Big Data and Economics
Tidy text toolkit

Kyle Coombs
Bates College | ECON/DCS 368

https://github.com/ECON368-fall2023-big-data-and-economics

Table of contents

e Prologue: Text as data
e Tidying text data

o Regular expressions
o Fuzzy Merges

e Summarizing text

o Word counts
o Word clouds
o Term Frequency-Inverse Document Frequency

2 [44

Prologue: Text as data

Prologue

Today we're going be talking about text as data
o Many resources come from Text Mining with R
e We use text all the time in our daily lives to communicate
e As aresult, itis a rich source of data that can be used to answer interesting questions

e Sometimes important numerical data is embedded in text (e.e. commodity prices, wages, etc. in
historical documents)

e Sometimes we need to categorize numerical data based on text (e.g. categorizing purchases based
on bank memos)

e Sometimes we need to link text across datasets a "fuzzy merge" (e.g. company names, addresses,
etc.)

e Sometimes the stuff we struggle to quantify is in text (e.g. sentiment, political ideology, etc.)

e Before we can get to that, we need to learn how to work with text data

4 | 44

https://www.tidytextmining.com/

Tidying text data

Tidying text data

A library is basically a database of words

Fach word carries information

How different words are combined together also carries information

The problem is that text data is messy

How could we tidy it?

6 | 44

Tidying text data

e There's no one structure that makes sense for all text data

e Your goal is to find a structure that makes sense for your data/research question
o Key term: Corpus is a collection of documents

e String variable: each row is a group of words (e.g. a sentence, title, etc.)

e Term document matrix

o Each row is a document
o Each column is a word
o Each cell is the frequency of that word in that document

e Document term matrix

o Each row is a word
o Each column is a document
o Each cell is the frequency of that word in that document

e You could amend the above to account for combinations of words instead of single words
e Or singleton words and groups of words (bigrams, trigrams, etc.)

7| 44
e The data get big quickly!

Wider tasks with text data

Seriously, that's a ton of words -- are they all meaningful?!

There are lots of words in sentences and many of them are not important

Plus words are capitalized and some are not

o To a computer "Kyle" and "kyle" are different words
o Butto a human, they're the same word
o But what about "Bates" and "bates"?

Then words like "and" and "or" are called stop words

Often times you'll want to remove stop words from your corpus

o Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation,
numbers, etc.)
o The package tidytext has a list of common stop words in data("stop_words")

8 | 44

Stop words

data('stop_words') new_stop_words ¢« data.frame(word=c('new-stop-word', 'another-s
stop_words %>% head(10) stop_words %>%
rbind(new_stop_words) %>%

A tibble: 10 x 2 £ail(10)

Ht word lexicon

Ht <chr> <chr> #H # A tibble: 10 x 2

#H 1 a SMART #H word lexicon

#H 2 a's SMART HHt <chr> <chr>

3 able SMART ## 1 years onix

#H 4 about SMART #H 2 yet onix

t#H 5 above SMART #H 3 you onix

#Ht 6 according SMART #H 4 young onix

#Ht 7 accordingly SMART #H 5 younger onix

8 across SMART ## 6 youngest onix

t#H 9 actually SMART #H 7 your onix

#H 10 after SMART #H 8 yours onix
#H 9 new-stop-word kyle-words
10 another-stop-word kyle-words

9/ 44

Wider tasks with text data

e Seriously, that's a ton of words -- are they all meaningful?!
e There are lots of words in sentences and many of them are not important
e Plus words are capitalized and some are not

o To a computer "Kyle" and "kyle" are different words
o Butto a human, they're the same word
o But what about "Bates" and "bates"?

e Then words like "and" and "or" are called stop words
e Often times you'll want to remove stop words from your corpus

o Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation,
numbers, etc.)
o The package tidytext has a list of common stop words in data("stop_words")

e But how do we remove them?! How do we identify them?

10 / 44

Simplest example: A string variable

e Let's say we have a database with job descriptions listed as string variables

e Look familiar?

s

No encoding supplied: defaulting to UTF-8.

