
Big Data and Economics
Regression analysis in R

Kyle Coombs

Bates College | DCS/ECON 368

Contents
Software requirements . 1
Regression basics . 2
Nonstandard errors . 8
Dummy variables and interaction terms . 12
Presentation . 14
Further resources . 20

This lecture covers the bread-and-butter tool of applied econometrics and data science: regression analysis. This adapted
from work by Grant McDermott. Today is focused on practical skills of using regression tools with R to do some analysis.
I am not working through major econometric theory of regression analysis and inference. We’re instead focusing on the
practical skills of producing regression tables, interpreting coefficients, standardizing variables, and understanding the
different types of standard errors.

There are also many R packages I’m leaving out! There are tons of ways to do regressions in R. I’ll present just a few.

Software requirements
R packages

It’s important to note that “base” R already provides all of the tools we need for basic regression analysis. However, we’ll
be using several additional packages today, because they will make our lives easier and offer increased power for some
more sophisticated analyses.

• New: fixest, broom, modelsummary, vtable
• Already used: tidyverse, hrbrthemes, listviewer, tidycensus

A convenient way to install (if necessary) and load everything is by running the below code chunk.
Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, fixest, vtable, broom, modelsummary,tidycensus)

My preferred ggplot2 plotting theme (optional)
theme_set(theme_minimal())

While we’ve already loaded all of the required packages for today, I’ll try to be as explicit about where a particular function
is coming from, whenever I use it below.

Something else to mention up front is that we are using the Opportunity Atlas today for our regressions. Some of these
regressions will be a bit simple, but the point is to show you how to run them in R with data that are meaningful. We’ll
also use the fips_codes data from the tidycensus package to merge in county names and state abbreviations.

1

https://github.com/big-data-and-economics/big-data-class-materials
https://raw.githack.com/uo-ec607/lectures/master/08-regression/08-regression.html

The Opportunity Atlas file lives on GitHub, so we’ll download it from there (Note: I am using the githack URL. You could
also sync your fork, pull to your cloned repo, and navigate to lectures/10-regression/ and the file is there too.). I’ve
also amended the file to make it smaller so it can be easily pushed to GitHub. Note: This is bad practice generally, do not
store data files on GitHub unless you have a really good reason to do so.
Create opp atlas object by reading in a CSV off the internet.
opp_atlas <- read_csv("https://raw.githubusercontent.com/big-data-and-economics/big-data-class-materials/main/lectures/10-regression/opp_atlas_amended.csv")

Rows: 3219 Columns: 9
-- Column specification --
Delimiter: ","
chr (1): czname
dbl (8): state, county, cz, kfr_pooled_pooled_p25, kfr_white_pooled_p25, poo...
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
#Quickly renaming fips data to make it easier to merge
fips <- fips_codes %>%
rename(state_abb=state,
state=state_code,
county_name=county,
county=county_code) %>%

mutate(across(c(state,county),as.numeric))

Look at file to refresh your memory
View(opp_atlas)

opp_atlas <- opp_atlas %>%
left_join(fips) %>% # Join together the data
rename(kfr_p25=kfr_pooled_pooled_p25,
kfr_white_p25=kfr_white_pooled_p25) # Rename so you have to type less later.

Joining with `by = join_by(state, county)`

Regression basics
The lm() function

R’s base workhorse command for running regression models is the built-in lm() function. The “lm” stands for “linear
models” and the syntax is very intuitive. The syntax is straight-forward to run a simple regression, but it can be a bit
cumbersome to run more complex models.

lm(y ~ x1 + x2 + x3 + ..., data = df)

Where y is the dependent variable, x1, x2, x3, etc. are the independent variables, and df is the data frame that contains
these variables. You’ll note that the lm() call includes a reference to the data source. We covered this in our earlier lecture
on R language basics and object-orientated programming, but the reason is that many objects (e.g. data frames) can exist
in your R environment at the same time. So we need to be specific about where our regression variables are coming from
— even if opp_atlas is the only data frame in our global environment at the time.

Here’s an example using the Opportunity Atlas data. We’ll run a simple bivariate regression of the 1990 poverty rate on
income mobility for children in the 25th percentile.

ols_lm = lm(kfr_p25 ~ poor_share1990, data = opp_atlas)
ols_lm

##
Call:

2

https://raw.githack.com/uo-ec607/lectures/master/04-rlang/04-rlang.html#global_env

lm(formula = kfr_p25 ~ poor_share1990, data = opp_atlas)
##
Coefficients:
(Intercept) poor_share1990
5.623064 -0.006886

You might immediately notice that the coefficient seems wrong. A higher share that are poor in 1990 is associated with
greater income mobility? We’ll get there in a second.

First, let’s note some limitations of lm(). If you want to throw in fixed effects, non-standard errors, or any other fancy
stuff, you’ll need to bring in other packages. So why not just teach you the same syntax, but with a more flexible package?
That sounds better. Let’s do that.

