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Software requirements
R packages

It’s important to note that “base” R already provides all of the tools to implement bootstrapping, but there are some great
other tools to use!

• New: boot, parallel, tictoc, pbapply, future, future.apply, furrr
• Already used: tidyverse, fixest, haven, sandwich, broom, stargazer, lmtest, AER

A convenient way to install (if necessary) and load everything is by running the below code chunk.
## Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(boot,doParallel,fixest,sandwich,haven,tidyverse,broom,stargazer,
lmtest,tictoc,parallel,pbapply,future,future.apply,furrr,AER)

## My preferred ggplot2 plotting theme (optional)
theme_set(theme_minimal())

Dataset
In this activity, we are going to work through bootstrapping to get standard errors for a regression model. We will use
the ResumeNames dataset, which is in the AER package. The data come from the Resume Audit study by Bertrand and
Mullainathan (2004). The data contain a row that corresponds to a ficitious resume that the authors sent to businesses
in Boston and Chicago. The resumes were randomly assigned either a “white-sounding” name or a “black-sounding”
name, among other characteristics. The data contain information on whether the business called the resume back for an
interview. The outcome of interest way the average callback gap.

# library(AER) # already loaded
data("ResumeNames")
cleaned_resumes <- ResumeNames %>%
mutate(female=gender=='female',
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afam=ethnicity=='afam',
call=call=='yes') %>%
select(name,female, afam,call) %>%

as_tibble()

cleaned_resumes

## # A tibble: 4,870 x 4
## name female afam call
## <fct> <lgl> <lgl> <lgl>
## 1 Allison TRUE FALSE FALSE
## 2 Kristen TRUE FALSE FALSE
## 3 Lakisha TRUE TRUE FALSE
## 4 Latonya TRUE TRUE FALSE
## 5 Carrie TRUE FALSE FALSE
## 6 Jay FALSE FALSE FALSE
## 7 Jill TRUE FALSE FALSE
## 8 Kenya TRUE TRUE FALSE
## 9 Latonya TRUE TRUE FALSE
## 10 Tyrone FALSE TRUE FALSE
## # i 4,860 more rows

Functions
Functions are a great way to make your code more readable and reusable. They are also a great way to make sure you don’t
make mistakes when you’re running the same code over and over again.

Basic function to sample data

Let’s start with a basic function. Here is a function that creates a random sample of the data with the same number of
observations. This is the first step in bootstrapping.

set.seed(1000) # replication
random_sample <- function(data) {

# Get the number of observations
n <- nrow(data)
# Sample the data
data[sample(1:n, n, replace = TRUE), ]

}
random_sample(data=cleaned_resumes)

## # A tibble: 4,870 x 4
## name female afam call
## <fct> <lgl> <lgl> <lgl>
## 1 Meredith TRUE FALSE FALSE
## 2 Tremayne FALSE TRUE FALSE
## 3 Aisha TRUE TRUE FALSE
## 4 Meredith TRUE FALSE FALSE
## 5 Rasheed FALSE TRUE FALSE
## 6 Brad FALSE FALSE FALSE
## 7 Ebony TRUE TRUE FALSE
## 8 Keisha TRUE TRUE FALSE
## 9 Sarah TRUE FALSE FALSE
## 10 Tanisha TRUE TRUE FALSE
## # i 4,860 more rows
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Can you think of some way to improve on this sampling procedure? What is true in the experiment that we will lose
through a random sample? Try to write up a better version that accounts for this.

Now test yourself by amending the function to run a regression of callback on ethnicity. Test it out!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

set.seed(1000) # replication
random_sample_ols <- function(data) {

# Get the number of observations
n <- nrow(data)
# Sample the data
m1 <- feols(call ~ afam, data[sample(1:n, n, replace = TRUE), ])
# Return the coefficients
return(coef(m1)[2])

}

random_sample_ols(cleaned_resumes)

## afamTRUE
## -0.03381552

Challenge: Can you repeat the above process, but now with a function that calculates the difference in means? Or runs
a t-test?