Rows: 17070 Columns: 20
— Column specification

Delimiter: ",
chr (18): timestamp, age, industry, area, jobtitle, jobtitle2, currency, cur ...
dbl (2): annual_salary, additional_pay

Use spec() to retrieve the full column specification for this data.

THEEREERE

Specify the column types or set show_col_types = FALSE to quiet this message.

#H # A tibble: 6 x 20

tH timestamp age industry area jobtitle jobtitle2 annual_salary additional_pay
t#Ht <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <db1l>
#H 1 4/11/202.. 35-44 Governm.. Engi.. Materia.. <NA> 125000 800
#H 2 4/11/202.. 25-34 Galleri.. Gall.. Assista.. <NA> 71000 0
#H 3 4/11/202.. 35-44 Educati.. Educ.. Directo.. <NA> 60000 0
#H 4 4/11/202.. 25-34 Educati.. Gove.. Adminis.. <NA> 42000 NA
#H 5 4/11/202.. 18-24 Account.. Admi.. Executi.. <NA> 65000 0
#H 6 4/11/202.. 25-34 Governm.. Law Counsel <NA> 88000 0
#H# # i 12 more variables: currency <chr>, currency_other <chr>,

Ht # income_additional <chr>, country <chr>, state <chr>, city <chr>,

Ht # remote <chr>, experience_overall <chr>, experience_field <chr>,

H # education <chr>, gender <chr>, race <chr>

1M/ 44

Simplest example: Matching job titles

e The job titles are free form text
e How many unique job titles are there?

e Anyone notice any issues?

managers2023 %>%
group_by(jobtitle) %>%
summarise(n=n())

tH # A tibble: 9,654 x 2

jobtitle n
<chr> <int>
"\"Team Member, Level 1\" (retail worker)"
"(Junior-ish) Data Manager"

"(Software) Coordinator"

"(long-running community science program) Director"
"1st Line Support Engineer"

"24/5 Live-in nanny"

"2nd Grade Teacher"

"2nd grade teacher"

"3D Artist"

#H 10 "3D lab technologist"”

#H # i 9,644 more rows

il g g G g

12 | 44

Case-matching the job titles

e Let's say we want to group similar job titles together
e At the very least, let's make them all lower case

e There's a lot more we could do here!

managers2023 %>%
mutate(jobtitle=tolower(jobtitle)) %>%
group_by(jobtitle) %>%
summarise(n=n())

tH # A tibble: 8,877 x 2

jobtitle n
<chr> <int>
"\"team member, level 1\" (retail worker)"
"(junior-ish) data manager"

"(long-running community science program) director"
"(software) coordinator"

"1st line support engineer"

"24/5 live-in nanny"

"2nd grade teacher"

"3d artist"

"3d lab technologist"

t#H 10 "3rd line data engineering specialist"”

#H # i 8,867 more rows

THEREHEREERE

13/ 44

Ambiguous text data

e Sometimes text data is ambiguous

e For example, someone lists that they are a 24/5 live-in nanny, another says they are a live-in
nanny

o Should we group these?
o That's a judgement call
o Depends on the research question

e What about "Assistant Regional Manager" and "Assistant to the Regional Manager"?
e Today I'll give you the tools to implement whatever cleaning you decide
o We'll also preview ML tools to inform your decision

o Spoiler: the more the text analysis maps to pattern recognition, the better ML will be

14 | 44

Dwight disagrees

AssistanE\,' Regional

&Manager

o
N

4\ By: Dwigp‘%{. Schrute

Dwight Schrute would rather group them, Michael Scott would
not.

15 [44

Regular expressions: Swiss Army knife of

e Look at these cases where "Income - additional context" is not missing

A tibble: 5 x 1

income_additional

<chr>

Income is 70% salary, 30% commission

4% an hour retention bonus from January till September

extra money goes toward insurance

This is considered a training position. The salary is not commensurate with t..
Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a..

i g g g

e Ifyou look at each line, you can immediately tell me what the additional pay Is

e How could we grab those paid a percentage?