The fixest package and feols() function

The fixest package (link) is a powerful and flexible package for running linear models in R created by Laurent Bergé.
It’s particularly well-suited for high-dimensional fixed effects models, but it also has a bunch of other neat features. It is
extremely fast too because it leverages some more complicated econometric theorems to speed up computation, reduce
memory usage, and parallelize the computation. (We’ll do parallelization later.)

fixest has many different linear models built in, but feols() is what is used for ordinary least squares (OLS) regression.
The syntax is very similar to lm(), but with a few extra bells and whistles.

#library(fixest) # already loaded
ols_fixest = feols(kfr_p25 ~ poor_share1990, data = opp_atlas)
ols_fixest

OLS estimation, Dep. Var.: kfr_p25
Observations: 3,219
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.623064 0.402329 13.976276 < 2.2e-16 ***
poor_share1990 -0.006886 0.014945 -0.460733 0.64502

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 21.9 Adj. R2: -2.448e-4

The output of ols_lm and ols_fixest differs a little, but check – are the coefficients and standard errors the same?
Always check if a new tool gives the same results as the simpler tool before diving into further.

What’s in these objects? First, let’s talk about the objectwe have. The resultingfixest (and lm) object is pretty terse, but
that’s only because it buries most of its valuable information — of which there is a lot — within an internal list structure.
If you’re in RStudio, you can inspect this structure by typing View(ols_fixest) or simply clicking on the “ols_fixest”
object in your environment pane. Doing so will prompt an interactive panel to pop up for you to play around with.
That approach won’t work for this knitted R Markdown document, however, so I’ll use the listviewer::jsonedit()
function (used in the APIs lecture) instead.

View(ols_fixest) ## Run this instead if you're in a live session
listviewer::jsonedit(ols_fixest, mode="view") ## Better for R Markdown

As we can see, this ols_fixest object has a bunch of important slots… containing everything from the regression coef-
ficients, to vectors of the residuals and fitted (i.e. predicted) values, to the rank of the design matrix, to the input data, etc.
etc. To summarise the key pieces of information, we can use the — wait for it — generic summary() function. This will
look pretty similar to the default regression output from Stata that many of you will be used to.

summary(ols_fixest)

OLS estimation, Dep. Var.: kfr_p25

3

https://lrberge.github.io/fixest/

Observations: 3,219
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.623064 0.402329 13.976276 < 2.2e-16 ***
poor_share1990 -0.006886 0.014945 -0.460733 0.64502

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 21.9 Adj. R2: -2.448e-4

We can then dig down further by extracting a summary of the regression coefficients:

summary(ols_fixest)$coefficients

(Intercept) poor_share1990
5.623064305 -0.006885866

Multiple regression Thefeols() function can handlemultiple regressionmodels unlikelm(). It can split regressions
by different dependent variables, independent variables, fixed effects, and subsets all in one. I need to briefly create an
indicator for region to show you multiple subset regression.
Indicator for south created.
opp_atlas <- opp_atlas %>%
mutate(insouth= ifelse(state_abb %in% c("AL", "AR", "FL", "GA", "KY", "LA", "MS", "NC", "OK", "SC", "TN", "TX", "VA", "WV"), "South", "North"))

ols_multi <- feols(c(kfr_p25, kfr_white_p25) ~
sw(poor_share1990,ann_avg_job_growth_2004_2013),
fsplit=~insouth, # split by region
data = opp_atlas)

etable(ols_multi) # explained below

ols_multi.1 ols_multi.2
Sample (insouth) Full sample Full sample
Dependent Var.: kfr_p25 kfr_p25
##
Constant 5.623*** (0.4023) 5.688*** (0.3943)
poor_share1990 -0.0069 (0.0149)
ann_avg_job_growth_2004_2013 36.74 (25.58)
____________________________ _________________ _________________
S.E. type IID IID
Observations 3,219 3,214
R2 6.6e-5 0.00064
Adj. R2 -0.00024 0.00033
##
ols_multi.3 ols_multi.4
Sample (insouth) Full sample Full sample
Dependent Var.: kfr_white_p25 kfr_white_p25
##
Constant 0.4620*** (0.0010) 0.4636*** (0.0010)
poor_share1990 -1.49e-5 (4.65e-5)
ann_avg_job_growth_2004_2013 0.5987*** (0.0676)
____________________________ __________________ __________________
S.E. type IID IID
Observations 3,131 3,126
R2 3.28e-5 0.02450
Adj. R2 -0.00029 0.02419
##

