Big Data and Economics Tidy text toolkit

Kyle Coombs Bates College | ECON/DCS 368

Table of contents

- Prologue: Text as data
- Tidying text data
 - Regular expressions
 - Fuzzy Merges
- Summarizing text
 - Word counts
 - Word clouds
 - Term Frequency-Inverse Document Frequency

Prologue: Text as data

Prologue

- Today we're going be talking about text as data
 - Many resources come from Text Mining with R
- We use text all the time in our daily lives to communicate
- As a result, it is a rich source of data that can be used to answer interesting questions
- Sometimes important numerical data is embedded in text (e.g. commodity prices, wages, etc. in historical documents)
- Sometimes we need to categorize numerical data based on text (e.g. categorizing purchases based on bank memos)
- Sometimes we need to link text across datasets a "fuzzy merge" (e.g. company names, addresses, etc.)
- Sometimes the stuff we struggle to quantify is in text (e.g. sentiment, political ideology, etc.)
- Before we can get to that, we need to learn how to work with text data

Tidying text data

Tidying text data

- A library is basically a database of words
- Each word carries information
- How different words are combined together also carries information
- The problem is that text data is messy
- How could we tidy it?

Tidying text data

- There's no one structure that makes sense for all text data
- Your goal is to find a structure that makes sense for your data/research question
- Key term: **Corpus** is a collection of documents
- String variable: each row is a group of words (e.g. a sentence, title, etc.)
- Term document matrix
 - Each row is a document
 - Each column is a word
 - Each cell is the frequency of that word in that document
- Document term matrix
 - Each row is a word
 - Each column is a document
 - Each cell is the frequency of that word in that document
- You could amend the above to account for combinations of words instead of single words
- Or singleton words and groups of words (bigrams, trigrams, etc.)
- The data get big quickly!

Wider tasks with text data

- Seriously, that's a ton of words -- are they all meaningful?!
- There are lots of words in sentences and many of them are not important
- Plus words are capitalized and some are not
 - To a computer "Kyle" and "kyle" are different words
 - But to a human, they're the same word
 - But what about "Bates" and "bates"?
- Then words like "and" and "or" are called **stop words**
- Often times you'll want to remove stop words from your corpus
 - Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation, numbers, etc.)
 - The package **tidytext** has a list of common stop words in data("stop_words")

Stop words

<pre>data('stop_</pre>	_word	ls')
stop_words	%>%	head(10)

##	# /	A tibble: :	10 × 2
##		word	lexicon
##		<chr></chr>	<chr></chr>
##	1	a	SMART
##	2	a's	SMART
##	3	able	SMART
##	4	about	SMART
##	5	above	SMART
##	6	according	SMART
##	7	according	ly SMART
##	8	across	SMART
##	9	actually	SMART
##	10	after	SMART

new_stop_words ← data.frame(word=c('new-stop-word','another-s
stop_words %>%
rbind(new_stop_words) %>%
tail(10)

##	# A	A tibble: 10 × 2	
##		word	lexicon
##		<chr></chr>	<chr></chr>
##	1	years	onix
##	2	yet	onix
##	3	you	onix
##	4	young	onix
##	5	younger	onix
##	6	youngest	onix
##	7	your	onix
##	8	yours	onix
##	9	new-stop-word	kyle-words
##	10	another-stop-word	kvle-words

Wider tasks with text data

- Seriously, that's a ton of words -- are they all meaningful?!
- There are lots of words in sentences and many of them are not important
- Plus words are capitalized and some are not
 - To a computer "Kyle" and "kyle" are different words
 - But to a human, they're the same word
 - But what about "Bates" and "bates"?
- Then words like "and" and "or" are called **stop words**
- Often times you'll want to remove stop words from your corpus
 - Plus, there's loads of other bits of text that you might want to remove (e.g. punctuation, numbers, etc.)
 - The package **tidytext** has a list of common stop words in data("stop_words")
- But how do we remove them?! How do we identify them?

Simplest example: A string variable

- Let's say we have a database with job descriptions listed as string variables
- Look familiar?

No encoding supplied: defaulting to UTF-8.