16 | 44

Regular expressions: Swiss Army knife of

e Look at these cases where "Income - additional context" is not missing

A tibble: 5 x 1

income_additional

<chr>

Income is 70% salary, 30% commission

4% an hour retention bonus from January till September

extra money goes toward insurance

This is considered a training position. The salary is not commensurate with t..
Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a..

i g g g

e Ifyou look at each line, you can immediately tell me what the additional pay Is
e How could we grab those paid a percentage?

e Well technically, we can go percent-by-percent!

managers2023 %>% select(income_additional) %>%
mutate(ifelse('1%' %in% income_additional,1,
ifelse('2%' %in% income_additional, 2, ...)))

e This would be absurd. Do not do this unless you are participating in an International Obfuscated
Code Contest

16 | 44

https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest
https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest

Regular expression for numbers

e Instead, we can use a regular expression to grab percentages
o The tidyverse's own stringr package has a great suite of regex functions
o There's also grep and grepl in base R, which are based on Linux's grep command

managers2023 %>% select(income_additional) %>%
filter(!is.na(income_additional)) %>%
mutate(add_percentage=str_extract(income_additional, '\\d+\\s*(%|percent)')) %>%

head(5)
#t # A tibble: 5 x 2
HHt income_additional add_percentage
Ht <chr> <chr>
1 Income is 70% salary, 30% commission 70%
2 4% an hour retention bonus from January till September 4%
3 extra money goes toward insurance <NA>
4 This is considered a training position. The salary is not comm.. <NA>
5 Bonus based on work performed - usually 5-9% raise yearly as w.. 9%

17 | 44

https://stringr.tidyverse.org/

what is R oing?

e stringr::str_extract() IS extracting the first match of a regular expression with

o A number '\d' with at least one digit '+'
o Followed by 0 or more spaces '\s*'
o Followed by a percent sign '%' or the word percent

e How can we search for the '%, but not extract it and make the string numeric? Use group!

managers2023 %>% select(income_additional) %>%
filter(!is.na(income_additional)) %>%
mutate(add_percentage=as.numeric(str_extract(income_additional, '(\\d+)(\\s*)(%|percent)',group=1))) %>%

head(5)

t#H # A tibble: 5 x 2

Ht income_additional add_percentage
#H <chr> <db1l>
t#H 1 Income is 70% salary, 30% commission 70
#H 2 4% an hour retention bonus from January till September 4
#H# 3 extra money goes toward insurance NA
4 This is considered a training position. The salary is not comm.. NA
5 Bonus based on work performed - usually 5-9% raise yearly as w.. 9

e There's a little more clean-up needed, but that's the gist

18 | 44

Regular expression codes

e There are a lot of codes that you can use in regular expressions
e Here are some of the most common ones:

o '\d' or '[0-9]' match any digit as does '[[:digit:]]' in stringr

o '\D'or'["0-9]' match any non-digit as does '[[":digit:]]' in stringr

o '\s'or '[[:space:]]" match any whitespace character

o '\S'or '["[:space:]]' match any non-whitespace character

o "\w' or '[[:word:]]' match any word character (letter, number, underscore)
o "\W' or '[*[:word:]]' match any non-word character

o '\b'or '\B' match word boundaries or non-word boundaries

o ''match any character except a newline

o '™ 'S' match the start and end of a string

o '|' match either the expression before or after the pipe

o '\' precedes any special character to match it literally

And many, many, many, many more

19 | 44

stringr functions

e There are a lot of functions in stringr that are useful for regular expressions
o str_extract() extracts the first match
o str_extract all() extracts all matches
o str_detect() detects if a string matches a pattern
o str_count() counts the number of matches
o str_locate() locates the position of the first match
o str_locate_all() locates the position of all matches
o str_replace() replaces the first match
o str_replace_all() replaces all matches
o str_split() splits a string into a vector of strings
o str_subset() returns a subset of strings that match a pattern

And so on...