4

ols_multi.5 ols_multi.6
Sample (insouth) North North
Dependent Var.: kfr_p25 kfr_p25
##
Constant 5.594*** (0.5449) 5.848*** (0.5363)
poor_share1990 0.0172 (0.0188)
ann_avg_job_growth_2004_2013 25.63 (35.33)
____________________________ _________________ _________________
S.E. type IID IID
Observations 1,825 1,820
R2 0.00046 0.00029
Adj. R2 -8.67e-5 -0.00026
##
ols_multi.7 ols_multi.8
Sample (insouth) North North
Dependent Var.: kfr_white_p25 kfr_white_p25
##
Constant 0.4816*** (0.0014) 0.4846*** (0.0014)
poor_share1990 4.31e-5 (6.73e-5)
ann_avg_job_growth_2004_2013 0.9318*** (0.0950)
____________________________ __________________ __________________
S.E. type IID IID
Observations 1,742 1,737
R2 0.00024 0.05253
Adj. R2 -0.00034 0.05199
##
ols_multi.9 ols_multi.10
Sample (insouth) South South
Dependent Var.: kfr_p25 kfr_p25
##
Constant 5.665*** (0.5949) 5.459*** (0.5825)
poor_share1990 -0.0535* (0.0249)
ann_avg_job_growth_2004_2013 51.23 (37.07)
____________________________ _________________ _________________
S.E. type IID IID
Observations 1,394 1,394
R2 0.00329 0.00137
Adj. R2 0.00258 0.00065
##
ols_multi.11 ols_multi.12
Sample (insouth) South South
Dependent Var.: kfr_white_p25 kfr_white_p25
##
Constant 0.4371*** (0.0012) 0.4377*** (0.0012)
poor_share1990 -1.01e-5 (5.08e-5)
ann_avg_job_growth_2004_2013 0.3043*** (0.0754)
____________________________ __________________ __________________
S.E. type IID IID
Observations 1,389 1,389
R2 2.83e-5 0.01160
Adj. R2 -0.00069 0.01088

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5

One function call produced 12 regressions and you could technically do thousands or even millions at once. This is a very
powerful tool for running many regressions at once. Use it wisely.

Get “tidy” regression coefficients with the broom package

While it’s easy to extract regression coefficients via the summary() function, in practice I often use the broom package
(link) to do so. broom has a bunch of neat features to convert statistical objects like regressions into “tidy” data frames.
This is especially useful because regression output is so often used as an input to something else, e.g. a plot of coefficients or
marginal effects. Here, I’ll use broom::tidy(..., conf.int = TRUE) to coerce the ols_fixest regression object
into a tidy data frame of coefficient values and key statistics.

library(broom) ## Already loaded
tidy(ols_fixest, conf.int = TRUE)

A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.62 0.402 14.0 3.88e-43 4.83 6.41
2 poor_share1990 -0.00689 0.0149 -0.461 6.45e- 1 -0.0362 0.0224

Again, I could now pipe this tidied coefficients data frame to a ggplot2 call, using saying geom_pointrange() to plot
the error bars. Feel free to practice doing this yourself now, but we’ll get to some explicit examples further below.

broom has a couple of other useful functions too. For example, broom::glance() summarises the model “meta” data
(R2, AIC, etc.) in a data frame.

glance(ols_fixest)

A tibble: 1 x 9
r.squared adj.r.squared within.r.squared pseudo.r.squared sigma nobs AIC
<dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl>
1 0.0000660 -0.000245 NA NA 21.9 3219 29017.
i 2 more variables: BIC <dbl>, logLik <dbl>

By the way, if you’re wondering how to export regression results to other formats (e.g. LaTeX tables), don’t worry: We’ll
get to that at the end of the lecture.

Regressing on subsetted data

Our simple model isn’t particularly good; the R2 is only 0. Let’s check for outliers by plotting the data.

6

https://broom.tidyverse.org/

Outliers!
Outliers!

Outliers!0

25

50

75

100

0 25 50 75 100

poor_share1990

kf
r_

p2
5

Spot the outlier

Remember: Always plot your data...

It looks like NAs were replaced with 99 by someone… ahem… someone who wants to remind you to plot your data and
check for quirks like this. Maybe we should exclude outliers from our regression? You can do this in two ways:

1. Subset (filter()) the original data frame directly in the feols() call.
2. Create a new data frame and then regress

1) Subset directly in the lm() call Running a regression directly on a subsetted data frame is equally easy.

ols_fixest_sub = feols(kfr_p25 ~ poor_share1990, data = opp_atlas %>% filter(kfr_p25!=99 & poor_share1990!=99))
summary(ols_fixest_sub)

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.464994 0.002621 177.3889 < 2.2e-16 ***
poor_share1990 -0.211911 0.014356 -14.7616 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.060377 Adj. R2: 0.071352

2) Create a newdata frame Recall that we can keepmultiple objects inmemory in R. Sowe can easily create a new data
frame that excludes Jabba using, say, dplyr (lecture) or data.table (lecture. For these lecture notes, I’ll stick with dplyr
commands. But it would take just a little elbow grease (with help from ChatGPT or CoPilot) to switch to data.table if you
prefer.
opp_atlas =
opp_atlas %>%

7

https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/05-tidyverse/05-tidyverse.html
https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/05-datatable/05-datatable.html

filter(kfr_p25!=99 & poor_share1990!=99)

ols_fixest_filter = feols(kfr_p25 ~ poor_share1990, data = opp_atlas)
summary(ols_fixest_filter)

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.464994 0.002621 177.3889 < 2.2e-16 ***
poor_share1990 -0.211911 0.014356 -14.7616 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.060377 Adj. R2: 0.071352

The overall model fit is much improved by the exclusion of this outlier, with R2 increasing to 0.072. Still, we should be
cautious about throwing out data. Another approach is to handle or account for outliers with statistical methods. Which
provides a nice segue to nonstandard errors.