Wrapper functions

You can include other functions that you wrote in the functions you create just like including pre-defined functions from
packages in your functions. This is incredibly useful for any iteration work you’re doing that automatically feeds the value
it iterates over to the function you include. Here’s the basic syntax:

function_that_uses_x <- functiion(x) {
# Do something with x
return(something_with_x)

}

wrapper_function <- function(i,x) {
# Do something with i if you want
something <- function_that_uses_x(x)
# or do something with i and x together, for example:
something <- function_that_uses_x(x)*i
# Return something
return(something)

}

Can you write a wrapper for the random_sample_ols() function above?

Iteration
Iteration is a great way to run the same code over and over again. It’s especially useful for bootstrapping because boot-
strapping is just running the same code over and over again with different data.

For loop

The most basic way to iterate is with a for loop. This is a great way to start because it’s easy to understand and you can see
what’s going on. The syntax is really simple too:
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for (i in 1:10) { # index from i to 100.
print(i)

}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10

Note that you can also iterate by skipping numbers or even just feed it
# This example iterates through the odd numbers from 1 to 100
# because it skips every too.
for (i in seq(1,10,2)) { # index from i to 100.
print(i)

}

## [1] 1
## [1] 3
## [1] 5
## [1] 7
## [1] 9
# This example iterates through the odd numbers from 1 to 100
# because it skips every too.
for (i in c("words","too")) { # index from i to 100.
print(i)

}

## [1] "words"
## [1] "too"

Look at your global environment, do you see a variable for i? That’s cause R creates a variable for i and iterates through
the values of i from 1 to 100. You can use i in your code to do something different each time. But if you have too many
it get cluttered too.

Note, to record the results of each iteration, you need to create a list to store the results in. The length of this vector is the
number of iterations, which you can define with length(). This can be inserted in your for loop to track how far you
have gone through. Here’s an example:

deposit <- vector("list",10)
iterations <- length(deposit)
for (i in 1:iterations) {
print(paste0(i, "/", iterations))
deposit[[i]] <- i

}

deposit

Let’s write a for loop that iterates through the random_sample_ols() function 10 times. Make sure to create a list to
store the results in. Before you commit to running it 10 times, check that it runs through one iteration. . . . . . . . . . . . . . . .
. . . . . . . . . . .
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results <- vector("list",10)
set.seed(1000) # replication
for (i in 1:10) {
results[[i]] <- random_sample_ols(cleaned_resumes)

}

Apply

You can do the same thing using the *apply family. Here it is with lapply():
set.seed(1000) # replication
results <- lapply(1:10, function(x) random_sample_ols(cleaned_resumes))

Challenge: Try writing a lapply that iterates over the odd numbers from 1 to 10 or a vector of strings like we did for the
loop above.

Note that the lapply takes each element of the vector as an input, which is the first thing passed to the function,
function(x). Can you think of a way to make the syntax less confusing?

Progress Bar: pbapply Also, the pbapply package has a progress bar, which is nice for long simulations.

set.seed(1000) # replication
results <- pbapply::pblapply(1:10, function(x) random_sample_ols(cleaned_resumes))

Map

The map() function from thepurrr package is a greatway to iterate over a list. It’s a bitmore complicated than lapply(),
but it’s worth learning because it’s very powerful. Here’s an example with map_df().
set.seed(1000)
results <- map_df(1:10, function(x) random_sample_ols(cleaned_resumes))

Parallel Programming
Parallel Programming is a pretty handy trick to speed up your code. It’s especially useful for computationally intensive
simulations that can be broken up into smaller chunks. As a warning, parallel programming can get quite complex, so
we’re sticking with the basics today. For more advanced coverage, check work by Grant McDermott.

First, let’s check how many cores you have on your machine. R runs things in parallel by splitting them up between cores!

# future::availableCores() ## Another option
detectCores()

## [1] 8

My computer has 8 cores, yours likely, but not necessarily, has fewer. That’s okay! You can still split things into chunks
and run them in parallel.

