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Prologue: Text as dataPrologue: Text as data



Prologue
Today we're going be talking about text as data

Many resources come from Text Mining with R

We use text all the time in our daily lives to communicate

As a result, it is a rich source of data that can be used to answer interesting questions

Sometimes important numerical data is embedded in text (e.g. commodity prices, wages, etc. in
historical documents)

Sometimes we need to categorize numerical data based on text (e.g. categorizing purchases based
on bank memos)

Sometimes we need to link text across datasets a "fuzzy merge" (e.g. company names, addresses,
etc.)

Sometimes the stuff we struggle to quantify is in text (e.g. sentiment, political ideology, etc.)

Before we can get to that, we need to learn how to work with text data
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Tidying text data
A library is basically a database of words

Each word carries information

How different words are combined together also carries information

The problem is that text data is messy

How could we tidy it?
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Tidying text data
There's no one structure that makes sense for all text data

Your goal is to find a structure that makes sense for your data/research question

Key term: Corpus is a collection of documents

String variable: each row is a group of words (e.g. a sentence, title, etc.)

Term document matrix

Each row is a document
Each column is a word
Each cell is the frequency of that word in that document

Document term matrix

Each row is a word
Each column is a document
Each cell is the frequency of that word in that document

You could amend the above to account for combinations of words instead of single words

Or singleton words and groups of words (bigrams, trigrams, etc.)

The data get big quickly!
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Wider tasks with text data
Seriously, that's a ton of words -- are they all meaningful?!

There are lots of words in sentences and many of them are not important

Plus words are capitalized and some are not

To a computer "Kyle" and "kyle" are different words
But to a human, they're the same word
But what about "Bates" and "bates"?

Then words like "and" and "or" are called stop words

Often times you'll want to remove stop words from your corpus

Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation,
numbers, etc.)
The package tidytext has a list of common stop words in data("stop_words")
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data('stop_words')
stop_words %>% head(10)

## # A tibble: 10 × 2
##    word        lexicon
##    <chr>       <chr>  
##  1 a           SMART  
##  2 a's         SMART  
##  3 able        SMART  
##  4 about       SMART  
##  5 above       SMART  
##  6 according   SMART  
##  7 accordingly SMART  
##  8 across      SMART  
##  9 actually    SMART  
## 10 after       SMART

new_stop_words <- data.frame(word=c('new-stop-word','another-s
stop_words %>% 
  rbind(new_stop_words) %>%
  tail(10)

## # A tibble: 10 × 2
##    word              lexicon   
##    <chr>             <chr>     
##  1 years             onix      
##  2 yet               onix      
##  3 you               onix      
##  4 young             onix      
##  5 younger           onix      
##  6 youngest          onix      
##  7 your              onix      
##  8 yours             onix      
##  9 new-stop-word     kyle-words
## 10 another-stop-word kyle-words

Stop words
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Wider tasks with text data
Seriously, that's a ton of words -- are they all meaningful?!

There are lots of words in sentences and many of them are not important

Plus words are capitalized and some are not

To a computer "Kyle" and "kyle" are different words
But to a human, they're the same word
But what about "Bates" and "bates"?

Then words like "and" and "or" are called stop words

Often times you'll want to remove stop words from your corpus

Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation,
numbers, etc.)
The package tidytext has a list of common stop words in data("stop_words")

But how do we remove them?! How do we identify them?

10 / 44



Simplest example: A string variable
Let's say we have a database with job descriptions listed as string variables

Look familiar?

## No encoding supplied: defaulting to UTF-8.

## Rows: 17070 Columns: 20
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (18): timestamp, age, industry, area, jobtitle, jobtitle2, currency, cur...
## dbl  (2): annual_salary, additional_pay
## 
## ℹ Use spec()  to retrieve the full column specification for this data.
## ℹ Specify the column types or set show_col_types = FALSE  to quiet this message.