Nonstandard errors
Dealing with statistical irregularities (heteroskedasticity, clustering, etc.) is a fact of life for empirical researchers. How-
ever, it says something about the economics profession that a random stranger could walk uninvited into a live seminar
and ask, “How did you cluster your standard errors?”, and it would likely draw approving nods from audience members.

The good news is that there are lots of ways to get nonstandard errors in R. For many years, these have been based on
the excellent sandwich package (link) and estimatr package (link). However, I’ll demonstrate using the fixest package,
which has a built-in vcov argument that allows you to easily specify different types of standard errors.

Robust standard errors

One of the primary reasons that you might want to use robust standard errors is to account for heteroskedasticity. What
is heteroskedasticity, well it is when the variance of the error term is not constant across observations. This is a problem
because it violates one of the key assumptions ofOLS regression, namely that the error term is homoskedastic (i.e. constant
variance).1 I present an example below with fake data (cause it is easier than forcing it out of real data.)
Create an example of heteroskedasticity

This creates a simple regression, but with variance that increases with x
hetero_df <- tibble(
x = rnorm(1000),
y = 1 + 2 * x + rnorm(1000, sd = 1 + 5 * abs(x))

)

Plot the data
hetero_df %>%
ggplot(aes(x = x, y = y)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = TRUE) +
labs(
title = "Heteroskedasticity",
subtitle = "The variance of the error term is not constant across observations",
caption = "Source: Gen AI (GitHub CoPilot) helped me write this example, but I still used my brain too."

)
1See Causal Inference: The Mixtape for more details.

8

http://sandwich.r-forge.r-project.org/articles/sandwich.html
https://declaredesign.org/r/estimatr/articles/getting-started.html
https://mixtape.scunning.com/02-probability_and_regression#robust-standard-errors

`geom_smooth()` using formula = 'y ~ x'

-20

0

20

40

-2 0 2

x

y

The variance of the error term is not constant across observations

Heteroskedasticity

Source: Gen AI (GitHub CoPilot) helped me write this example, but I still used my brain too.

There are many ways to deal with heteroskedasticity, but one of the most common is to use robust standard errors or
“HC1”heteroskedasticity-consistent standard errors. fixest andfeols()has an argument,vcov (for variance-covariance
matrix) that you can set as “HC1” or “hetero” to generate standard errors. I’ll illustrate below!

ols_robust = feols(kfr_p25 ~ poor_share1990, data = opp_atlas, vcov = "HC1")
ols_robust = feols(kfr_p25 ~ poor_share1990, data = opp_atlas, vcov = "hetero")
tidy(ols1_robust, conf.int = TRUE) ## Could tidy too
ols_robust

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: Heteroskedasticity-robust
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.464994 0.002385 194.9884 < 2.2e-16 ***
poor_share1990 -0.211911 0.012915 -16.4083 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.060377 Adj. R2: 0.071352

If you use the package estimatr, there is a function lm_robust(), which defaults to using Eicker-Huber-White robust
standard errors, commonly referred to as “HC2” standard errors. You can easily specify alternate methods using the
se_type = and vcov argument.2 For example, you can specify Stata robust standard errors (reg y x, robust) if you
want to replicate code or results from that language. (See here formore details onwhy this isn’t the default andwhy Stata’s
robust standard errors differ from those in R and Python. tl;dr: A few years ago several people realized Statawas reporting
different SEs than they expected.) See Grant’s notes for more advanced treatment of robustness.

2See the package documentation for a full list of options.

9

https://declaredesign.org/r/estimatr/articles/stata-wls-hat.html
https://declaredesign.org/r/estimatr/articles/mathematical-notes.html#lm_robust-notes

Clustered standard errors

Another way that standard errors can violate homoskedasticity is for the error to be “clustered” by groups in the data.
A classic example is students in the same classroom will all have the same teacher and so their learning outcomes will
be correlated. For example, all of you have the same teacher (me), so you will all learn the same coding habits. This is
a problem because it violates the assumption that the error term is independent across observations. Here’s an example
with the Opportunity Atlas data.
Let's look at just a few states, so we can easily see clusters
filter(opp_atlas, state_abb %in% c('FL','NY','TX','ME')) %>%
ggplot(aes(x=poor_share1990,y=kfr_p25)) +
geom_point(aes(col=state_abb)) +
geom_smooth(method='lm') +
labs(
col = 'State',
title = "Error clusters",
subtitle = "The error term is correlated within clusters",
caption = "Source: GitHub CoPilot helped me write this example, but I still used my brain"

)

`geom_smooth()` using formula = 'y ~ x'

