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You need the following packages to practice this cute little vignette based off of work by Emil Hvitfeldt on labs in the book
Introduction to Statistical Learning with R using the R package tidymodels. Please answer the following questions and
push your answers to your GitHub repository for class.

1. What are the coefficients in the Ridge and LASSO regressions when the penalty is zero? Why?
2. How does tidymodels pick the optimal 𝜆 in each method?
3. What is the optimal 𝜆 in Ridge and LASSO?

## Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidymodels,ISLR,ggplot,glmnet,tidyverse)

## My preferred ggplot2 plotting theme (optional)
theme_set(theme_minimal())

## Warning: package 'ggplot' is not available for this version of R
##
## A version of this package for your version of R might be available elsewhere,
## see the ideas at
## https://cran.r-project.org/doc/manuals/r-patched/R-admin.html#Installing-packages

## Warning: unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/4.3:
## cannot open URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/4.3/PACKAGES'

## Warning: 'BiocManager' not available. Could not check Bioconductor.
##
## Please use `install.packages('BiocManager')` and then retry.

## Warning in p_install(package, character.only = TRUE, ...):

## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'ggplot'

## Warning in pacman::p_load(tidymodels, ISLR, ggplot, glmnet, tidyverse): Failed to install/load:
## ggplot
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Linear Model Selection and Regularization
This lab will take a look at regularization models and hyperparameter tuning. These models are related to the models we
saw in chapter 3 and 4, with the difference that they contain a regularization term. This chapter will use parsnip for model
fitting and recipes and workflows to perform the transformations, and tune and dials to tune the hyperparameters of the
model.

We will be using the Hitters data set from the ISLR package. We wish to predict the baseball players Salary based
on several different characteristics which are included in the data set. Since we wish to predict Salary, then we need to
remove any missing data from that column. Otherwise, we won’t be able to run the models.

Hitters <- as_tibble(Hitters) %>%
filter(!is.na(Salary))

Ridge Regression
We will use the glmnet package to perform ridge regression. parsnip does not have a dedicated function to create a
ridge regression model specification. You need to use linear_reg() and set mixture = 0 to specify a ridge model.
The mixture argument specifies the amount of different types of regularization, mixture = 0 specifies only ridge reg-
ularization and mixture = 1 specifies only lasso regularization. Setting mixture to a value between 0 and 1 lets us use
both. When using the glmnet engine we also need to set a penalty to be able to fit the model. We will set this value to 0
for now, it is not the best value, but we will look at how to select the best value in a little bit.

ridge_spec <- linear_reg(mixture = 0, penalty = 0) %>%
set_mode("regression") %>%
set_engine("glmnet")

Once the specification is created we can fit it to our data. We will use all the predictors.

ridge_fit <- fit(ridge_spec, Salary ~ ., data = Hitters)

The glmnet package will fit the model for all values of penalty at once, so let us see what the parameter estimate for the
model is now that we have penalty = 0.

tidy(ridge_fit)

## # A tibble: 20 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 81.1 0
## 2 AtBat -0.682 0
## 3 Hits 2.77 0
## 4 HmRun -1.37 0
## 5 Runs 1.01 0
## 6 RBI 0.713 0
## 7 Walks 3.38 0
## 8 Years -9.07 0
## 9 CAtBat -0.00120 0
## 10 CHits 0.136 0
## 11 CHmRun 0.698 0
## 12 CRuns 0.296 0
## 13 CRBI 0.257 0
## 14 CWalks -0.279 0
## 15 LeagueN 53.2 0
## 16 DivisionW -123. 0
## 17 PutOuts 0.264 0
## 18 Assists 0.170 0
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## 19 Errors -3.69 0
## 20 NewLeagueN -18.1 0

Let us instead see what the estimates would be if the penalty was 11498.

tidy(ridge_fit, penalty = 11498)

