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ProloguePrologue



Regressions
What do we typically do when we run OLS?

We run a regression with all the variables we think are important

But what happens when we have more variables than observations?
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Too many variables
Most of the analysis we have done in this class has focused on the case where we have a small
number of variables relative to the number of observations.

But sometimes you have WIDE data

In this case, you have a large number of variables  relative to the number of observations .

If you try to use OLS with all the variables, you will run into problems. Why?

J n
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Too many variables
Most of the analysis we have done in this class has focused on the case where we have a small
number of variables relative to the number of observations.

But sometimes you have WIDE data

In this case, you have a large number of variables  relative to the number of observations .

If you try to use OLS with all the variables, you will run into problems. Why?

The number of variables is larger than the number of observations!

Uh oh

J n
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Example of wide data
�� Warning: The x argument of as_tibble.matrix() must have unique column names if
�� .name_repair is omitted as of tibble 2.0.0.
�� ℹ Using compatibility .name_repair.
�� This warning is displayed once every 8 hours.
�� Call lifecycle��last_lifecycle_warnings() to see where this warning was
�� generated.

�� # A tibble: 6 × 1,001
��        y     P_1     P_2    P_3    P_4     P_5     P_6     P_7    P_8    P_9
��    <dbl>   <dbl>   <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>  <dbl>  <dbl>
�� 1   8.33 -0.560  -0.710   2.20  -0.715 -0.0736 -0.602   1.07   -0.728  0.356
�� 2 -63.4  -0.230   0.257   1.31  -0.753 -1.17   -0.994  -0.0273 -1.54  -0.658
�� 3  -8.21  1.56   -0.247  -0.265 -0.939 -0.635   1.03   -0.0333 -0.693  0.855
�� 4  11.7   0.0705 -0.348   0.543 -1.05  -0.0288  0.751  -1.52    0.119  1.15 
�� 5  35.9   0.129  -0.952  -0.414 -0.437  0.671  -1.51    0.790  -1.36   0.276
�� 6 -41.4   1.72   -0.0450 -0.476  0.331 -1.65   -0.0951 -0.211   0.590  0.144
�� # ℹ 991 more variables: P_10 <dbl>, P_11 <dbl>, P_12 <dbl>, P_13 <dbl>,
�� #   P_14 <dbl>, P_15 <dbl>, P_16 <dbl>, P_17 <dbl>, P_18 <dbl>, P_19 <dbl>,
�� #   P_20 <dbl>, P_21 <dbl>, P_22 <dbl>, P_23 <dbl>, P_24 <dbl>, P_25 <dbl>,
�� #   P_26 <dbl>, P_27 <dbl>, P_28 <dbl>, P_29 <dbl>, P_30 <dbl>, P_31 <dbl>,
�� #   P_32 <dbl>, P_33 <dbl>, P_34 <dbl>, P_35 <dbl>, P_36 <dbl>, P_37 <dbl>,
�� #   P_38 <dbl>, P_39 <dbl>, P_40 <dbl>, P_41 <dbl>, P_42 <dbl>, P_43 <dbl>,
�� #   P_44 <dbl>, P_45 <dbl>, P_46 <dbl>, P_47 <dbl>, P_48 <dbl>, P_49 <dbl>, …
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What if I run a regression?
A mess to include all variables

etable(feols(y ~ ��('^P'), data = wide_df))

�� The variables 'P_100', 'P_101' and 899 others have been removed because of collinearity (see $collin.var)

��                  feols(y ~ ��
�� Dependent Var.:             y
��                              
�� Constant          357.7 (NaN)
�� P_1               246.0 (NaN)
�� P_2              -58.65 (NaN)
�� P_3              -21.77 (NaN)
�� P_4              -78.74 (NaN)
�� P_5               14.93 (NaN)
�� P_6               280.5 (NaN)
�� P_7              -109.2 (NaN)
�� P_8              -181.9 (NaN)
�� P_9              -393.5 (NaN)
�� P_10              265.5 (NaN)
�� P_11             -3.331 (NaN)
�� P_12             -6.579 (NaN)
�� P_13              202.2 (NaN)
�� P_14              88.59 (NaN)
�� P_15              355.9 (NaN)
�� P_16             -134.5 (NaN)
�� P_17              161.8 (NaN)
�� P_18             -60.64 (NaN)

7 / 29



How can we cut down on variables?
How can we cut down on the number of variables?