0.3

0.4

0.5

0.6

0.2 0.4 0.6

poor_share1990

kf
r_

p2
5

State

FL

ME

NY

TX

The error term is correlated within clusters

Error clusters

Source: GitHub CoPilot helped me write this example, but I still used my brain

Clustered standard errors is an issue that most commonly affects panel data. As such, I’m going to hold off discussing
clustering until we get to the panel data section below. But here’s a quick example of clustering with fixest::feols:

10

fixest_cluster <- feols(kfr_p25 ~ poor_share1990, data = opp_atlas, cluster = ~state)

Manipulating variables

Standardize variables Regression coefficients can be tricky to understand! The unitsmay be strange or the coefficients
may be hard to interpret. One way to make coefficients easier to interpret is to manipulate the variables to be more
informative. For example, you might want to standardize the variables to return a correlation coefficient.

The statistical equation for a correlation coefficient is:

𝑟 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

�̂�2𝑥, �̂�2𝑦

Where 𝑥𝑖 and 𝑦𝑖 are the individual observations, and ̄𝑥 and ̄𝑦 are the means of the variables. The �̂�2
𝑥 and �̂�2

𝑦 are the sample
variances of the variables. Let’s change the variables kfr_p25 and poor_share1990 to be standardized and then run a
regression.

opp_atlas <- opp_atlas %>%
mutate(
kfr_p25_std = (kfr_p25-mean(kfr_p25))/sd(kfr_p25),
poor_share1990_std = (poor_share1990-mean(poor_share1990))/sd(poor_share1990)

)

Take a look at the variables to see if they are standardized.

fixest_corr <- feols(kfr_p25_std ~ poor_share1990_std, data = opp_atlas)
summary(fixest_corr)

OLS estimation, Dep. Var.: kfr_p25_std
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.990000e-16 0.018134 -1.100000e-14 1
poor_share1990_std -2.677334e-01 0.018137 -1.476157e+01 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.963322 Adj. R2: 0.071352

Is that a correlation coefficient? Maybe? That’d be neat! How can we find out? Well use the cor() function and see if the
coefficients are the same.

cor(opp_atlaskfr_p25, opp_atlaspoor_share1990)

[1] -0.2677334

They are! This is a handy trick to standardized two radically different variables to tell you about the overall correlation
when you’re less interested in the individual coefficients. This regression trick also returns standard errors which are
really nice to have.

Convert variables to logs Another useful trick is to log variables! You can do this directly or use the log() function.

tidy(feols(log(kfr_p25) ~ log(poor_share1990), data = opp_atlas))

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1.00 0.0107 -93.7 0
2 log(poor_share1990) -0.0766 0.00541 -14.2 4.67e-44

11

Dummy variables and interaction terms
For the next section, we’ll need to create a dummy variable. We’ll create two: one for whether a county is in the South and
one for having positive job growth.
Get the regions and do minor cleaning
opp_atlas <- mutate(opp_atlas,
in_south = ifelse(state_abb %in% c("AL", "AR",
"FL", "GA", "KY", "LA", "MS", "NC", "OK",
"SC", "TN", "TX", "VA", "WV"), "South", "North"))

Dummy variables as factors

Dummy variables are a core component of many regression models. However, these can be a pain to create in some
statistical languages, since you first have to tabulate a whole new matrix of binary variables and then append it to the
original data frame. In contrast, R has a very convenient framework for creating and evaluating dummy variables in a
regression: Simply specify the variable of interest as a factor.3

Here’s an example where we explicitly tell R that “in_south” is a factor. Since I don’t plan on reusing this model, I’m just
going to print the results to screen rather than saving it to my global environment.

summary(feols(kfr_p25 ~ poor_share1990 + as.factor(in_south), data = opp_atlas))

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.467104 0.002368 197.24602 < 2.2e-16 ***
poor_share1990 -0.072648 0.014080 -5.15974 2.6445e-07 ***
as.factor(in_south)South -0.056854 0.002246 -25.31793 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.054501 Adj. R2: 0.243025

Okay, I should tell you that I’m actually making things more complicated than they need to be with the heavy-handed
emphasis on factors. R is “friendly” and tries to help whenever it thinks you have misspecified a function or variable.
While this is something to be aware of, normally It Just WorksTM. A case in point is that we don’t actually need to specify a
string (i.e. character) variable as a factor in a regression. R will automatically do this for you regardless, since it’s the only
sensible way to include string variables in a regression.
Use the non-factored version of "in_south" instead; R knows it must be ordered
for it to be included as a regression variable
summary(feols(kfr_p25 ~ poor_share1990 + in_south, data = opp_atlas))

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.467104 0.002368 197.24602 < 2.2e-16 ***
poor_share1990 -0.072648 0.014080 -5.15974 2.6445e-07 ***
in_southSouth -0.056854 0.002246 -25.31793 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.054501 Adj. R2: 0.243025

What happens if I use job growth quartile as a dummy variable? First, let’s check the values of this value. It is uneven
because we removed missing values before (a bit haphazardly, I might add.)

3Factors are variables that have distinct qualitative levels, e.g. “male”, “female”, “non-binary”, etc.

