
Big Data and Economics
Functions and Parallel Programming

Kyle Coombs
Bates College | ECON/DCS 368

https://github.com/big-data-and-economics

Table of contents
Prologue

Functions

Iteration

Parallel Programming

2 / 43

ProloguePrologue

Prologue
By the end of class you will:

Be able to write basic functions in R
Be able to iterate tasks serially and in parallel in R
Be able to bootstrap in parallel in R

4 / 43

Questions

5 / 43

Attribution
I pull most of this lecture from the textbook Data Science in R by James Scott

6 / 43

https://bookdown.org/jgscott/DSGI/

FunctionsFunctions

What is a function?
In math, a function is a mapping from domain to range

In programming, a function is a mapping from input to output

square �� function(x) {
 x^2
}

square(2) # Returns 4

�� [1] 4

f(x) = x2 Takes a number from the domain and returns its square in the range

f(2) = 4 The function applied to 2 returns 4

8 / 43

Why use functions?
Abstraction

They allow you to summarize complex details into a single line of code, so you only need to
understand them once (instead of repeating yourself)

Automation

Automate a task to happen many times without having to write the same code over and over

Documentation

Well-written functions codify the steps you take to do something, so you can easily remember
what you did

9 / 43

How do I write a function?
In R, functions are de�ned using the function keyword

some_function �� function(positional_input1=1,positional_input2="two",keyword_inputs) {
 # Do something with these inputs
 # Create output or ouputs
 return(output) # Return the output
 # If you do not specify return, it returns the last object
}

function takes keyword inputs and positional inputs. It does not require a speci�c order for these
unlike in Python. But generally, position comes �rst.

10 / 43

Control �ow: If/else logic
Functions make great use of if/else logic

square =
 function(x = NULL) {

 if (is.null(x)) { �� Start multi�line IF statement with {
 x = 1
 �� Message to users:
 message("No input value provided. Using default value of 1.")
 } �� Close multi�line if statement with }

 x_sq = x^2
 d = data.frame(value = x, value_squared = x_sq)

 return(d)
 }
square()

�� No input value provided. Using default value of 1.

�� value value_squared
�� 1 1 1

This function has a default value of 1 for when you fail to provide a value.

11 / 43

Each step of bootstrap
library(tidyverse) # Already loaded
set.seed(1)
df �� tibble(x = rnorm(1000, mean = 0, sd = 1),
 y= x�rnorm(1000, mean = 0, sd = 1))

bootstrap_sample �� function(df) {
 # 1. Draw a random sample with replacement of size N from your sample.
 sample �� df %>% slice_sample(n = nrow(df), replace = TRUE)
 # 2. Perform the same analysis, here a median, on the new sample.
 return(coef(feols(y ~ x, data = sample))[2])
}

bootstrap_sample(df)

�� x
�� 0.9671832

12 / 43

Wrapping up a function
You can wrap functions inside of other functions
This is a great way to make your code more readable and modular
Also useful for various iteration tasks that need to take an iterated input

wrapper_bootstrap �� function(i,df) {
 # print(i) # if you want to visualize the i.
 bootstrap_sample(df)
}
wrapper_bootstrap(1,df)

�� x
�� 0.9824952

13 / 43

More on functions
There is a lot more to functions than we can cover today
Check out Grant McDermott's Introudctory and Advanced chapters on functions
There are some incredible tips on how to:

Debug functions
Write functions that are easy to read
Catch errors
Cache or memoise big functions

14 / 43

https://grantmcdermott.com/ds4e/funcs-intro.htm
https://grantmcdermott.com/ds4e/funcs-adv.html

IterationIteration

Iteration: For loops
You've likely heard of for loops before!
They're the most common way to iterate across programming languages
In R, the syntax is fairly simple: you iterative over a vector or list of values, and do stuff with those
values

for(i in 1�10) {
 square(i)
}

16 / 43

Bootstrapping for loop
To save output, you have to pre-de�ne a list where you deposit the output

deposit �� vector("list",10) # preallocate list of 10 values
set.seed(1)
for (i in 1�10) {
 # perform bootstrap
 deposit[[i]] �� bootstrap_sample(df)
}

bootstrapped_for �� bind_rows(deposit)
head(bootstrapped_for)

�� # A tibble: 6 × 1
�� x
�� <dbl>
�� 1 1.02
�� 2 0.987
�� 3 0.997
�� 4 0.987
�� 5 0.947
�� 6 0.999

17 / 43

Binding output
Did you notice the bind_rows() function I called?
After any iteration that leaves you a bunch of dataframes in a list, you'll want to put them together
The bind_rows function is a great way to bind together a list of data frames
Other options include:

do.call(rbind, list_of_dataframes)

data.table��rbindlist()

18 / 43

Issues with for loops
For loops are slow in R
They clutter up your environment with extra variables (like the i indexer)
They can also be an absolute headache to debug if they get too nested
Look at the example below: this is a nested for loop that is hard to read and debug
In some languages, this is all you have, but not in R!

for (i in 1�5) {
 for (k in 1�5) {
 if (i > k) {
 print(i�k)
 }
 else {
 for (j in 1�5) {
 print(i�j�k)
 }
 }
 }
}

19 / 43

Tips on iterating
Start small! Set your iteration to 1 or 2 and make sure it works
Why?