What would be the regression tree approach?
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How can we cut down on variables?
How can we cut down on the number of variables?

What would be the regression tree approach?

Iteratively split training data using variables that minimize residual sum of squares and use test
data to determine the optimal number of leaves

This is a form of variable selection

But it forces us to turn continuous data binary (  vs.  )

But what other ways are available?

X > c X\geqc
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Linear Model SelectionLinear Model Selection



Typical OLS
Good old-fashioned regression minimizes the residual sum of squares (RSS)

What does that mean?

min
β

n

∑
i=1

(yi − β0 −

k

∑
j=1

βjxij)
2



RSS
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Typical OLS
Good old-fashioned regression minimizes the residual sum of squares (RSS)

What does that mean?

We are trying to �nd the s that predict a dependent variable  as a linear combination of the
independent variables .

min
β

n

∑
i=1

(yi − β0 −

k

∑
j=1

βjxij)
2



RSS

β y

x
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Adding dimensions with OLS
Each additional variable  adds a new dimension to the problem

As in each additional variable is a new axis in -dimensional space where  is the number of
variables
(You've likely never thought about it that way before, but any regression is a multi-
dimensional problem)

If you have more variables than observations, you have more dimensions than observations

Why? Well solve this equation:

How many solutions are there? In�nite

Now solve this system of equations:

The same logic applies to regression (though it is a bit more complicated)

xj

J J

x + y = 5

x + y = 5

x + 2y = 10
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Ridge RegressionRidge Regression



Shrinkage
In OLS, we are trying to minimize the residual sum of squares (RSS)

In machine learning, there are shrinkage methods that add a penalty term to the RSS

These penalize coef�cients that are too large

Why penalize large coef�cients?

Large coef�cients are more likely to be over�tting the data since they are more sensitive to small
changes in the data

By penalizing large coef�cients, we are reducing the variance of the model and thus
complexity
Intuitively, a larger  the further your model is from a null hypothesis of , which is the
simplest model

What happens if we reduce bias in the data?

min
β

n

∑
i=1

model fit


RSS

+ penalty on size of coefficients

β β = 0
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Shrinkage
In OLS, we are trying to minimize the residual sum of squares (RSS)

In machine learning, there are shrinkage methods that add a penalty term to the RSS

These penalize coef�cients that are too large

Why penalize large coef�cients?

Large coef�cients are more likely to be over�tting the data since they are more sensitive to small
changes in the data

By penalizing large coef�cients, we are reducing the variance of the model and thus
complexity
Intuitively, a larger  the further your model is from a null hypothesis of , which is the
simplest model

What happens if we reduce bias in the data?

We increase variance!

min
β

n

∑
i=1

model fit


RSS

+ penalty on size of coefficients

β β = 0
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Ridge Regression
So what form do these penalties take?

Well Ridge Regression is one such example

Ridge regression adds a penalty term to the RSS that is proportional to the sum of the squared
coef�cients

Essentially, it adds a constraint to the optimization problem

 is the "tuning parameter" that controls the strength of the penalty

In order to minimize, we need to �nd the s that minimize the RSS and the penalty

That means we need smaller s -- and necessarily a simpler, less variable model

Literally, we shrink the s towards zero

min

n

∑
i=1

(yi − β0 −

J

∑
j=1

βjxij)



model fit

+ λ

J

∑
j=1

β2
j



penalty

= RSS + λ

J

∑
j=1

β2
j

λ

β

β

β
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Ridge Regression

Example taken from Dr. Samuel E. Jackson online textbook
15 / 29

https://bookdown.org/ssjackson300/Machine-Learning-Lecture-Notes/ridge-regression.html#minimisation


Ridge Regression coef�cients
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Ridge Regression �aws
Ridge regression keeps all the variables in the model -- it just shrinks the coef�cients

But what if some variables are just truly noise

i.e. they are not correlated with the dependent variable

Sure, we can check by hand, but shouldn't we just toss them?
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LASSO
LASSO stands for Least Absolute Shrinkage and Selection Operator