12

https://r4ds.had.co.nz/factors.html
https://rawgit.com/grantmcdermott/R-intro/master/rIntro.html#r_tries_to_guess_what_you_meant

table(opp_atlas$job_growth_quartile)

##
1 2 3 4
678 715 710 716
summary(feols(kfr_p25 ~ poor_share1990 + job_growth_quartile, data = opp_atlas))

NOTE: 5 observations removed because of NA values (RHS: 5).

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,819
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.455969 0.004145 110.00006 < 2.2e-16 ***
poor_share1990 -0.203346 0.014739 -13.79654 < 2.2e-16 ***
job_growth_quartile 0.003074 0.001048 2.93406 0.0033727 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.060123 Adj. R2: 0.075183

We can fix this by telling R that job_growth_quartile is a factor.

summary(feols(kfr_p25 ~ poor_share1990 + as.factor(job_growth_quartile), data = opp_atlas))

NOTE: 5 observations removed because of NA values (RHS: 5).

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,819
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.459600 0.003791 121.241972 < 2.2e-16 ***
poor_share1990 -0.204437 0.014890 -13.729452 < 2.2e-16 ***
as.factor(job_growth_quartile)2 0.002975 0.003279 0.907244 0.364355
as.factor(job_growth_quartile)3 0.004225 0.003333 1.267562 0.205059
as.factor(job_growth_quartile)4 0.009747 0.003315 2.940454 0.003304 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.060116 Adj. R2: 0.074744

Interaction effects

Like dummy variables, R provides a convenient syntax for specifying interaction terms directly in the regression model
without having to create them manually beforehand.4 You can use any of the following expansion operators:

• x1:x2 “crosses” the variables (equivalent to including only the x1 × x2 interaction term)
• x1/x2 “nests” the second variable within the first (equivalent to x1 + x1:x2; more on this later)
• x1*x2 includes all parent and interaction terms (equivalent to x1 + x2 + x1:x2)

As a rule of thumb, if not always, it is generally advisable to include all of the parent terms alongside their interactions.
This makes the * option a good default.

For example, we might wonder whether the relationship between a location’s income mobility for children in the 25th
percentile and its 1990 poverty rate differs by region. That is, we want to run a regression of the form,

4Although there are very good reasons that you might want to modify your parent variables before doing so (e.g. centering them). As it happens,
Grant McDermott has strong feelings that interaction effects are most widely misunderstood and misapplied concept in econometrics. However, that’s
a topic for another day.

13

https://twitter.com/grant_mcdermott/status/903691491414917122

𝐾𝐹𝑅𝑃25 = 𝛽0 + 𝛽1𝐷𝑆𝑜𝑢𝑡ℎ + 𝛽2 + 𝛽3𝐷𝑆𝑜𝑢𝑡ℎ × 1990𝑃𝑜𝑣𝑒𝑟𝑡𝑦𝑆ℎ𝑎𝑟𝑒

To implement this in R, we simply run the following,

ols_ie = feols(kfr_p25 ~ in_south * poor_share1990, data = opp_atlas)
summary(ols_ie)

OLS estimation, Dep. Var.: kfr_p25
Observations: 2,824
Standard-errors: IID
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.468163 0.003317 141.120464 < 2.2e-16 ***
in_southSouth -0.058977 0.005170 -11.406464 < 2.2e-16 ***
poor_share1990 -0.080372 0.022029 -3.648380 0.00026868 ***
in_southSouth:poor_share1990 0.013060 0.028646 0.455913 0.64848794

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.054499 Adj. R2: 0.242813

Presentation
Tables

Regression tables There are loads of different options here.

Fixest actually provides its own table function, etable() (for “estimation table”), which is a bit like Stata’s esttab or
outreg command. It’s a bit more flexible than the default summary() function, but it only works with fixest list objects.

etable(ols_fixest,ols_fixest_filter,ols_robust,fixest_cluster,fixest_corr,ols_ie)

ols_fixest ols_fixest_filter
Dependent Var.: kfr_p25 kfr_p25
##
Constant 5.623*** (0.4023) 0.4650*** (0.0026)
poor_share1990 -0.0069 (0.0149) -0.2119*** (0.0144)
poor_share1990_std
in_southSouth
in_southSouth x poor_share1990
______________________________ _________________ ___________________
S.E. type IID IID
Observations 3,219 2,824
R2 6.6e-5 0.07168
Adj. R2 -0.00024 0.07135
##
ols_robust fixest_cluster
Dependent Var.: kfr_p25 kfr_p25
##
Constant 0.4650*** (0.0024) 0.4650*** (0.0108)
poor_share1990 -0.2119*** (0.0129) -0.2119*** (0.0464)
poor_share1990_std
in_southSouth
in_southSouth x poor_share1990
______________________________ ___________________ ___________________
S.E. type Heteroskedast.-rob. by: state
Observations 2,824 2,824
R2 0.07168 0.07168

