj.rsq”), 

 digits = 2)



Including categorical variables

• How does R deal with categorical variables? Using factors
• A factor is R’s special way of storing categorical variables (things like 
city, gender, yes/no, etc.).

• Under the hood, a factor is just numbers with labels.
• Example:

• Here, LA = 1, Miami = 2, NYC = 3 internally.
• R stores numbers, but shows you labels.



Example: Airbnb dataset

• Let’s regress price on city
• We have five values: 

• Austin, Boston, Los Angeles, Miami, NYC

m1 = lm(price ~ city, data = airbnb)
# Create table
stargazer(m1, type = "text", title = 
"Regression of Price on City", 
          dep.var.labels = "Price", 
          omit.stat = c("f", "ser", 
"adj.rsq"), digits = 2)



Example: Airbnb dataset

Obs City Austin Boston Los Angeles Miami
1 Austin 1 0 0 0
2 Boston 0 1 0 0
3 Los Angeles 0 0 1 0
4 Miami 0 0 0 1
5 New York City 0 0 0 0

Why do we see only four coefficients?



Example: Airbnb dataset

• Let’s regress price on city
• We have five values: 

• Austin, Boston, Los Angeles, Miami, NYC

m1 = lm(price ~ city, data = airbnb)
# Create table
stargazer(m1, type = "text", title = 
"Regression of Price on City", 
          dep.var.labels = "Price", 
          omit.stat = c("f", "ser", 
"adj.rsq"), digits = 2)

Austin 
avg. price



Example: Airbnb dataset

Change the base level city:
# convert city to factor

airbnb$city = 
as.factor(airbnb$city)

# set a different level

airbnb$city = 
relevel(airbnb$city, ref = "New 
York City")
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