Rows: 17070 Columns: 20 ## — Column specification ## Delimiter: "." ## chr (18): timestamp, age, industry, area, jobtitle, jobtitle2, currency, cur... ## dbl (2): annual_salary, additional_pay ### ## i Use spec() to retrieve the full column specification for this data. ## i Specify the column types or set show col types = FALSE to quiet this message. ## # A tibble: 6 × 20 industry area jobtitle jobtitle2 annual_salary additional_pay ### timestamp age <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> ### ## 1 4/11/202... 35-44 Governm... Engi... Materia... <NA> 125000 800 ## 2 4/11/202... 25-34 Galleri... Gall... Assista... <NA> 71000 0 ## 3 4/11/202... 35-44 Educati... Educ... Directo... <NA> 0 60000 ## 4 4/11/202... 25-34 Educati... Gove... Adminis... <NA> 42000 NA ## 5 4/11/202... 18-24 Account... Admi... Executi... <NA> 0 65000 ## 6 4/11/202... 25-34 Governm... Law Counsel <NA> 0 88000 ## # i 12 more variables: currency <chr>, currency_other <chr>, income additional <chr>, country <chr>, state <chr>, city <chr>, ## # ## # remote <chr>, experience overall <chr>, experience field <chr>, ## # education <chr>, gender <chr>, race <chr>

Simplest example: Matching job titles

- The job titles are free form text
- How many unique job titles are there?
- Anyone notice any issues?

```
managers2023 %>%
group_by(jobtitle) %>%
summarise(n=n())
```

##	# P	A tibble: 9,654 × 2	
##		jobtitle	n
##		<chr></chr>	<int></int>
##	1	"\"Team Member, Level 1\" (retail worker)"	1
##	2	"(Junior-ish) Data Manager"	1
##	3	"(Software) Coordinator"	1
##	4	"(long-running community science program) Director"	1
##	5	"1st Line Support Engineer"	1
##	6	"24/5 Live-in nanny"	1
##	7	"2nd Grade Teacher"	1
##	8	"2nd grade teacher"	2
##	9	"3D Artist"	1
##	10	"3D lab technologist"	1
##	# i	9,644 more rows	

Case-matching the job titles

- Let's say we want to group similar job titles together
- At the very least, let's make them all lower case
- There's a lot more we could do here!

```
managers2023 %>%
mutate(jobtitle=tolower(jobtitle)) %>%
group_by(jobtitle) %>%
summarise(n=n())
```

##	# A	v tibble: 8,877 × 2	
##		jobtitle	n
##		<chr></chr>	<int></int>
##	1	"\"team member, level 1\" (retail worker)"	1
##	2	"(junior-ish) data manager"	1
##	3	"(long-running community science program) director"	1
##	4	"(software) coordinator"	1
##	5	"1st line support engineer"	1
##	6	"24/5 live-in nanny"	1
##	7	"2nd grade teacher"	3
##	8	"3d artist"	1
##	9	"3d lab technologist"	1
##	10	"3rd line data engineering specialist"	1
##	# i	8,867 more rows	

Ambiguous text data

- Sometimes text data is ambiguous
- For example, someone lists that they are a 24/5 live-in nanny, another says they are a live-in nanny
 - Should we group these?
 - That's a judgement call
 - Depends on the research question
- What about "Assistant Regional Manager" and "Assistant to the Regional Manager"?
- Today I'll give you the tools to implement whatever cleaning you decide
- We'll also preview ML tools to inform your decision
 - Spoiler: the more the text analysis maps to pattern recognition, the better ML will be

Dwight disagrees

Dwight Schrute would rather group them, Michael Scott would

not.

Regular expressions: Swiss Army knife of

• Look at these cases where "Income - additional context" is not missing

A tibble: 5 × 1
income_additional
<chr>
1 Income is 70% salary, 30% commission
2 4% an hour retention bonus from January till September
3 extra money goes toward insurance
4 This is considered a training position. The salary is not commensurate with t...
5 Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a...

- If you look at each line, you can immediately tell me what the additional pay Is
- How could we grab those paid a percentage?