## # A tibble: 6 × 20
##   timestamp age   industry area  jobtitle jobtitle2 annual_salary additional_pay
##   <chr>     <chr> <chr>    <chr> <chr>    <chr>             <dbl>          <dbl>
## 1 4/11/202… 35-44 Governm… Engi… Materia… <NA>             125000            800
## 2 4/11/202… 25-34 Galleri… Gall… Assista… <NA>              71000              0
## 3 4/11/202… 35-44 Educati… Educ… Directo… <NA>              60000              0
## 4 4/11/202… 25-34 Educati… Gove… Adminis… <NA>              42000             NA
## 5 4/11/202… 18-24 Account… Admi… Executi… <NA>              65000              0
## 6 4/11/202… 25-34 Governm… Law   Counsel  <NA>              88000              0
## # ℹ 12 more variables: currency <chr>, currency_other <chr>,
## #   income_additional <chr>, country <chr>, state <chr>, city <chr>,
## #   remote <chr>, experience_overall <chr>, experience_field <chr>,
## #   education <chr>, gender <chr>, race <chr>
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Simplest example: Matching job titles
The job titles are free form text

How many unique job titles are there?

Anyone notice any issues?

managers2023 %>% 
  group_by(jobtitle) %>%
  summarise(n=n())

## # A tibble: 9,654 × 2
##    jobtitle                                                n
##    <chr>                                               <int>
##  1 "\"Team Member, Level 1\" (retail worker)"              1
##  2 "(Junior-ish) Data Manager"                             1
##  3 "(Software) Coordinator"                                1
##  4 "(long-running community science program) Director"     1
##  5 "1st Line Support Engineer"                             1
##  6 "24/5 Live-in nanny"                                    1
##  7 "2nd Grade Teacher"                                     1
##  8 "2nd grade teacher"                                     2
##  9 "3D Artist"                                             1
## 10 "3D lab technologist"                                   1
## # ℹ 9,644 more rows
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Case-matching the job titles
Let's say we want to group similar job titles together

At the very least, let's make them all lower case

There's a lot more we could do here!

managers2023 %>%
  mutate(jobtitle=tolower(jobtitle)) %>%
  group_by(jobtitle) %>%
  summarise(n=n())

## # A tibble: 8,877 × 2
##    jobtitle                                                n
##    <chr>                                               <int>
##  1 "\"team member, level 1\" (retail worker)"              1
##  2 "(junior-ish) data manager"                             1
##  3 "(long-running community science program) director"     1
##  4 "(software) coordinator"                                1
##  5 "1st line support engineer"                             1
##  6 "24/5 live-in nanny"                                    1
##  7 "2nd grade teacher"                                     3
##  8 "3d artist"                                             1
##  9 "3d lab technologist"                                   1
## 10 "3rd line data engineering specialist"                  1
## # ℹ 8,867 more rows
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Ambiguous text data
Sometimes text data is ambiguous

For example, someone lists that they are a 24/5 live-in nanny, another says they are a live-in
nanny

Should we group these?
That's a judgement call
Depends on the research question

What about "Assistant Regional Manager" and "Assistant to the Regional Manager"?

Today I'll give you the tools to implement whatever cleaning you decide

We'll also preview ML tools to inform your decision

Spoiler: the more the text analysis maps to pattern recognition, the better ML will be
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Dwight disagrees

 Dwight Schrute would rather group them, Michael Scott would
not.
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Regular expressions: Swiss Army knife of
text analysis

Look at these cases where "Income - additional context" is not missing

## # A tibble: 5 × 1
##   income_additional                                                             
##   <chr>                                                                         
## 1 Income is 70% salary, 30% commission                                          
## 2 4% an hour retention bonus from January till September                        
## 3 extra money goes toward insurance                                             
## 4 This is considered a training position. The salary is not commensurate with t…
## 5 Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a…

If you look at each line, you can immediately tell me what the additional pay Is

How could we grab those paid a percentage?
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Regular expressions: Swiss Army knife of
text analysis

Look at these cases where "Income - additional context" is not missing

## # A tibble: 5 × 1
##   income_additional                                                             
##   <chr>                                                                         
## 1 Income is 70% salary, 30% commission                                          
## 2 4% an hour retention bonus from January till September                        
## 3 extra money goes toward insurance                                             
## 4 This is considered a training position. The salary is not commensurate with t…
## 5 Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a…

If you look at each line, you can immediately tell me what the additional pay Is

How could we grab those paid a percentage?