14

https://hughjonesd.github.io/huxtable/design-principles.html

Adj. R2 0.07135 0.07135
##
fixest_corr ols_ie
Dependent Var.: kfr_p25_std kfr_p25
##
Constant -1.99e-16 (0.0181) 0.4682*** (0.0033)
poor_share1990 -0.0804*** (0.0220)
poor_share1990_std -0.2677*** (0.0181)
in_southSouth -0.0590*** (0.0052)
in_southSouth x poor_share1990 0.0131 (0.0286)
______________________________ ___________________ ___________________
S.E. type IID IID
Observations 2,824 2,824
R2 0.07168 0.24362
Adj. R2 0.07135 0.24281

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hmm… how can I clean that up a bit? Well etable() has a number of options including dict where you can assign
variable names.

dict = c("poor_share1990"="Poverty Rate (1990)",
'poor_share1990_std'='Std. Poverty Rate (1990)',
'kfr_p25'='Income Mobility (25th Percentile)',
'kfr_p25_std'='Std. Income Mobility (25th Percentile)',
'in_south'='In South')

etable(ols_fixest,ols_fixest_filter,ols_robust,fixest_cluster,fixest_corr, dict = dict)

ols_fixest
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 5.623*** (0.4023)
Poverty Rate (1990) -0.0069 (0.0149)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 3,219
R2 6.6e-5
Adj. R2 -0.00024
##
ols_fixest_filter
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 0.4650*** (0.0026)
Poverty Rate (1990) -0.2119*** (0.0144)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
ols_robust
Dependent Var.: Income Mobility (25th Percentile)

15

##
Constant 0.4650*** (0.0024)
Poverty Rate (1990) -0.2119*** (0.0129)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type Heteroskedasticity-robust
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
fixest_cluster
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 0.4650*** (0.0108)
Poverty Rate (1990) -0.2119*** (0.0464)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type by: state
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
fixest_corr
Dependent Var.: Std. Income Mobility (25th Percentile)
##
Constant -1.99e-16 (0.0181)
Poverty Rate (1990)
Std. Poverty Rate (1990) -0.2677*** (0.0181)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are tons of other tools to use too!

As a note, here’s what you need to do in Rmarkdown to get it to work in a PDF format. You must specify to output as a
latex file, then you can report “asis” and ask etable() to output a tex file. (See PDF for that.)

etable(ols_fixest,ols_fixest_filter,ols_robust,fixest_cluster,fixest_corr, dict = dict, tex=TRUE)

16

Dependent Variables: Income Mobility (25th Percentile) Std. Income Mobility (25th Percentile)
Model: (1) (2) (3) (4) (5)

Variables
Constant 5.623∗∗∗ 0.4650∗∗∗ 0.4650∗∗∗ 0.4650∗∗∗ −1.99 × 10−16

(0.4023) (0.0026) (0.0024) (0.0108) (0.0181)
Poverty Rate (1990) -0.0069 -0.2119∗∗∗ -0.2119∗∗∗ -0.2119∗∗∗

(0.0149) (0.0144) (0.0129) (0.0464)
Std. Poverty Rate (1990) -0.2677∗∗∗

(0.0181)

Fit statistics
Observations 3,219 2,824 2,824 2,824 2,824
R2 6.6 × 10−5 0.07168 0.07168 0.07168 0.07168
Adjusted R2 -0.00024 0.07135 0.07135 0.07135 0.07135

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Alternatively, you can save this file to a tex file and then include it in your LaTeX document using input() or include().
etable(ols_fixest,ols_fixest_filter,ols_robust,fixest_cluster,fixest_corr, dict = dict, tex=TRUE,file="regression_table.tex")

Other neat tricks with etable() is that you can specify a “note” and “label” for the table. Also, you can change standard
error calculations for all the models at once.

etable(ols_fixest,ols_fixest_filter,ols_robust,fixest_cluster,fixest_corr, dict = dict, notes="This is a caption", label="tab:regression_table",se='IID')

ols_fixest
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 5.623*** (0.4023)
Poverty Rate (1990) -0.0069 (0.0149)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 3,219
R2 6.6e-5
Adj. R2 -0.00024
##
ols_fixest_filter
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 0.4650*** (0.0026)
Poverty Rate (1990) -0.2119*** (0.0144)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
ols_robust
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 0.4650*** (0.0026)
Poverty Rate (1990) -0.2119*** (0.0144)

17

Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
fixest_cluster
Dependent Var.: Income Mobility (25th Percentile)
##
Constant 0.4650*** (0.0026)
Poverty Rate (1990) -0.2119*** (0.0144)
Std. Poverty Rate (1990)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135
##
fixest_corr
Dependent Var.: Std. Income Mobility (25th Percentile)
##
Constant -1.99e-16 (0.0181)
Poverty Rate (1990)
Std. Poverty Rate (1990) -0.2677*** (0.0181)
________________________ ______________________________
S.E. type IID
Observations 2,824
R2 0.07168
Adj. R2 0.07135