## # A tibble: 20 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 407. 11498
## 2 AtBat 0.0370 11498
## 3 Hits 0.138 11498
## 4 HmRun 0.525 11498
## 5 Runs 0.231 11498
## 6 RBI 0.240 11498
## 7 Walks 0.290 11498
## 8 Years 1.11 11498
## 9 CAtBat 0.00314 11498
## 10 CHits 0.0117 11498
## 11 CHmRun 0.0876 11498
## 12 CRuns 0.0234 11498
## 13 CRBI 0.0242 11498
## 14 CWalks 0.0250 11498
## 15 LeagueN 0.0866 11498
## 16 DivisionW -6.23 11498
## 17 PutOuts 0.0165 11498
## 18 Assists 0.00262 11498
## 19 Errors -0.0206 11498
## 20 NewLeagueN 0.303 11498

Notice how the estimates are decreasing when the amount of penalty goes up. Look below at the parameter estimates for
penalty = 705 and penalty = 50.

tidy(ridge_fit, penalty = 705)

## # A tibble: 20 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 54.4 705
## 2 AtBat 0.112 705
## 3 Hits 0.656 705
## 4 HmRun 1.18 705
## 5 Runs 0.937 705
## 6 RBI 0.847 705
## 7 Walks 1.32 705
## 8 Years 2.58 705
## 9 CAtBat 0.0108 705
## 10 CHits 0.0468 705
## 11 CHmRun 0.338 705
## 12 CRuns 0.0937 705
## 13 CRBI 0.0979 705
## 14 CWalks 0.0718 705
## 15 LeagueN 13.7 705
## 16 DivisionW -54.7 705
## 17 PutOuts 0.119 705
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## 18 Assists 0.0161 705
## 19 Errors -0.704 705
## 20 NewLeagueN 8.61 705
tidy(ridge_fit, penalty = 50)

## # A tibble: 20 x 3
## term estimate penalty
## <chr> <dbl> <dbl>
## 1 (Intercept) 48.2 50
## 2 AtBat -0.354 50
## 3 Hits 1.95 50
## 4 HmRun -1.29 50
## 5 Runs 1.16 50
## 6 RBI 0.809 50
## 7 Walks 2.71 50
## 8 Years -6.20 50
## 9 CAtBat 0.00609 50
## 10 CHits 0.107 50
## 11 CHmRun 0.629 50
## 12 CRuns 0.217 50
## 13 CRBI 0.215 50
## 14 CWalks -0.149 50
## 15 LeagueN 45.9 50
## 16 DivisionW -118. 50
## 17 PutOuts 0.250 50
## 18 Assists 0.121 50
## 19 Errors -3.28 50
## 20 NewLeagueN -9.42 50

We can visualize how the magnitude of the coefficients are being regularized towards zero as the penalty goes up.

ridge_fit %>%
autoplot()
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Prediction is done like normal, if we use predict() by itself, then penalty = 0 as we set in the model specification is
used.

predict(ridge_fit, new_data = Hitters)

## # A tibble: 263 x 1
## .pred
## <dbl>
## 1 442.
## 2 676.
## 3 1059.
## 4 521.
## 5 543.
## 6 218.
## 7 74.7
## 8 96.1
## 9 809.
## 10 865.
## # i 253 more rows

but we can also get predictions for other values of penalty by specifying it in predict()
predict(ridge_fit, new_data = Hitters, penalty = 500)

## # A tibble: 263 x 1
## .pred
## <dbl>
## 1 525.
## 2 620.
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## 3 895.
## 4 425.
## 5 589.
## 6 179.
## 7 147.
## 8 187.
## 9 841.
## 10 840.
## # i 253 more rows

We saw how we can fit a ridge model and make predictions for different values of penalty. But it would be nice if we
could find the “best” value of the penalty. This is somethingwe can use hyperparameter tuning for. Hyperparameter tuning
is in its simplest form a way of fitting many models with different sets of hyperparameters trying to find one that performs
“best”. The complexity in hyperparameter tuning can come from how you try different models. We will keep it simple for
this lab and only look at grid search, only looking at evenly spaced parameter values. This is a fine enough approach if you
have one or two tunable parameters but can become computationally infeasible. See the chapter on iterative search from
Tidy Modeling with R for more information.

We start like normal by setting up a validation split. A K-fold cross-validation data set is created on the training data set
with 10 folds.