Well technically, we can go percent-by-percent!

managers2023 %>% select(income_additional) %>% 
  mutate(ifelse('1%' %in% income_additional,1,
    ifelse('2%' %in% income_additional, 2, ...)))

This would be absurd. Do not do this unless you are participating in an International Obfuscated
Code Contest
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Regular expression for numbers
Instead, we can use a regular expression to grab percentages

The tidyverse's own stringr package has a great suite of regex functions
There's also grep  and grepl  in base R, which are based on Linux's grep  command

managers2023 %>% select(income_additional) %>% 
  filter(!is.na(income_additional)) %>%
  mutate(add_percentage=str_extract(income_additional, '\\d+\\s*(%|percent)')) %>%
  head(5)

## # A tibble: 5 × 2
##   income_additional                                               add_percentage
##   <chr>                                                           <chr>         
## 1 Income is 70% salary, 30% commission                            70%           
## 2 4% an hour retention bonus from January till September          4%            
## 3 extra money goes toward insurance                               <NA>          
## 4 This is considered a training position. The salary is not comm… <NA>          
## 5 Bonus based on work performed - usually 5-9% raise yearly as w… 9%
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What is stringr::str_extract()  doing?
stringr::str_extract()  is extracting the first match of a regular expression with

A number '\d' with at least one digit '+'
Followed by 0 or more spaces '\s*'
Followed by a percent sign '%' or the word percent

How can we search for the '%', but not extract it and make the string numeric? Use group !

managers2023 %>% select(income_additional) %>% 
  filter(!is.na(income_additional)) %>%
  mutate(add_percentage=as.numeric(str_extract(income_additional, '(\\d+)(\\s*)(%|percent)',group=1))) %>%
  head(5)

## # A tibble: 5 × 2
##   income_additional                                               add_percentage
##   <chr>                                                                    <dbl>
## 1 Income is 70% salary, 30% commission                                        70
## 2 4% an hour retention bonus from January till September                       4
## 3 extra money goes toward insurance                                           NA
## 4 This is considered a training position. The salary is not comm…             NA
## 5 Bonus based on work performed - usually 5-9% raise yearly as w…              9

There's a little more clean-up needed, but that's the gist
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Regular expression codes
There are a lot of codes that you can use in regular expressions

Here are some of the most common ones:

'\d' or '[0-9]' match any digit as does '[[:digit:]]' in stringr
'\D' or '[^0-9]' match any non-digit as does '[[^:digit:]]' in stringr
'\s' or '[[:space:]]'' match any whitespace character
'\S' or '[^[:space:]]' match any non-whitespace character
'\w' or '[[:word:]]' match any word character (letter, number, underscore)
'\W' or '[^[:word:]]' match any non-word character
'\b' or '\B' match word boundaries or non-word boundaries
'.' match any character except a newline
'^', '$' match the start and end of a string
'|' match either the expression before or after the pipe
'\' precedes any special character to match it literally

And many, many, many, many more
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stringr functions
There are a lot of functions in stringr that are useful for regular expressions

str_extract()  extracts the first match
str_extract_all()  extracts all matches
str_detect()  detects if a string matches a pattern
str_count()  counts the number of matches
str_locate()  locates the position of the first match
str_locate_all()  locates the position of all matches
str_replace()  replaces the first match
str_replace_all()  replaces all matches
str_split()  splits a string into a vector of strings
str_subset()  returns a subset of strings that match a pattern

And so on...
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Regular expressions
Practice makes perfect