I’ll show several different approaches.

future.apply

set.seed(123L)
tic()
future_lapply(1:1e3,
function(i) random_sample_ols(cleaned_resumes)) %>%
bind_rows()
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## # A tibble: 1,000 x 1
## afamTRUE
## <dbl>
## 1 -0.0294
## 2 -0.0263
## 3 -0.0353
## 4 -0.0284
## 5 -0.0353
## 6 -0.0345
## 7 -0.0386
## 8 -0.0249
## 9 -0.0270
## 10 -0.0319
## # i 990 more rows
toc(log=TRUE)

## 15.4 sec elapsed

set.seed(123L)
tic()
sim_pblapply = pblapply(1:1e3, function(i)
random_sample_ols(cleaned_resumes), cl = parallel::detectCores())

toc(log=TRUE)

pbapply

## 22.33 sec elapsed

furrr

tic()
future_map_dfr(1:1e3,
function(i) random_sample_ols(cleaned_resumes),
.options = furrr_options(seed=123L)) %>%
bind_rows()

## # A tibble: 1,000 x 1
## afamTRUE
## <dbl>
## 1 -0.0266
## 2 -0.0198
## 3 -0.0420
## 4 -0.0461
## 5 -0.0310
## 6 -0.0372
## 7 -0.0226
## 8 -0.0328
## 9 -0.0177
## 10 -0.0241
## # i 990 more rows
toc(log=TRUE)

## 14.31 sec elapsed
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This is the best way to make sure you understand the bootstrapping process.

Bootstrapping out of the box
sandwich package

The sandwich package is great for estimating all sorts of funny standard errors in R. It is often combined with the
coeftest function from the lmtest package to substitute new standard errors into the model after estimation and
specify the number of replications.

#library(sandwich); library(lmtest) #already loaded

# Run a regression assuming normal (iid) errors
m <- lm(call ~ afam, data = cleaned_resumes)

# Obtain the boostrapped SEs
coeftest(m, vcov = vcovBS(m,
R=1000 # Number of replications
)

)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0965092 0.0060210 16.0287 < 2.2e-16 ***
## afamTRUE -0.0320329 0.0078819 -4.0641 4.898e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sandwich can be run in parallel by specifying the “cores” to use. This is useful for computationally intensive simulations.

coeftest(m, vcov = vcovBS(m,
R=1000, # Number of replications
cores=2 # Number of cores to use
)

)

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0965092 0.0059524 16.2134 < 2.2e-16 ***
## afamTRUE -0.0320329 0.0077645 -4.1256 3.76e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

One challenge is sandwich only works for standard error calculations and does not give you as much information on the
bootstrap needed to use it other ways!

boot package

The boot package is one of the most flexible packages for bootstrapping in R. It allows you to bootstrap any function that
you can write in R and to implement bootstrapping random indices, random frequencies, and random weights – which
are more complicated approaches to bootstrapping. It also allows you to parallelize your bootstrap simulations directly.

The way it works, is it will automatically create R samples of the data and feed that to your function. then you will need
to pass an index to your function to make sure it knows how to iterate through these samples. Here’s an example:
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#library(tidyverse); library(boot)
set.seed(1000) # replication

# Our estimation function. The first argument must be the data
# and the second the indices defining the bootstrap sample
est_model <- function(d, index) {

# Run our model
# Use index to pick the bootstrap sample
m <- feols(call ~ afam, data = d[index,])
# Return the estimate(s) we want to bootstrap
return(c(coef(m)[2]))

}

# Now the bootstrap call!
boot_results <- boot(data=cleaned_resumes, # data

statistic=est_model, # Estimation function,
R=1000) # Number of bootstrap simulations

print(boot_results)

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = cleaned_resumes, statistic = est_model, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -0.03203285 0.0001385447 0.007766129
# confidence intervals
print(boot.ci(boot_results,
type=c('norm', # assumes a normal distribution
'basic', # the basic bootstrap uses a Reverse Percentile Interval formula
'perc'))) # the actual 2.5th and 97.5th percentile

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot_results, type = c("norm", "basic", "perc"))
##
## Intervals :
## Level Normal Basic Percentile
## 95% (-0.0474, -0.0170 ) (-0.0481, -0.0176 ) (-0.0464, -0.0160 )
## Calculations and Intervals on Original Scale

The different types of confidence intervals are explained in the help file for boot.ci or on Wikipedia. The “norm” is the
default and assumes a normal distribution. The “basic” uses a Reverse Percentile Interval formula, which is easier to justify
mathematically, though it is a little confusing to follow. The “perc” uses the actual 2.5th and 97.5th percentiles from your
data.
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Stratifying Maybe you noticed that you should be sampling equally for each group. Well that would be stratified sam-
pling, which boot() handles incredibly well with the strata argument. Go to the help file for boot and try to figure out
how to stratify the sampling.