It is another shrinkage method that adds a penalty term to the RSS

But now the penalty term is proportional to the sum of the absolute value of the coef�cients

Instead of the squared penalty on coef�cient size, you have absolute value

The magic of the absolute value is that it can shrink coef�cients to zero with a suf�ciently large 

This means that LASSO can select variables:  means that  is not in the model
Intuition: The absolute value has a "sharp" corner at zero, so it can "cut" coef�cients to zero,
Ridge is a circle, so it can only shrink coef�cients to the edge of the circle

Selection is a big advantage over Ridge Regression

Of course, that can also be a disadvantage if you want to keep all the variables in the model
It leads to more bias

min

n

∑
i=1

(yi − β0 −

J

∑
j=1

βjxij)



model fit

+ λ

J

∑
j=1

|βj|



penalty

= RSS + λ

J

∑
j=1

|βj|

λ

βj = 0 xj
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LASSO visualization

20 / 29



Ridge Regression coef�cients
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Other details on RegularizationOther details on Regularization



K-fold cross-validation: How to pick 
The  in is a "tuning parameter," which controls the strength of the penalty

You need to do -fold cross-validation:

�. Choose the number of "folds" or groups,  (usually 5 or 10)
�. Randomly split the data into  folds
�. Create a grid of feasible  values to check
�. For each value of :

Run Ridge or LASSO on the  folds
Calculate the  on the remaining -fold

�. Calculate the average  for each 

�. Pick the  with the lowest MSE

You know what's neat? You can do this in R with the glmnet library!

It will even plot the results for you, so you can see the optimal 

λ

λ

K

K

K

λ

λ

K − 1

MSEk k

MSEk λ

MSECV (λ) =

K

∑
k=1

MSEk(λ)
1

K

λ

λ

23 / 29



Drawbacks of LASSO and Ridge
Regularization/coef�cient shinkage are useful for reducing variance and over�tting

But they can also lead to bias

The more you shrink the coef�cients, the more bias you introduce

You are no longer �nding the best linear unbiased estimator (BLUE) that you �nd with OLS

Instead, you get the best linear biased estimator (BLBE) because you trade some bias for less
variance

Sometimes you're okay with that!
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Why are you okay with bias?
Sometimes you don't mind being a little off in your predictions

For example, if you are predicting the number of people who will show up to a party, you don't care
if you are a little off

Imagine someone tells you there's a 50% chance 0 people come and a 50% chance 100 people
come

That's not very helpful
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Why are you okay with bias?
Sometimes you don't mind being a little off in your predictions

For example, if you are predicting the number of people who will show up to a party, you don't care
if you are a little off

Imagine someone tells you there's a 50% chance 0 people come and a 50% chance 100 people
come

That's not very helpful

But what if they predict 45-55 people will show up and then 40 people showed up

That's wrong, but not so wrong to cause problems

It is even less helpful if they tell you that to make an accurate prediction they need to know:

The number of invites
The weather
The day of the week
The time of day
The number of people who have already RSVP'd
The variety of chips you're serving
What is on TV that night
etc.
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Warning
Regularization is a useful tool for reducing variance and over�tting

But just cause you can run a regression techniques doesn't mean you should

You should always think about the problem you are trying to solve and the data you have

Is it worth trying a technique?

Will this technique help you solve your problem?

Will it help you understand your data?

Or are you just trying to seem �ashy?
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Conclusion
Regularization is a useful tool for reducing variance and over�tting

It recognizes that sometimes you are okay with a little bias if it means you get less variance

It relies on a tuning parameter  that controls the strength of the penalty from adding more
complexity to a regression model

LASSO can be used to select variables, while Ridge just reduces the magnitude of the coef�cients

λ
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What next?
Try an activity: ISLR lab using tidymodels

Before class: work through the lab sections on Ridge and LASSO in a .Rmd �le that you create

Write up short answers to the following questions:

�. What are the coef�cients in the Ridge and LASSO regressions when the penalty is zero? Why?
�. How does tidymodels pick the optimal  in each method?
�. What is the optimal  in Ridge and LASSO?

λ

λ
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https://emilhvitfeldt.github.io/ISLR-tidymodels-labs/06-regularization.html


Next lecture: Regular expressions andNext lecture: Regular expressions and
word cloudsword clouds