You'll know faster if it broke
Print where it is in the iteration (or use a progress bar with something like pbapply)

for (i in 1�2) {
 print(i)
 # complex function
}

�� [1] 1
�� [1] 2

20 / 43

While loops
I'm largely skipping while loops, but they're also important!

While loops iterate until one or more conditions are met

Typically one condition is a max number of iterations
Another conditions is that the some value of the loop is within a small amount of a target
value

These are critical for numerical solvers, which are common in computational economics and
machine learning

21 / 43

Iteration: apply family
R has a much more commonly used approach to iteration: the �apply family of functions: apply ,
sapply , vapply , lapply , mapply
The �apply family takes a function and applies it to each element of a list or vector
lapply is the most commonly used and returns a list back

lapply(1�10, square)

�� [[1]]
�� value value_squared
�� 1 1 1
��
�� [[2]]
�� value value_squared
�� 1 2 4
��
�� [[3]]
�� value value_squared
�� 1 3 9
��
�� [[4]]
�� value value_squared
�� 1 4 16
��
�� [[5]]
�� value value_squared
�� 1 5 25
��
�� [[6]]
�� value value_squared
�� 1 6 36
��
�� [[7]]
�� value value_squared

22 / 43

�apply syntax
The �apply family is a little confusing at �rst, but it's very powerful
The syntax is �apply(list_or_vector, function, other_arguments)
The function is a function that takes arguments like any other

The �rst argument will be the element of the list or vector
The other_arguments are arguments that are passed to the function

23 / 43

Bootstrapping lapply
One trick: �apply insists on iterating over some sequence indexed i like a for-loop
But you can ignore it by using function(i) and then not using i in the function

set.seed(1)
lapply(1�10, function(i) bootstrap_sample(df=df)) %>%
 bind_rows()

�� # A tibble: 10 × 1
�� x
�� <dbl>
�� 1 1.02
�� 2 0.987
�� 3 0.997
�� 4 0.987
�� 5 0.947
�� 6 0.999
�� 7 0.966
�� 8 0.983
�� 9 0.987
�� 10 0.987

24 / 43

Wrapper functions to get around �apply
Maybe you don't like the ugly syntax of function(i) and then not using i in the function
Well you can write a wrapper function to get around that

set.seed(1)
lapply(1�10, wrapper_bootstrap, df=df) %>%
 bind_rows()

�� # A tibble: 10 × 1
�� x
�� <dbl>
�� 1 1.02
�� 2 0.987
�� 3 0.997
�� 4 0.987
�� 5 0.947
�� 6 0.999
�� 7 0.966
�� 8 0.983
�� 9 0.987
�� 10 0.987

25 / 43

Iteration: map
Sometimes the �apply syntax is a little confusing
The purrr package in the tidyverse has more intuitive syntax for iteration: map
The variant map_df is especially useful beause it automatically binds the output into a data frame

The same iteration syntax applies here too.

set.seed(1)
map_df(1�10, function(i) bootstrap_sample(df=df))

�� # A tibble: 10 × 1
�� x
�� <dbl>
�� 1 1.02
�� 2 0.987
�� 3 0.997
�� 4 0.987
�� 5 0.947
�� 6 0.999
�� 7 0.966
�� 8 0.983
�� 9 0.987
�� 10 0.987

26 / 43

Parallel ProgrammingParallel Programming

Motivating example: Parallel
Programming

Imagine you get home from the grocery store with 100 bags of groceries
You have to bring them all inside, but you can only carry 2 at a time
That's 50 trips back and forth
How can you speed things up?

28 / 43

Motivating example: Parallel
Programming

Imagine you get home from the grocery store with 100 bags of groceries
You have to bring them all inside, but you can only carry 2 at a time
That's 50 trips back and forth

How can you speed things up?

Ask friends to carry to at a time with you (Parallel Programming)
Get a cart and carry 10 at a time (more RAM and a better processor)

28 / 43

A warning
Parallel Programming is an incredibly powerful tool, but it is full of pitfalls

A friend of mine from the PhD said that he did not understand it until the 4th year of his PhD

Many economists understand the intuition, but not the details and only do it if absolutely
necessary

That used to be me until I started teaching this class!

So if it is hard, that's normal. But it is worth learning!