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

boot(data=cleaned_resumes, # data
statistic=est_model, # Estimation function,
R=1000, # Number of bootstrap simulations
strata = cleaned_resumes$afam) # Stratify by afam

##
## STRATIFIED BOOTSTRAP
##
##
## Call:
## boot(data = cleaned_resumes, statistic = est_model, R = 1000,
## strata = cleaned_resumes$afam)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* -0.03203285 -0.0002632444 0.007709421

Parallel The results tell you the original value(s) without sampling, the bias (the difference between the mean of the
bootstraps and your estimate), and the bootstrapped standard errors.

Here’s that again, but now in parallel:

boot_results <- boot(data=cleaned_resumes, # data
statistic=est_model, # Estimation function,
R=1000, # simulations
parallel = "multicore", # parallelization method
ncpus = parallel::detectCores()) # number of cores to use

Sadly, if you are on a windows machine “multicore” will not work due to technical glitches. You can use “snow”, but the
documentation explains that more work is needed to make that work.

There are a number of handy visualization tools and table shortcuts to use with the boot package too:
# See the coefficient estimates and their bootstrap standard errors
plot(boot_results)
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# Optional: print regression table with the bootstrap SEs
# This uses stargazer, but the method is similar
# with other table-making packages,
# see /Presentation/export_a_formatted_regression_table.html
# library(broom) # already loaded
tidy_results <- tidy(boot_results)

#library(stargazer) # already loaded
m1 <- feols(call~afam, data = cleaned_resumes)
stargazer(m1, se = list(tidy_results$std.error), type = 'text')

##
## % Error: Unrecognized object type.

That said, it can be a bit cumbersome to use. For example, if you want to bootstrap a function that takes more than two
arguments, you need to use the ... argument and define extraPar and numCenter. This can be a bit confusing and
easy to screw up.

Frequency bootstrapping The boot package also allows you to bootstrap using random frequencies. Frequencies are
useful if you have survey data andwant to account for the survey design. Essentially, each row is an observation that occurs
multiple times in real life, but is recorded only once in the data. The frequency is the number of times that observation
occurs in real life.

I’ll create a frequency table below and just calculate the weighted mean of resume callbacks.1

# Create a resume dataframe with frequencies by name
# The call variable is now the average
set.seed(1)
cleaned_resume_freq <- cleaned_resumes %>%

1Why am I doing the weighted mean? Cause I am writing these up quickly and don’t want to write a new function to do the regression. You could
figure this out for yourself if you wanted!
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group_by(name,female,afam) %>%
summarise(frequency=n(),
call=mean(call))

# The weighted mean of calls:
weighted.mean(x=cleaned_resume_freq$call, # variable to average
w=cleaned_resume_freq$frequency # the weight
)

## [1] 0.08049281
set.seed(1)
boot(cleaned_resume_freq$call,
weighted.mean,
R = 1000, stype = "f")

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = cleaned_resume_freq$call, statistic = weighted.mean,
## R = 1000, stype = "f")
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.07822643 2.130659e-05 0.004906084

Weight bootstrapping Weights operate similar to frequencies, but can be applied to a dataset without a frequency
column. The weights just up or down weight the observations.

boot(cleaned_resumes$call,
weighted.mean,
R = 1000, stype = "w")

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = cleaned_resumes$call, statistic = weighted.mean,
## R = 1000, stype = "w")
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.08049281 0.0001722793 0.004021416

Other resources
• For more info on functions, check out Grant McDermott and Ed Rubin’s introductory and advanced material.
• For more info on paralell programming, check out Grant McDermott and Ed Rubin’s chapter on all the nitty gritty

details.
• For more explanations on bootstrapping in sections, see 13.3.2 and 15.5 ofThe Effect by Nick Huntington-Klein or

The Library of Statistical Techniques also provides a concise summary. A much longer explanation is available in
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Data Science for R.
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