Hitters_split <- initial_split(Hitters, strata = "Salary")

Hitters_train <- training(Hitters_split)
Hitters_test <- testing(Hitters_split)

Hitters_fold <- vfold_cv(Hitters_train, v = 10)

We can use the tune_grid() function to perform hyperparameter tuning using a grid search. tune_grid() needs 3
different thing;

• a workflow object containing the model and preprocessor,
• a rset object containing the resamples the workflow should be fitted within, and
• a tibble containing the parameter values to be evaluated.

Optionally a metric set of performance metrics can be supplied for evaluation. If you don’t set one then a default set of
performance metrics is used.

We already have a resample object created in Hitters_fold. Now we should create the workflow specification next.

We just used the data set as is when we fit the model earlier. But ridge regression is scale sensitive so we need to make sure
that the variables are on the same scale. We can use step_normalize(). Secondly let us deal with the factor variables
ourself using step_novel() and step_dummy().
ridge_recipe <-

recipe(formula = Salary ~ ., data = Hitters_train) %>%
step_novel(all_nominal_predictors()) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors())

The model specification will look very similar to what we have seen earlier, but we will set penalty = tune(). This
tells tune_grid() that the penalty parameter should be tuned.
ridge_spec <-

linear_reg(penalty = tune(), mixture = 0) %>%
set_mode("regression") %>%
set_engine("glmnet")
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Now we combine to create a workflow object.

ridge_workflow <- workflow() %>%
add_recipe(ridge_recipe) %>%
add_model(ridge_spec)

The last thing we need is the values of penalty we are trying. This can be created using grid_regular() which creates
a grid of evenly spaces parameter values. We use the penalty() function from the dials package to denote the parameter
and set the range of the grid we are searching for. Note that this range is log-scaled.

penalty_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 50)
penalty_grid

## # A tibble: 50 x 1
## penalty
## <dbl>
## 1 0.00001
## 2 0.0000160
## 3 0.0000256
## 4 0.0000409
## 5 0.0000655
## 6 0.000105
## 7 0.000168
## 8 0.000268
## 9 0.000429
## 10 0.000687
## # i 40 more rows

Using 50 levels for one parameter might seem overkill and in many applications it is. But remember that glmnet fits all
the models in one go so adding more levels to penalty doesn’t affect the computational speed much.

Now we have everything we need and we can fit all the models.

tune_res <- tune_grid(
ridge_workflow,
resamples = Hitters_fold,
grid = penalty_grid

)

tune_res

## # Tuning results
## # 10-fold cross-validation
## # A tibble: 10 x 4
## splits id .metrics .notes
## <list> <chr> <list> <list>
## 1 <split [176/20]> Fold01 <tibble [100 x 5]> <tibble [0 x 3]>
## 2 <split [176/20]> Fold02 <tibble [100 x 5]> <tibble [0 x 3]>
## 3 <split [176/20]> Fold03 <tibble [100 x 5]> <tibble [0 x 3]>
## 4 <split [176/20]> Fold04 <tibble [100 x 5]> <tibble [0 x 3]>
## 5 <split [176/20]> Fold05 <tibble [100 x 5]> <tibble [0 x 3]>
## 6 <split [176/20]> Fold06 <tibble [100 x 5]> <tibble [0 x 3]>
## 7 <split [177/19]> Fold07 <tibble [100 x 5]> <tibble [0 x 3]>
## 8 <split [177/19]> Fold08 <tibble [100 x 5]> <tibble [0 x 3]>
## 9 <split [177/19]> Fold09 <tibble [100 x 5]> <tibble [0 x 3]>
## 10 <split [177/19]> Fold10 <tibble [100 x 5]> <tibble [0 x 3]>

The output of tune_grid() can be hard to read by itself unprocessed. autoplot() creates a great visualization
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autoplot(tune_res)
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Amount of Regularization Here
we see that the amount of regularization affects the performance metrics differently. Note how there are areas where the
amount of regularization doesn’t have any meaningful influence on the coefficient estimates. We can also see the raw
metrics that created this chart by calling collect_matrics().