20 /| 44

Regular expressions

Practice makes perfect

It takes a lot of time to get good at regular expressions

There are fantastic tools out there, like regex101, RegExplain, stringr Cheatsheet
StackOverflow is a great tool as well to see how others have solved similar problems
Generative Al is getting better at writing regular expressions every day

Your brain is also a critical tool for regular expressions -- and any coding task for that matter

Practice: Create a regular expression that matches phone numbers in the following format: (xxx)
XXX=XXXX OF XXX-XXX-XXXX

1. Create a string like
2. Use str_extract() to extract the phone number

21 | 44

https://regex101.com/
https://www.regexplain.ai/
https://rstudio.github.io/cheatsheets/strings.pdf
https://rstudio.github.io/cheatsheets/strings.pdf

Back to the job titles

e We can create dummy variables for the job titles that mention certain words
e We can create dummy variables for job titles containing "manager" and "assistant"
e Then we can regress the salary on these dummy variables
o | also split by remote work and cluster by industry just cause feols() is SO neat

managers2023 %>%
mutate(jobtitle=tolower(jobtitle),
manager=str_detect(jobtitle, 'manager"')
assistant=str_detect(jobtitle, 'assistant')) %>%
feols(annual_salary ~ manager + assistant, data=.,
fsplit=~remote, cluster=~industry) %>%

22 | 44

etable()

NOTE: 110 observations removed because of NA values (split: 64, vcov: 46).
HHt L1 L2
Sample (remote) Full sample Fully remote
t## Dependent Var.: annual_salary annual_salary
HHt

Constant 119,937.2%% (13,238.5) 120,588.0%* (10,295.8)
#H# managerTRUE -6,449.1 (12,907.1) 16,593.6 (14,498.2)
assistantTRUE 44 ,402.7 % (12,307.0) -42,303.0%** (10,186.2)
#H

#H S.E.: Clustered by: industry by: industry
##t Observations 16,960 4,344
#H R2 9.82e-5 0.00082
#H Adj. R2 -1.97e-5 0.00036
1H

1H .3 b
Sample (remote) Hybrid On-site
Dependent Var.: annual_salary annual_salary
H

1Ht

Constant 138,913.9%% (26,774.6) 94,767.3%%* (8,089.2)

Fuzzy Merge: | see a match, but the

e Sometimes you have two strings that you know match, but the computer doesn't

o Before, we wanted to match job titles and we could do that by case-matching (and probably some
other tricks)

e But what if there are a ton of typos? Well then we could use fuzzy matching
e Fuzzy matching is a way to match strings that are similar, but not identical
e There are a lot of ways to do this including the stringdist, agrep, and fuzzyjoin packages

o True to its name stringdist has a suite of functions that measure the "distance" between
strings
o fuzzyjoin has a suite of functions that merge dataframes based on fuzzy matching

o agrep is a base R function that does fuzzy matching (based on Linux) that only uses
Levenshtein distance

23 | 44

Fuzzy match application: Union votes

The effect of unionization on several economic outcomes is ambiguous

o Wages up for sure?
o Productivity up or down?
o Worker safety?

The National Labor Relations Board maintains records of all labor union votes

These records include firm name, location, vote counts, number of employees, etc.
o No information on firm or worker outcomes

Lee & Mas (2012) Link administrative records maintained by two separated offices:

(@)

NLRB union vote data + S&P Compustat firm data

Fuzzy match on firm name, address, etc.

Long-run event studies show a 10% decline in equity value of firm after union vote
Cannot decompose into wage premia and productivity change

(@)

(0]

o

Sojourner & Yang (2022) link to Occupational Safety and Health Administration data

o OSHA inspection increases after union vote, more violations cited and penalties assessed

(Recent work shows bias against unions when Republicans control NLRB compromising the validity of / 44

Sl vimiAan DD rAacr l+0)

Firm Cumulative Absolute Return

Average cumulative return

Months relative to case closure % | 1

OSHA Inspections

(a) Inspection rate

— -

Average pre-election inspection rate
Average past-election inspection rate

o - o 4
T T T T T T T T T T T T T T T T T T T T
T OO PR I R Q)

Pro-union vote share Pro-union vote share
Note: averages with 95% confidence intervals. N=31,052 Note: averages with 95° confidence intervals. N=31,052

(b) Union-representative share

ol
L
al
L

Average pre-election union-rep share
Average post-election union-rep share

HHHMHH{H { HMH 26 | 4

Distance between strings?

e What does it mean to measure the distance between strings?