Regular expressions: Swiss Army knife of

• Look at these cases where "Income - additional context" is not missing

A tibble: 5 × 1
income_additional
<chr>
1 Income is 70% salary, 30% commission
2 4% an hour retention bonus from January till September
3 extra money goes toward insurance
4 This is considered a training position. The salary is not commensurate with t...
5 Bonus based on work performed - usually 5-9% raise yearly as well. Hired on a...

- If you look at each line, you can immediately tell me what the additional pay Is
- How could we grab those paid a percentage?
- Well technically, we can go percent-by-percent!

• This would be absurd. Do not do this unless you are participating in an International Obfuscated Code Contest

Regular expression for numbers

- Instead, we can use a regular expression to grab percentages
 - The tidyverse's own **stringr** package has a great suite of regex functions
 - There's also grep and grepl in base R, which are based on Linux's grep command

```
managers2023 %>% select(income_additional) %>%
filter(!is.na(income_additional)) %>%
mutate(add_percentage=str_extract(income_additional, '\\d+\\s*(%|percent)')) %>%
head(5)
```

##	#	A tibble: 5 × 2	
##		income_additional	add_percentage
##		<chr></chr>	<chr></chr>
##	1	Income is 70% salary, 30% commission	70%
##	2	4% an hour retention bonus from January till September	4%
##	3	extra money goes toward insurance	<na></na>
##	4	This is considered a training position. The salary is not comm	<na></na>
##	5	Bonus based on work performed - usually 5-9% raise yearly as w	9%

What is stringr::str_extract() doing?

- stringr::str_extract() is extracting the first match of a regular expression with
 - A number '\d' with at least one digit '+'
 - Followed by 0 or more spaces '\s*'
 - Followed by a percent sign '%' or the word percent
- How can we search for the '%', but not extract it and make the string numeric? Use group!

```
managers2023 %>% select(income_additional) %>%
filter(!is.na(income_additional)) %>%
mutate(add_percentage=as.numeric(str_extract(income_additional, '(\\d+)(\\s*)(%|percent)',group=1))) %>%
head(5)
```

```
## # A tibble: 5 × 2
     income_additional
                                                                        add_percentage
###
     <chr>
                                                                                  < dbl >
###
## 1 Income is 70% salary, 30% commission
                                                                                     70
## 2 4% an hour retention bonus from January till September
                                                                                      4
## 3 extra money goes toward insurance
                                                                                     NA
## 4 This is considered a training position. The salary is not comm...
                                                                                    NA
## 5 Bonus based on work performed - usually 5-9% raise yearly as w...
                                                                                     9
```

• There's a little more clean-up needed, but that's the gist

Regular expression codes

- There are a lot of codes that you can use in regular expressions
- Here are some of the most common ones:
 - '\d' or '[0-9]' match any digit as does '[[:digit:]]' in **stringr**
 - '\D' or '[^0-9]' match any non-digit as does '[[^:digit:]]' in **stringr**
 - '\s' or '[[:space:]]" match any whitespace character
 - '\S' or '[^[:space:]]' match any non-whitespace character
 - '\w' or '[[:word:]]' match any word character (letter, number, underscore)
 - '\W' or '[^[:word:]]' match any non-word character
 - '\b' or '\B' match word boundaries or non-word boundaries
 - " match any character except a newline
 - \circ '^', '\$' match the start and end of a string
 - $\circ \ '|'$ match either the expression before or after the pipe
 - '\' precedes any special character to match it literally

And many, many, many, many more

stringr functions

- There are a lot of functions in **stringr** that are useful for regular expressions
 - str_extract() extracts the first match
 - o str_extract_all() extracts all matches
 - str_detect() detects if a string matches a pattern
 - str_count() counts the number of matches
 - str_locate() locates the position of the first match
 - str_locate_all() locates the position of all matches
 - str_replace() replaces the first match
 - str_replace_all()
 replaces all matches
 - str_split() splits a string into a vector of strings
 - str_subset() returns a subset of strings that match a pattern

And so on...