It takes a lot of time to get good at regular expressions

There are fantastic tools out there, like regex101, RegExplain, stringr Cheatsheet

StackOverflow is a great tool as well to see how others have solved similar problems

Generative AI is getting better at writing regular expressions every day

Your brain is also a critical tool for regular expressions -- and any coding task for that matter

Practice: Create a regular expression that matches phone numbers in the following format: (xxx)
xxx-xxxx or xxx-xxx-xxxx

1. Create a string like
2. Use str_extract()  to extract the phone number
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Back to the job titles
We can create dummy variables for the job titles that mention certain words
We can create dummy variables for job titles containing "manager" and "assistant"
Then we can regress the salary on these dummy variables

I also split by remote work and cluster by industry just cause feols()  is so neat

managers2023 %>%
  mutate(jobtitle=tolower(jobtitle),
      manager=str_detect(jobtitle,'manager'),
      assistant=str_detect(jobtitle,'assistant')) %>%
  feols(annual_salary ~ manager + assistant, data=.,
  fsplit=~remote, cluster=~industry) %>%
  etable()

## NOTE: 110 observations removed because of NA values (split: 64, vcov: 46).

##                                     ..1                     ..2
## Sample (remote)             Full sample            Fully remote
## Dependent Var.:           annual_salary           annual_salary
##                                                                
## Constant        119,937.2*** (13,238.5) 120,588.0*** (10,295.8)
## managerTRUE         -6,449.1 (12,907.1)     16,593.6 (14,498.2)
## assistantTRUE   -44,402.7*** (12,307.0) -42,303.0*** (10,186.2)
## _______________ _______________________ _______________________
## S.E.: Clustered            by: industry            by: industry
## Observations                     16,960                   4,344
## R2                              9.82e-5                 0.00082
## Adj. R2                        -1.97e-5                 0.00036
## 
##                                     ..3                    ..4
## Sample (remote)                  Hybrid                On-site
## Dependent Var.:           annual_salary          annual_salary
##                                                               
## Constant        138,913.9*** (26,774.6)  94,767.3*** (8,089.2)
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Fuzzy Merge: I see a match, but the
@#%^ computer doesn't

Sometimes you have two strings that you know match, but the computer doesn't

Before, we wanted to match job titles and we could do that by case-matching (and probably some
other tricks)

But what if there are a ton of typos? Well then we could use fuzzy matching

Fuzzy matching is a way to match strings that are similar, but not identical

There are a lot of ways to do this including the stringdist, agrep, and fuzzyjoin packages

True to its name stringdist has a suite of functions that measure the "distance" between
strings
fuzzyjoin has a suite of functions that merge dataframes based on fuzzy matching
agrep is a base R function that does fuzzy matching (based on Linux) that only uses
Levenshtein distance
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Fuzzy match application: Union votes
The effect of unionization on several economic outcomes is ambiguous

Wages up for sure?
Productivity up or down?
Worker safety?

The National Labor Relations Board maintains records of all labor union votes

These records include firm name, location, vote counts, number of employees, etc.

No information on firm or worker outcomes

Lee & Mas (2012) Link administrative records maintained by two separated offices:

NLRB union vote data + S&P Compustat firm data
Fuzzy match on firm name, address, etc.
Long-run event studies show a 10% decline in equity value of firm after union vote
Cannot decompose into wage premia and productivity change

Sojourner & Yang (2022) link to Occupational Safety and Health Administration data

OSHA inspection increases after union vote, more violations cited and penalties assessed

(Recent work shows bias against unions when Republicans control NLRB compromising the validity of
all union RDD results)
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Firm Cumulative Absolute Return
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OSHA Inspections

26 / 44



Distance between strings?
What does it mean to measure the distance between strings?