e Well, we can think of strings as vectors or groups of characters

e Think of the distance between strings as the changes between these characters
e Levenshtein: Measure number of characters missing, added, or substituted

o "Kyle" and "Kile" have a Levenshtein distance of 1
o "Kyle" and "Klye" have a Levenshtein distance of 2

e We can account for transpositions as well (Damerau-Levenshtein distance)

o "Kyle" and "Klye" have a Damerau-Levenshtein distance of 1
e There are many other distance measures (Jaro-Winkler, Hamming, Phonetic, etc.)
e Normalize the distance by the length of the string to get a measure of similarity

e |f the similarity exceeds a threshold you choose, we can say that the strings match

27 | 44

String distance

Mock Harry Potter dataset examples from R-Vogg-Blog

stringdistmatrix(input,compare, tidy_comb(input,compare[1]) %>%
method = "lv", tidy_stringdist(method=c('lv','dl", " 'jw', 'cosine')) %>%
useNames = "strings") rename(Levenshtein=1v, Damerau-Levenshtein =dl, Jaro-Winkler ="
1 Harry Potter Voldemort i # A tibble: 6 x 6
harry j potter 4 12 Ht Vi V2 Levenshtein Damerau-Levenshtein J
harrypotter 3 9 # * <chr> <chr> <dbl> <dbl>
#H Voldemort 10 ## 1 Harry Potter harry j .. 4 4
Harry POTTER 5 12 ## 2 Harry Potter harrypot.. 3 3
Harrry Potter 1 11 ## 3 Harry Potter Voldemort 10 10
#H# Ron Weasley 11 9 ## 4 Harry Potter Harry PO.. 5 5
5 Harry Potter Harrry P.. 1 1
6 Harry Potter Ron Weas.. 11 11

28 | 44

https://r-vogg-blog.netlify.app/posts/2021-03-27-fuzzy-matching-packages/

Fuzzy matching to

fuzzyjoin::stringdist_join(df1, df2, fuzzyjoin::stringdist_join(df1, df2,
mode = "inner", mode = "inner",
by = "name", by = "name",
max_dist = 6, max_dist = 10,
method="1v") method="1v")
1 name. x name.y bad_spells_index Ht name. x name.y bad_spells_index
1 harry j potter Harry Potter 0.02 ## 1 harry j potter Harry Potter 0.02
#H 2 harrypotter Harry Potter 0.02 H 2 harrypotter Harry Potter 0.02
#H 3 Voldemort Voldemort 0.87 #H 3 harrypotter Voldemort 0.87
4 Harry POTTER Harry Potter 0.02 4 Voldemort Harry Potter 0.02
5 Harrry Potter Harry Potter 0.02 #H 5 Voldemort Voldemort 0.87
#H 6 Harry POTTER Harry Potter 0.02
7 Harrry Potter Harry Potter 0.02
#H 8 Ron Weasley Voldemort 0.87

29 | 44

Fuzzy matching to group rows

e Can be done with tidystringdist, but it gets slow fast (lots of comparisons!)

e Could parallelize comparisons to speed it up, but you need to write the code yourself

managers2023 %>%
head(1000) %>%
distinct(jobtitle) %>%
tidy_comb_all(jobtitle) %>%
tidy_stringdist() %>%
filter(lv<l) # at most 1 character difference

t#H # A tibble: 6 x 12

V1 V2 0sa lv dl hamming lcs ggram cosine jaccard jw
#H <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 grant admin.. gran.. 1 1 1 Inf 1 1 0.0111 0 0.0868
#Ht 2 vice presid.. vice.. 1 1 1 1 2 2 0.0455 0.167 0.0476
#Ht 3 coo cto 1 1 1 1 2 2 0.225 0.333 0.222
t## 4 pr manager hr m. 1 1 1 1 2 2 0.0714 0.222 0.0667
#H# 5 operations .. oper.. 1 1 1 Inf 1 1 0.0157 0.0833 0.0185
6 solution ar.. solu.. 1 1 1 Inf 1 1 0.0148 0 0.0175
i 1 more variable: soundex <dbl>

30 / 44

Practical advice on fuzzy matching

Fuzzy matching is a great tool, but it's not magic
o It can also lie to you
Don't use it when you:

o Have a reliable key/id between two dataframes
o Can easily clean the data to make a reliable key/id