collect_metrics(tune_res)

## # A tibble: 100 x 7
## penalty .metric .estimator mean n std_err .config
## <dbl> <chr> <chr> <dbl> <int> <dbl> <chr>
## 1 0.00001 rmse standard 338. 10 17.7 Preprocessor1_Model01
## 2 0.00001 rsq standard 0.452 10 0.0578 Preprocessor1_Model01
## 3 0.0000160 rmse standard 338. 10 17.7 Preprocessor1_Model02
## 4 0.0000160 rsq standard 0.452 10 0.0578 Preprocessor1_Model02
## 5 0.0000256 rmse standard 338. 10 17.7 Preprocessor1_Model03
## 6 0.0000256 rsq standard 0.452 10 0.0578 Preprocessor1_Model03
## 7 0.0000409 rmse standard 338. 10 17.7 Preprocessor1_Model04
## 8 0.0000409 rsq standard 0.452 10 0.0578 Preprocessor1_Model04
## 9 0.0000655 rmse standard 338. 10 17.7 Preprocessor1_Model05
## 10 0.0000655 rsq standard 0.452 10 0.0578 Preprocessor1_Model05
## # i 90 more rows

The “best” values of this can be selected using select_best(), this function requires you to specify a matric that it
should select against.

best_penalty <- select_best(tune_res, metric = "rsq")
best_penalty

## # A tibble: 1 x 2
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## penalty .config
## <dbl> <chr>
## 1 3728. Preprocessor1_Model43

This value of penalty can then be used with finalize_workflow() to update/finalize the recipe by replacing tune()
with the value of best_penalty. Now, this model should be fit again, this time using the whole training data set.

ridge_final <- finalize_workflow(ridge_workflow, best_penalty)

ridge_final_fit <- fit(ridge_final, data = Hitters_train)

This final model can now be applied on our testing data set to validate the performance

augment(ridge_final_fit, new_data = Hitters_test) %>%
rsq(truth = Salary, estimate = .pred)

## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq standard 0.306

And it performs fairly well given what we saw earlier.

The Lasso
We will use the glmnet package to perform lasso regression. parsnip does not have a dedicated function to create a
ridge regression model specification. You need to use linear_reg() and set mixture = 1 to specify a lasso model.
The mixture argument specifies the amount of different types of regularization, mixture = 0 specifies only ridge reg-
ularization and mixture = 1 specifies only lasso regularization. Setting mixture to a value between 0 and 1 lets us use
both.

The following procedure will be very similar to what we saw in the ridge regression section. The preprocessing needed is
the same, but let us write it out one more time.
lasso_recipe <-

recipe(formula = Salary ~ ., data = Hitters_train) %>%
step_novel(all_nominal_predictors()) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors())

Next, we finish the lasso regression workflow.
lasso_spec <-

linear_reg(penalty = tune(), mixture = 1) %>%
set_mode("regression") %>%
set_engine("glmnet")

lasso_workflow <- workflow() %>%
add_recipe(lasso_recipe) %>%
add_model(lasso_spec)

While we are doing a different kind of regularization we still use the same penalty argument. I have picked a different
range for the values of penalty since I know it will be a good range. You would in practice have to cast a wide net at first
and then narrow on the range of interest.

penalty_grid <- grid_regular(penalty(range = c(-2, 2)), levels = 50)

And we can use tune_grid() again.
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tune_res <- tune_grid(
lasso_workflow,
resamples = Hitters_fold,
grid = penalty_grid

)

autoplot(tune_res)
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Amount of Regularization

We select the best value of penalty using select_best()
best_penalty <- select_best(tune_res, metric = "rsq")

And refit the using the whole training data set.

lasso_final <- finalize_workflow(lasso_workflow, best_penalty)

lasso_final_fit <- fit(lasso_final, data = Hitters_train)

Andwe are done, by calculating the rsq value for the lassomodel canwe see that for this data ridge regression outperform
lasso regression.

augment(lasso_final_fit, new_data = Hitters_test) %>%
rsq(truth = Salary, estimate = .pred)

## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq standard 0.341
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