Regular expressions

- Practice makes perfect
- It takes a lot of time to get good at regular expressions
- There are fantastic tools out there, like regex101, RegExplain, stringr Cheatsheet
- StackOverflow is a great tool as well to see how others have solved similar problems
- Generative AI is getting better at writing regular expressions every day
- Your brain is also a critical tool for regular expressions -- and any coding task for that matter
- **Practice**: Create a regular expression that matches phone numbers in the following format: (xxx) xxx-xxxx or xxx-xxxx
 - 1. Create a string like
 - 2. Use str_extract() to extract the phone number

Back to the job titles

- We can create dummy variables for the job titles that mention certain words
- We can create dummy variables for job titles containing "manager" and "assistant"
- Then we can regress the salary on these dummy variables
 - I also split by remote work and cluster by industry just cause feols() is so neat

```
managers2023 %>%
mutate(jobtitle=tolower(jobtitle),
    manager=str_detect(jobtitle,'manager'),
    assistant=str_detect(jobtitle,'assistant')) %>%
feols(annual_salary ~ manager + assistant, data=.,
fsplit=~remote, cluster=~industry) %>%
etable()
```

NOTE: 110 observations removed because of NA values (split: 64, vcov: 46).

##			1		2
##	Sample (remote)	Full	sample	Fu	ully remote
## ##	Dependent Var.:	annual _.	_salary	anı	nual_salary
##	Constant	119,937.2*** (13	,238.5)	120,588.0***	(10,295.8)
##	managerTRUE	-6,449.1 (12	,907.1)	16,593.6	(14,498.2)
##	assistantTRUE	-44,402.7*** (12	,307.0)	-42,303.0***	(10,186.2)
##					
##	S.E.: Clustered	by: i	ndustry	by	/: industry
##	Observations		16,960		4,344
##	R2	Q	9.82e-5		0.00082
##	Adj. R2	-:	1.97e-5		0.00036
##					
##			3		4
##	Sample (remote)		Hybrid		On-site
## ##	Dependent Var.:	annual <u></u>	_salary	annı	ual_salary
##	Constant	138,913.9*** (26	,774.6)	94,767.3***	(8,089.2)

Fuzzy Merge: I see a match, but the

- Sometimes you have two strings that you know match, but the computer doesn't
- Before, we wanted to match job titles and we could do that by case-matching (and probably some other tricks)
- But what if there are a ton of typos? Well then we could use fuzzy matching
- Fuzzy matching is a way to match strings that are similar, but not identical
- There are a lot of ways to do this including the **stringdist**, **agrep**, and **fuzzyjoin** packages
 - True to its name **stringdist** has a suite of functions that measure the "distance" between strings
 - fuzzyjoin has a suite of functions that merge dataframes based on fuzzy matching
 - **agrep** is a base R function that does fuzzy matching (based on Linux) that only uses Levenshtein distance

Fuzzy match application: Union votes

- The effect of unionization on several economic outcomes is ambiguous
 - Wages up for sure?
 - Productivity up or down?
 - Worker safety?
- The National Labor Relations Board maintains records of all labor union votes
- These records include firm name, location, vote counts, number of employees, etc.
 - No information on firm or worker outcomes
- Lee & Mas (2012) Link administrative records maintained by two separated offices:
 - NLRB union vote data + S&P Compustat firm data
 - Fuzzy match on firm name, address, etc.
 - Long-run event studies show a 10% decline in equity value of firm after union vote
 - Cannot decompose into wage premia and productivity change
- Sojourner & Yang (2022) link to Occupational Safety and Health Administration data
 - OSHA inspection increases after union vote, more violations cited and penalties assessed

(Recent work shows bias against unions when Republicans control NLRB compromising the validity **Q4** / 44

Firm Cumulative Absolute Return

OSHA Inspections

26 / 44

Distance between strings?

- What does it mean to measure the distance between strings?
- Well, we can think of strings as vectors or groups of characters
- Think of the distance between strings as the changes between these characters
- Levenshtein: Measure number of characters missing, added, or substituted
 - "Kyle" and "Kile" have a Levenshtein distance of 1
 - "Kyle" and "Klye" have a Levenshtein distance of 2
- We can account for transpositions as well (Damerau-Levenshtein distance)
 - "Kyle" and "Klye" have a Damerau-Levenshtein distance of 1
- There are many other distance measures (Jaro-Winkler, Hamming, Phonetic, etc.)
- Normalize the distance by the length of the string to get a measure of similarity
- If the similarity exceeds a threshold you choose, we can say that the strings match