Well, we can think of strings as vectors or groups of characters

Think of the distance between strings as the changes between these characters

Levenshtein: Measure number of characters missing, added, or substituted

"Kyle" and "Kile" have a Levenshtein distance of 1
"Kyle" and "Klye" have a Levenshtein distance of 2

We can account for transpositions as well (Damerau-Levenshtein distance)

"Kyle" and "Klye" have a Damerau-Levenshtein distance of 1

There are many other distance measures (Jaro-Winkler, Hamming, Phonetic, etc.)

Normalize the distance by the length of the string to get a measure of similarity

If the similarity exceeds a threshold you choose, we can say that the strings match
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stringdistmatrix(input,compare, 
  method = "lv",
  useNames = "strings")
##                Harry Potter Voldemort
## harry j potter            4        12
## harrypotter               3         9
## Voldemort                10         0
## Harry POTTER              5        12
## Harrry Potter             1        11
## Ron Weasley              11         9

tidy_comb(input,compare[1]) %>%
  tidy_stringdist(method=c('lv','dl','jw','cosine')) %>%
  rename(Levenshtein=lv, Damerau-Levenshtein =dl, Jaro-Winkler =j
## # A tibble: 6 × 6
##   V1           V2        Levenshtein Damerau-Levenshtein  J
## * <chr>        <chr>           <dbl>                 <dbl> 
## 1 Harry Potter harry j …           4                     4 
## 2 Harry Potter harrypot…           3                     3 
## 3 Harry Potter Voldemort          10                    10 
## 4 Harry Potter Harry PO…           5                     5 
## 5 Harry Potter Harrry P…           1                     1 
## 6 Harry Potter Ron Weas…          11                    11 

String distance
Mock Harry Potter dataset examples from R-Vogg-Blog
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fuzzyjoin::stringdist_join(df1, df2, 
                mode = "inner",
                by = "name",
                max_dist = 6,
                method='lv')

##           name.x       name.y bad_spells_index
## 1 harry j potter Harry Potter             0.02
## 2    harrypotter Harry Potter             0.02
## 3      Voldemort    Voldemort             0.87
## 4   Harry POTTER Harry Potter             0.02
## 5  Harrry Potter Harry Potter             0.02

fuzzyjoin::stringdist_join(df1, df2, 
                mode = "inner",
                by = "name",
                max_dist = 10,
                method='lv')

##           name.x       name.y bad_spells_index
## 1 harry j potter Harry Potter             0.02
## 2    harrypotter Harry Potter             0.02
## 3    harrypotter    Voldemort             0.87
## 4      Voldemort Harry Potter             0.02
## 5      Voldemort    Voldemort             0.87
## 6   Harry POTTER Harry Potter             0.02
## 7  Harrry Potter Harry Potter             0.02
## 8    Ron Weasley    Voldemort             0.87

Fuzzy matching to merge
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Fuzzy matching to group rows
Can be done with tidystringdist , but it gets slow fast (lots of comparisons!)

Could parallelize comparisons to speed it up, but you need to write the code yourself

managers2023 %>% 
  head(1000) %>% 
  distinct(jobtitle) %>% 
  tidy_comb_all(jobtitle) %>% 
  tidy_stringdist() %>% 
  filter(lv<=1) # at most 1 character difference

## # A tibble: 6 × 12
##   V1           V2      osa    lv    dl hamming   lcs qgram cosine jaccard     jw
##   <chr>        <chr> <dbl> <dbl> <dbl>   <dbl> <dbl> <dbl>  <dbl>   <dbl>  <dbl>
## 1 grant admin… gran…     1     1     1     Inf     1     1 0.0111  0      0.0868
## 2 vice presid… vice…     1     1     1       1     2     2 0.0455  0.167  0.0476
## 3 coo          cto       1     1     1       1     2     2 0.225   0.333  0.222 
## 4 pr manager   hr m…     1     1     1       1     2     2 0.0714  0.222  0.0667
## 5 operations … oper…     1     1     1     Inf     1     1 0.0157  0.0833 0.0185
## 6 solution ar… solu…     1     1     1     Inf     1     1 0.0148  0      0.0175
## # ℹ 1 more variable: soundex <dbl>
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Practical advice on fuzzy matching
Fuzzy matching is a great tool, but it's not magic