Match on any many:many keys, then fuzzy match within the group to get the best unique link
Use it to create a reliable key once that you can then reuse rather than re-running

o This helps both stability, reproducibility, and speed
It is as much an art as it is a science

o You'll need to make judgement calls about what is a match and what is not
o You'll need to make judgement calls about what distance threshold to use
o You'll need to make judgement calls about what distance measure to use

More than likely you'll get false positives and negatives in any given fuzzy merge

o LLMs have made strides in putting some structure on this, but it's still an art
o (One day this skill might be obsolete though)

31/ 44

Fuzzy match guidelines

When to fuzzy match

e Too much data to hand match (large N)
e No reliable key/id
e You can't clean the data to make a reliable key/id

When not to fuzzy match

e You can match manually (small V)
e You have a reliable key/id
e You can clean the data to make a reliable key/id

No unique match even after fuzzy match?

e Perform analysis on the group of matches, on each individual match, etc. to see how sensitive your
results are to each match

e Hopefully, a mismatch is "classical measurement error," which is an endogeneity problem that puts
a downward bias on results

32/ 44

Summarizing text

Summarizing text

There are a lot of ways to summarize text

We'll focus on three today:

o Word counts: How many words are there?
o Word clouds: Let's see them all together
o Sentiment analysis: How positive or negative is the text?

None of these are machine learning tools, but they can be used to inform machine learning tools

o For example, word counts can be used to create a term document matrix for topic modeling

They're also useful for exploratory data analysis

But don't mistake them for the cutting edge analysis

o Especially sentiment analysis, which is a very blunt tool
o Butitis a bridge to topic modeling and other NLP tools

34 | 44

Word counts: Term frequency

e Word counts are the simplest way to summarize text
e Literally just count up the number of words
e We can do this manually, or we can use the tidytext package function unnest_tokens()

o unnest_tokens() splits a string variable into a new row for each "token"
o Then you can count

tokens < managers2023 %>%
select(jobtitle) %>%
filter(!is.na(jobtitle)) %>%
mutate(jobtitle=tolower(jobtitle)) %>%
unnest_tokens(word, jobtitle) %>%
count(word,sort=T)

tokens

A tibble: 2,384 x 2

HHt word n
1Ht <chr> <int>
1 manager 3483
#H 2 senior 1924
#H 3 director 1856
t#H 4 engineer 1088
5 of 976
#H 6 assistant 945
7 analyst 916
8 specialist 852
t#H 9 associate 800

t#H 10 coordinator 662
#H # i 2,374 more rows 35 / Ll

Stop words

e Did you notice that "of" was one of the most common words?
e Itisin a lot of job titles, but it's not very informative
e Imagine if this weren't job titles, but a corpus of text from a novel
o You'd be constantly panning for "gold" words amidst a see of "of"s and "the"s

e Let's get rid of it using the tidytext package's stop_words dataset and anti_join()

data('stop_words')
tokens_no_stops <« tokens %>%
anti_join(stop_words)

Joining with by = join_by(word)
tokens_no_stops

#H # A tibble: 2,290 x 2

HH word n
1Ht <chr> <int>
1 manager 3483
#H 2 senior 1924
#H 3 director 1856
#H 4 engineer 1088
#H 5 assistant 945
#H 6 analyst 916
#H 7 specialist 852
#H 8 associate 800
#H# 9 coordinator 662 36 / 44
10 software 602

Word Cloud

e Word clouds are a great way to visualize word counts
e The size of the word is proportional to the number of times it appears

pal « brewer.pal(8,"Dark2") # define a nice color palette with function from RColorBrewer

tokens_no_stops %>%
with(wordcloud(word, n, random.order = FALSE, max.words = 50, colors=pal))

administrative

E %professoradmlmstrator
% Mo officer Support 4
= q)-lJ') o program g
- k)
hreral 200 coordinator < s
editor O ; SpeC|aI|St 2 o
researc:ho CU E o [resources
lead @ s Sen |Or Tjchmcgu

manager:

c
=]
operations Cg Bhr assomatc?staff g
human data orary 5
product g ""Osgeggmeerwr'ter O |
technical teacher 37 | 44
attorney (O prOJeC hiilcinace

n-grams: phrases

e Sometimes words often go together

e For example, "machine learning" is a phrase

e |f we just count the mentions of "machine" and "learning" separately, we lose the context
e We can use the tidytext package's unnest_tokens() function to create n-grams

e ngram literally means give me all groups of "n words"