String distance

Mock Harry Potter dataset examples from R-Vogg-Blog

<pre>stringdistmatrix(input,compare,</pre>					
method = "lv",					
useNames = " <mark>str</mark> :	ings")				
##	Harry	Potter	Voldemort		
<i>## harry j potter</i>		4	12		
<i>## harrypotter</i>		3	9		
## Voldemort		10	Θ		
<i>## Harry POTTER</i>		5	12		
<i>## Harrry Potter</i>		1	11		
<i>## Ron Weasley</i>		11	9		

tidy_comb(input,compare[1]) %>%						
tidy_stringdist(method=c('lv','dl','jw','cosine')) %>%						
rename(Leve	nshtein=lv,	Damerau-Levensh	<mark>tein</mark> =dl,	<mark>Jaro-Winkler</mark> =j		
## # A tibble	: 6 × 6					
## V1	V2	Levenshtein	Damerau-	Levenshtein J		

##	*	<chr></chr>		<chr></chr>	<dbl></dbl>	<dbl></dbl>
##	1	Harry	Potter	harry j …	4	4
##	2	Harry	Potter	harrypot…	3	3
##	3	Harry	Potter	Voldemort	10	10
##	4	Harry	Potter	Harry PO	5	5
##	5	Harry	Potter	Harrry P	1	1
##	6	Harry	Potter	Ron Weas	11	11

Fuzzy matching to merge

```
fuzzyjoin::stringdist_join(df1, df2,
    mode = "inner",
    by = "name",
    max_dist = 6,
    method='lv')
```

##			name.x		name.y	bad_spells_index
##	1	harry j	potter	Harry	Potter	0.02
##	2	harry	potter	Harry	Potter	0.02
##	3	Vol	demort	Vol	demort	0.87
##	4	Harry	POTTER	Harry	Potter	0.02
##	5	Harrry	Potter	Harry	Potter	0.02

fuzzyjoin::stringdist_join(df1, df2, mode = "inner", by = "name", max_dist = 10, method='ly')

##		name.×		name.y	<pre>bad_spells_index</pre>
##	1	harry j potter	Harry	Potter	0.02
##	2	harrypotter	Harry	Potter	0.02
##	3	harrypotter	Vo	ldemort	0.87
##	4	Voldemort	Harry	Potter	0.02
##	5	Voldemort	Vo	ldemort	0.87
##	6	Harry POTTER	. Harry	Potter	0.02
##	7	Harrry Potter	Harry	Potter	0.02
##	8	Ron Weasley	Vo	ldemort	0.87

Fuzzy matching to group rows

- Can be done with tidystringdist, but it gets slow fast (lots of comparisons!)
- Could parallelize comparisons to speed it up, but you need to write the code yourself

managers2023 %>%
head(1000) %>%
distinct(jobtitle) %>%
tidy_comb_all(jobtitle) %>%
tidy_stringdist() %>%
filter(lv≤1) # at most 1 character difference

A tibble: 6 × 12 lcs qgram cosine jaccard V2 lv dl hamming V1 ### osa jw <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> ### <chr> <dbl> <dbl> ## 1 grant admin... gran... 1 1 1 Tnf 1 1 0.0111 0 0.0868 ## 2 vice presid... vice... 1 1 1 1 2 2 0.0455 0.167 0.0476 1 ## 3 coo cto 1 1 1 2 2 0.225 0.333 0.222 1 1 ## 4 pr manager hr m... 1 1 2 2 0.0714 0.222 0.0667 1 1 ## 5 operations ... oper... 1 Inf 1 1 0.0157 0.0833 0.0185 1 ## 6 solution ar... solu... 1 1 Tnf 1 1 0.0148 0 0.0175 ## # i 1 more variable: soundex <dbl>