It can also lie to you

Don't use it when you:

Have a reliable key/id between two dataframes
Can easily clean the data to make a reliable key/id

Match on any many:many keys, then fuzzy match within the group to get the best unique link

Use it to create a reliable key once that you can then reuse rather than re-running

This helps both stability, reproducibility, and speed

It is as much an art as it is a science

You'll need to make judgement calls about what is a match and what is not
You'll need to make judgement calls about what distance threshold to use
You'll need to make judgement calls about what distance measure to use

More than likely you'll get false positives and negatives in any given fuzzy merge

LLMs have made strides in putting some structure on this, but it's still an art
(One day this skill might be obsolete though)
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Fuzzy match guidelines

When to fuzzy match
Too much data to hand match (large )
No reliable key/id
You can't clean the data to make a reliable key/id

When not to fuzzy match
You can match manually (small )
You have a reliable key/id
You can clean the data to make a reliable key/id

No unique match even after fuzzy match?
Perform analysis on the group of matches, on each individual match, etc. to see how sensitive your
results are to each match

Hopefully, a mismatch is "classical measurement error," which is an endogeneity problem that puts
a downward bias on results

N

N
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Summarizing text
There are a lot of ways to summarize text

We'll focus on three today:

Word counts: How many words are there?
Word clouds: Let's see them all together
Sentiment analysis: How positive or negative is the text?

None of these are machine learning tools, but they can be used to inform machine learning tools

For example, word counts can be used to create a term document matrix for topic modeling

They're also useful for exploratory data analysis

But don't mistake them for the cutting edge analysis

Especially sentiment analysis, which is a very blunt tool
But it is a bridge to topic modeling and other NLP tools
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Word counts: Term frequency
Word counts are the simplest way to summarize text

Literally just count up the number of words

We can do this manually, or we can use the tidytext package function unnest_tokens()

unnest_tokens()  splits a string variable into a new row for each "token"
Then you can count

tokens <- managers2023 %>% 
  select(jobtitle) %>% 
  filter(!is.na(jobtitle)) %>% 
  mutate(jobtitle=tolower(jobtitle)) %>% 
  unnest_tokens(word,jobtitle) %>%
  count(word,sort=T)
tokens

## # A tibble: 2,384 × 2
##    word            n
##    <chr>       <int>
##  1 manager      3483
##  2 senior       1924
##  3 director     1856
##  4 engineer     1088
##  5 of            976
##  6 assistant     945
##  7 analyst       916
##  8 specialist    852
##  9 associate     800
## 10 coordinator   662
## # ℹ 2,374 more rows 35 / 44



Stop words
Did you notice that "of" was one of the most common words?

It is in a lot of job titles, but it's not very informative

Imagine if this weren't job titles, but a corpus of text from a novel

You'd be constantly panning for "gold" words amidst a see of "of"s and "the"s

Let's get rid of it using the tidytext package's stop_words  dataset and anti_join()

data('stop_words')
tokens_no_stops <- tokens %>% 
  anti_join(stop_words)

## Joining with by = join_by(word)

tokens_no_stops

## # A tibble: 2,290 × 2
##    word            n
##    <chr>       <int>
##  1 manager      3483
##  2 senior       1924
##  3 director     1856
##  4 engineer     1088
##  5 assistant     945
##  6 analyst       916
##  7 specialist    852
##  8 associate     800
##  9 coordinator   662
## 10 software      602
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Word Cloud
Word clouds are a great way to visualize word counts
The size of the word is proportional to the number of times it appears

pal <- brewer.pal(8,"Dark2") # define a nice color palette with function from RColorBrewer

tokens_no_stops %>%
  with(wordcloud(word, n, random.order = FALSE, max.words = 50, colors=pal))
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n-grams: phrases
Sometimes words often go together

For example, "machine learning" is a phrase

If we just count the mentions of "machine" and "learning" separately, we lose the context