38 / 44

In practice

Bigrams will count a single word in multiple bigrams:

e "a machine learning algorithm" will count "a machine," "machine learning," and "learning
algorithm"

bigrams < managers2023 %>%
select(jobtitle) %>%
filter(!is.na(jobtitle)) %>%
mutate(jobtitle=tolower(jobtitle)) %>%
unnest_tokens(word, jobtitle,token="ngrams',n=2) %>%
count(word, sort=T)

bigrams

#H # A tibble: 9,769 x 2

Ht word n
HHt <chr> <int>
#H 1 <NA> 1691
t#Ht 2 director of 651
t#Ht 3 software engineer 410
t#H# 4 project manager 341
5 program manager 243
t#H 6 senior software 187
7 associate director 173
8 human resources 152
t#H 9 senior manager 150

10 operations manager 147
#H # 1 9,759 more rows

39 / 44

Separate out n-grams, remove stop

bigrams_separated ¢ bigrams %>% bigrams_separated %>%
separate(word,c('wordl', 'word2"'),sep=" ") filter(!wordl %in% stop_words$word) %>%

bigrams_separated filter(!word2 %in% stop_words$word)

#H # A tibble: 9,769 x 3 #H # A tibble: 8,292 x 3

HHt wordl word2 n Ht wordl word2 n

HHt <chr> <chr> <int> Ht <chr> <chr> <int>

#H 1 <NA> <NA> 1691 #H 1 <NA> <NA> 1691

#H 2 director of 651 #Ht 2 software engineer 410

#H 3 software engineer 410 #H 3 project manager 341

t#H 4 project manager 341 # 4 program manager 243

#H 5 program manager 243 #H 5 senior software 187

#H 6 senior software 187 # 6 associate director 173

#H 7 assoclate director 173 #H 7 human resources 152

t#H 8 human resources 152 #H 8 senior manager 150

#H 9 senior manager 150 #H 9 operations manager 147

10 operations manager 147 ## 10 vice president 132

#H # i 9,759 more rows #H # i 8,282 more rows

40 | 44

Term frequency-inverse doc frequency

e Frequencies are useful, but they don't tell us much about the context of the words

e We need to know how unique a word is to a document

e Effectively, a document is a group of words (e.g. a sentence, a job title, an essay, etc.)
e Aterm is a word/phrase

e Some words are uniquely common to a "document" (e.g. "manager" in a job title)

e S0 they may be valuable to predicting/classifying something about that "document" (e.g. salary,
industry)

41 | 44

Term frequency-inverse doc frequency

e Term frequency is the number of times a term appears in a document divided by the total number
of terms in the document

e Inverse document frequency of a term is the log of the number of documents divided by the
number of documents containing ta term

id f(term) —In (Ndocuments)

Ndocuments containing term

e Note: This is a heuristic with many variations and shaky theoretical foundations

e Roughly, the more documents a term appears in, the less valuable it is to predicting/classifying
something about that document

e As such, the idf falls as the number of documents containing a term increases

e The tf —idf is the product of the term frequency and the inverse document frequency

42 | 44

Where is this all headed?

e We can use the tf — idf to predict the industry of a job title, the topics of a book, content of a
tweet, etc.

e We have a bunch of job titles categorized by industry, salary, etc.
e We could use the tf — idf to predict the industry or salary of a new job title
e Alternatively, say we have a bunch of tweets and we want to know if they are positive or negative

o We could search for a bunch of terms OR we could flag several thousand tweets as positive or
negative

o Then we could feed the text to a machine learning algorithm that uses the tf — idf to infer
whether a word, its common ngrams, etc. are positive or negative

o Then it could predict the sentiment of new tweets

e This is the basic idea behind topic modeling and sentiment analysis and how we get to GPT-4

43 | 44

Next lecture: Sentiment analysis, basics
of topic modeling