Practical advice on fuzzy matching

- Fuzzy matching is a great tool, but it's not magic
 - It can also lie to you
- Don't use it when you:
 - Have a reliable key/id between two dataframes
 - Can easily clean the data to make a reliable key/id
- Match on any many:many keys, then fuzzy match within the group to get the best unique link
- Use it to create a reliable key once that you can then reuse rather than re-running
 - This helps both stability, reproducibility, and speed
- It is as much an art as it is a science
 - You'll need to make judgement calls about what is a match and what is not
 - You'll need to make judgement calls about what distance threshold to use
 - You'll need to make judgement calls about what distance measure to use
- More than likely you'll get false positives and negatives in any given fuzzy merge
 - LLMs have made strides in putting some structure on this, but it's still an art
 - (One day this skill might be obsolete though)

Fuzzy match guidelines

When to fuzzy match

- Too much data to hand match (large N)
- No reliable key/id
- You can't clean the data to make a reliable key/id

When not to fuzzy match

- You can match manually (small N)
- You have a reliable key/id
- You can clean the data to make a reliable key/id

No unique match even after fuzzy match?

- Perform analysis on the group of matches, on each individual match, etc. to see how sensitive your results are to each match
- Hopefully, a mismatch is "classical measurement error," which is an endogeneity problem that puts a downward bias on results

Summarizing text

Summarizing text

- There are a lot of ways to summarize text
- We'll focus on three today:
 - Word counts: How many words are there?
 - Word clouds: Let's see them all together
 - Sentiment analysis: How positive or negative is the text?
- None of these are machine learning tools, but they can be used to inform machine learning tools
 - For example, word counts can be used to create a term document matrix for topic modeling
- They're also useful for exploratory data analysis
- But don't mistake them for the cutting edge analysis
 - Especially sentiment analysis, which is a very blunt tool
 - But it is a bridge to topic modeling and other NLP tools

Word counts: Term frequency

- Word counts are the simplest way to summarize text
- Literally just count up the number of words
- We can do this manually, or we can use the **tidytext** package function <code>unnest_tokens()</code>
 - unnest_tokens() splits a string variable into a new row for each "token"
 - Then you can count

```
tokens ← managers2023 %>%
  select(jobtitle) %>%
  filter(!is.na(jobtitle)) %>%
  mutate(jobtitle=tolower(jobtitle)) %>%
  unnest_tokens(word,jobtitle) %>%
  count(word,sort=T)
tokens
```

```
## # A tibble: 2,384 × 2
###
      word
                       n
      <chr>
                   <int>
###
                    3483
##
   1 manager
                    1924
###
    2 senior
    3 director
                    1856
###
###
    4 engineer
                    1088
###
   5 of
                     976
    6 assistant
                     945
###
   7 analyst
                     916
##
    8 specialist
                     852
###
    9 associate
                     800
###
## 10 coordinator
                     662
## # i 2,374 more rows
```

Stop words

- Did you notice that "of" was one of the most common words?
- It is in a lot of job titles, but it's not very informative
- Imagine if this weren't job titles, but a corpus of text from a novel
 - You'd be constantly panning for "gold" words amidst a see of "of"s and "the"s
- Let's get rid of it using the **tidytext** package's stop_words dataset and anti_join()

```
data('stop_words')
tokens_no_stops ← tokens %>%
  anti_join(stop_words)
## Joining with by = join by(word)
tokens_no_stops
## # A tibble: 2,290 × 2
      word
###
                       n
###
      <chr>
                   <int>
                    3483
###
    1 manager
                    1924
###
    2 senior
    3 director
                    1856
###
    4 engineer
                    1088
##
    5 assistant
                     945
###
    6 analyst
###
                     916
##
   7 specialist
                     852
###
    8 associate
                     800
                                                                                                                                        36 / 44
    9 coordinator
                     662
###
## 10 software
                     602
```

Word Cloud

- Word clouds are a great way to visualize word counts
- The size of the word is proportional to the number of times it appears

pal ← brewer.pal(8,"Dark2") # define a nice color palette with function from RColorBrewer

tokens_no_stops %>%
with(wordcloud(word, n, random.order = FALSE, max.words = 50, colors=pal))

n-grams: phrases

- Sometimes words often go together
- For example, "machine learning" is a phrase
- If we just count the mentions of "machine" and "learning" separately, we lose the context
- We can use the **tidytext** package's <u>unnest_tokens()</u> function to create n-grams
- **ngram** literally means give me all groups of "n words"