We can use the tidytext package's unnest_tokens()  function to create n-grams

ngram literally means give me all groups of "n words"
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In practice
Bigrams will count a single word in multiple bigrams:

"a machine learning algorithm" will count "a machine," "machine learning," and "learning
algorithm"

 bigrams <- managers2023 %>% 
  select(jobtitle) %>% 
  filter(!is.na(jobtitle)) %>% 
  mutate(jobtitle=tolower(jobtitle)) %>% 
  unnest_tokens(word,jobtitle,token='ngrams',n=2) %>%
  count(word,sort=T) 
bigrams

## # A tibble: 9,769 × 2
##    word                   n
##    <chr>              <int>
##  1 <NA>                1691
##  2 director of          651
##  3 software engineer    410
##  4 project manager      341
##  5 program manager      243
##  6 senior software      187
##  7 associate director   173
##  8 human resources      152
##  9 senior manager       150
## 10 operations manager   147
## # ℹ 9,759 more rows
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 bigrams_separated <- bigrams %>%
  separate(word,c('word1','word2'),sep=" ") 
bigrams_separated

## # A tibble: 9,769 × 3
##    word1      word2         n
##    <chr>      <chr>     <int>
##  1 <NA>       <NA>       1691
##  2 director   of          651
##  3 software   engineer    410
##  4 project    manager     341
##  5 program    manager     243
##  6 senior     software    187
##  7 associate  director    173
##  8 human      resources   152
##  9 senior     manager     150
## 10 operations manager     147
## # ℹ 9,759 more rows

bigrams_separated %>%
  filter(!word1 %in% stop_words$word) %>%
  filter(!word2 %in% stop_words$word)

## # A tibble: 8,292 × 3
##    word1      word2         n
##    <chr>      <chr>     <int>
##  1 <NA>       <NA>       1691
##  2 software   engineer    410
##  3 project    manager     341
##  4 program    manager     243
##  5 senior     software    187
##  6 associate  director    173
##  7 human      resources   152
##  8 senior     manager     150
##  9 operations manager     147
## 10 vice       president   132
## # ℹ 8,282 more rows

Separate out n-grams, remove stop
words
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Term frequency-inverse doc frequency
Frequencies are useful, but they don't tell us much about the context of the words

We need to know how unique a word is to a document

Effectively, a document is a group of words (e.g. a sentence, a job title, an essay, etc.)

A term is a word/phrase

Some words are uniquely common to a "document" (e.g. "manager" in a job title)

So they may be valuable to predicting/classifying something about that "document" (e.g. salary,
industry)
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Term frequency-inverse doc frequency
Term frequency is the number of times a term appears in a document divided by the total number
of terms in the document

Inverse document frequency of a term is the log of the number of documents divided by the
number of documents containing ta term

Note: This is a heuristic with many variations and shaky theoretical foundations

Roughly, the more documents a term appears in, the less valuable it is to predicting/classifying
something about that document

As such, the  falls as the number of documents containing a term increases

The  is the product of the term frequency and the inverse document frequency

idf(term) = ln( )ndocuments

ndocuments containing term

idf

tf − idf
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Where is this all headed?
We can use the  to predict the industry of a job title, the topics of a book, content of a
tweet, etc.

We have a bunch of job titles categorized by industry, salary, etc.

We could use the  to predict the industry or salary of a new job title

Alternatively, say we have a bunch of tweets and we want to know if they are positive or negative

We could search for a bunch of terms OR we could flag several thousand tweets as positive or
negative
Then we could feed the text to a machine learning algorithm that uses the  to infer
whether a word, its common ngrams, etc. are positive or negative
Then it could predict the sentiment of new tweets

This is the basic idea behind topic modeling and sentiment analysis and how we get to GPT-4

tf − idf

tf − idf

tf − idf
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Next lecture: Sentiment analysis, basicsNext lecture: Sentiment analysis, basics
of topic modelingof topic modeling