29 / 43

"One trip?" okay

One trip? Okay ,sure

30 / 43

Parallel Programming: What?
Your computer has multiple cores, which are like multiple brains
Each of these is capable of doing the same tasks
Parallel Programming is the act of using multiple cores to do the same task at the same time

31 / 43

Parallel Programming: What?
Your computer has multiple cores, which are like multiple brains
Each of these is capable of doing the same tasks
Parallel Programming is the act of using multiple cores to do the same task at the same time

Many coding tasks are "embarassingly parallel"

That means they can be broken up into many small tasks that can be done at the same time
Bootstrapping is one such example

Some tasks are not embarrassingly parallel

These are called "serial" tasks
Parts of these tasks may be possible to do in parallel

31 / 43

Parallel Programming vocab
The vocab for Parallel Programming can get a little confusing:

Socket: A socket is a physical connection between a processor and the motherboard
Core: A core is a physical processor that can do computations
Process: A process is a task that is being done by a core (Windows users may know this from Task
Manager)
Thread: A thread is a subtask of a process that can be done in parallel and share memory with
other threads
Cluster: A cluster is a group of computers that can be used to do Parallel Programming
Node: One computer within a cluster

32 / 43

Parallel Programming in R
In R, there are many ways to parallel process, I'll introduce you to the future.apply package
There are many Parallel Programming packages in R, but future.apply follows the �apply family
syntax

33 / 43

Trivial example: square numbers
Let's start with some trivial to understand examples

Here is a function called slow_square , which takes a number and squares it, but after a pause.

�� Emulate slow function
slow_square =
 function(x = 1) {
 x_sq = x^2
 d = data.frame(value = x, value_squared = x_sq)
 Sys.sleep(2) # literally do nothing for two seconds
 return(d)
 }

Let's time that quickly.

library(tictoc) �� Already loaded

tic()
serial_ex = lapply(1�12, slow_square)
toc(log = TRUE)

�� 24.83 sec elapsed

34 / 43

Now in parallel
library(future.apply) �� Already loaded
plan(multisession) �� Already set above

tic()
future_ex = future_lapply(1�12, slow_square)
toc(log = TRUE)

�� 10 sec elapsed

all.equal(serial_ex, future_ex)

�� [1] TRUE

35 / 43

Example: bootstrapping in parallel
The future_lapply works the same, but now I have to set the seed inside the function

set.seed(1)
tic()
serial_boot �� lapply(1�1e4, function(i) bootstrap_sample(df)) %>%
 bind_rows()
toc(log = TRUE)

�� 171.47 sec elapsed

tic()
parallel_boot �� future_lapply(1�1e4,
 function(i) bootstrap_sample(df),
 future.seed=1) %>%
 bind_rows()
toc(log = TRUE)

�� 86.38 sec elapsed

36 / 43

Want to use map? Try furrr
The furrr package, i.e. future purrrr is a Parallel Programming version of purrr

Again, the syntax is the same, but you have to set the seed inside the function with .options .

tic()
furrr_boot = future_map_dfr(1�1e4,
 function(i) bootstrap_sample(df),
 .options = furrr_options(seed=1))
toc(log = TRUE)

�� 71.95 sec elapsed

37 / 43

Get standard errors from results
Now that we have a bunch of estimates, we can get the standard error of our estimates
The 95% con�dence interval is just the 2.5th and 97.5th percentile of the sampling distribution

38 / 43

R packages that use Parallel
Programming

Many R packages already use Parallel Programming
feols() from �xest uses Parallel Programming to speed up OLS estimation

You can control how using the nthreads argument
data.table uses Parallel Programming to speed up data wrangling
boot and sandwich can use Parallel Programming to speed up bootstrapping
And many others do the same

39 / 43

Parallel Programming: Why?
Parallel Programming is a great way to speed up your code and often there are straight-forward
ways to do it
It is not always worth doing:

Theoretically, the gain should be linear: each additional node should speed up your code by
the same amount
In practice, there are "overhead" costs to Parallel Programming that can slow things down
Overhead costs: reading in and subsetting data, tracking each node

40 / 43

Across computer clusters
Parallel Programming is also a way to speed up your code across multiple computers
This is called "distributed computing"
It is a way to speed up your code when you have a lot of data and a lot of computers
Imagine you have 1000 computers, each with 1/1000th of your data
You can run the same code on each computer, and then combine the results
Same logic, but the "overhead" costs are higher

41 / 43

What next?
Go try how to bootstrap in R!

Better yet, learn to do it in parallel

Navigate to the lecture activity 13a-bootstrapping-functions-practice

42 / 43

https://github.com/big-data-and-economics/big-data-class-materials/blob/main/lectures/12a-rdd-class-sizes/13a-bootstrapping-practice.Rmd

Next lecture: Machine Learning IntroNext lecture: Machine Learning Intro