In practice

Bigrams will count a single word in multiple bigrams:

• "a machine learning algorithm" will count "a machine," "machine learning," and "learning algorithm"

```
bigrams ← managers2023 %>%
select(jobtitle) %>%
filter(!is.na(jobtitle)) %>%
mutate(jobtitle=tolower(jobtitle)) %>%
unnest_tokens(word,jobtitle,token='ngrams',n=2) %>%
count(word,sort=T)
bigrams
```

# A	A tibble: 9,769 × 2	
	word	n
	<chr></chr>	<int></int>
1	<na></na>	1691
2	director of	651
3	software engineer	410
4	project manager	341
5	program manager	243
6	senior software	187
7	associate director	173
8	human resources	152
9	senior manager	150
10	operations manager	147
# i	9,759 more rows	
	# 4 1 2 3 4 5 6 7 8 9 10 #	<pre># A tibble: 9,769 × 2 word <chr> 1 <na> 2 director of 3 software engineer 4 project manager 5 program manager 6 senior software 7 associate director 8 human resources 9 senior manager 10 operations manager # i 9,759 more rows</na></chr></pre>

Separate out n-grams, remove stop

bigrams_separated ← bigrams %>%
separate(word,c('word1','word2'),sep=" ")
bigrams_separated

##	# A	tibble: 9	9,769 × 3	
##		word1	word2	n
##		<chr></chr>	<chr></chr>	<int></int>
##	1	<na></na>	<na></na>	1691
##	2	director	of	651
##	3	software	engineer	410
##	4	project	manager	341
##	5	program	manager	243
##	6	senior	software	187
##	7	associate	director	173
##	8	human	resources	152
##	9	senior	manager	150
##	10	operations	s manager	147
##	# i	9,759 mor	e rows	

bigrams_separated %>%
filter(!word1 %in% stop_words\$word) %>%

filter(!word2 %in% stop_words\$word)

##	# A	A tibble: 8	,292 × 3	
##		word1	word2	n
##		<chr></chr>	<chr></chr>	<int></int>
##	1	<na></na>	<na></na>	1691
##	2	software	engineer	410
##	3	project	manager	341
##	4	program	manager	243
##	5	senior	software	187
##	6	associate	director	173
##	7	human	resources	152
##	8	senior	manager	150
##	9	operations	manager	147
##	10	vice	president	132
##	# i	8.282 more	rows	

Term frequency-inverse doc frequency

- Frequencies are useful, but they don't tell us much about the context of the words
- We need to know how unique a word is to a document
- Effectively, a document is a group of words (e.g. a sentence, a job title, an essay, etc.)
- A term is a word/phrase
- Some words are uniquely common to a "document" (e.g. "manager" in a job title)
- So they may be valuable to predicting/classifying something about that "document" (e.g. salary, industry)

Term frequency-inverse doc frequency

- Term frequency is the number of times a term appears in a document divided by the total number of terms in the document
- Inverse document frequency of a term is the log of the number of documents divided by the number of documents containing ta term

$$idf(\mathrm{term}) = \ln\left(rac{n_\mathrm{documents}}{n_\mathrm{documents\ containing\ term}}
ight)$$

- Note: This is a heuristic with many variations and shaky theoretical foundations
- Roughly, the more documents a term appears in, the less valuable it is to predicting/classifying something about that document
- As such, the *idf* falls as the number of documents containing a term increases
- The tf idf is the product of the term frequency and the inverse document frequency

Where is this all headed?

- We can use the tf idf to predict the industry of a job title, the topics of a book, content of a tweet, etc.
- We have a bunch of job titles categorized by industry, salary, etc.
- We could use the tf idf to predict the industry or salary of a new job title
- Alternatively, say we have a bunch of tweets and we want to know if they are positive or negative
 - We could search for a bunch of terms OR we could flag several thousand tweets as positive or negative
 - Then we could feed the text to a machine learning algorithm that uses the tf idf to infer whether a word, its common ngrams, etc. are positive or negative
 - Then it could predict the sentiment of new tweets
- This is the basic idea behind topic modeling and sentiment analysis and how we get to GPT-4

Next lecture: Sentiment analysis, basics of topic modeling