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Other tools Another great tool for creating and exporting regression tables is the modelsummary package (link). It
is extremely flexible and handles all manner of models and output formats. modelsummary also supports automated
coefficient plots and data summary tables, which I’ll get back to in a moment. The documentation is outstanding and you
should read it, but here is a bare-boned example just to demonstrate.

library(modelsummary) ## Already loaded

Note: msummary() is an alias for modelsummary() add variable names
msummary(list("lm"=ols_lm, "fixest"=ols_fixest,"filter"=ols_fixest_filter,"robust"=ols_robust,"cluster"=fixest_cluster),

stars=TRUE, ## Output type
coef_map = c("poor_share1990"="Poverty Rate (1990)",
"(Intercept)"="Constant"),
title="Relationship between Average Income Percentile in 2015 of Children born in 25th percentile and 1990 poverty rate") ## Rename coefficients

One nice thing about modelsummary is that it plays very well with R Markdown and will automatically coerce your
tables to the format that matches your document output: HTML, LaTeX/PDF, RTF, etc. Of course, you can also specify
the output type if you aren’t usingRMarkdownandwant to export a table for later use. Finally, you can even specify special
table formats like threepartable for LaTeX and, provided that you have called the necessary packages in your preamble, it
will render correctly (see example here).

18

https://vincentarelbundock.github.io/modelsummary
https://vincentarelbundock.github.io/modelsummary/articles/modelsummary.html
https://vincentarelbundock.github.io/modelsummary/#saving-and-viewing-output-formats
https://vincentarelbundock.github.io/modelsummary/#saving-and-viewing-output-formats
https://github.com/grantmcdermott/lecturenotes

Table 1: Relationship between Average Income Percentile in 2015 of Children born in 25th percentile and 1990 poverty
rate

lm fixest filter robust cluster

Poverty Rate (1990) −0.007 −0.007 −0.212*** −0.212*** −0.212***
(0.015) (0.015) (0.014) (0.013) (0.046)

Constant 5.623*** 5.623*** 0.465*** 0.465*** 0.465***
(0.402) (0.402) (0.003) (0.002) (0.011)

Num.Obs. 3219 3219 2824 2824 2824
R2 0.000 0.000 0.072 0.072 0.072
R2 Adj. 0.000 0.000 0.071 0.071 0.071
AIC 29 018.7 29 016.7 −7836.6 −7836.6 −7836.6
BIC 29 036.9 29 028.8 −7824.7 −7824.7 −7824.7
Log.Lik. −14 506.342
RMSE 21.92 21.92 0.06 0.06 0.06
Std.Errors IID IID Heteroskedasticity-robust by: state

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

North (N=1581) South (N=1243)

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

kfr_p25 0.5 0.1 0.4 0.0 -0.1 0.0
kfr_white_p25 0.5 0.1 0.4 0.0 0.0 0.0
poor_share1990 0.1 0.1 0.2 0.1 0.1 0.0
ann_avg_job_growth_2004_2013 0.0 0.0 0.0 0.0 0.0 0.0

Summary tables A variety of summary tables — balance, correlation, etc. — can be produced by the companion set of
modelsummary::datasummary*() functions. Again, you should read the documentation to see all of the options. But
here’s an example of a very simple balance table using a subset of our “humans” data frame.

datasummary_balance(~ in_south,
data = opp_atlas %>%
dplyr::select(kfr_p25:ann_avg_job_growth_2004_2013,in_south))

Another package that I like a lot in this regard is vtable (link). Not only can it be used to construct descriptive labels like
you’d find in Stata’s “Variables” pane, but it is also very good at producing the type of “out of the box” summary tables that
economists like. For example, here’s the equivalent version of the above balance table.

library(vtable) ## Already loaded

An additional argument just for formatting across different output types of
this .Rmd document
otype = ifelse(knitr::is_latex_output(), 'return', 'kable')

vtable::st() is an alias for sumtable()
vtable::st(opp_atlas %>%
dplyr::select(kfr_p25:ann_avg_job_growth_2004_2013, in_south),
group = 'in_south',
out = otype)

Variable N Mean SD N Mean SD
1 in_south North South

19

https://vincentarelbundock.github.io/modelsummary/articles/datasummary.html
https://nickch-k.github.io/vtable

2 kfr_p25 1581 0.46 0.062 1243 0.4 0.044
3 kfr_white_p25 1577 0.48 0.058 1240 0.44 0.044
4 poor_share1990 1581 0.14 0.062 1243 0.2 0.085
5 ann_avg_job_growth_2004_2013 1577 -0.003 0.014 1243 -0.0021 0.015

Lastly, Stata users in particular might like the qsu() and descr() functions from the lightning-fast collapse package
(link).

Figures

Coefficient plots We’ve already worked through an example of how to extract and compare model coefficients here. I
use this “manual” approach to visualizing coefficient estimates all the time. However, our focus onmodelsummary in the
preceding section provides a nice segue to another one of the package’s features: modelplot(). Consider the following,
which shows both the degree to which modelplot() automates everything and the fact that it readily accepts regular
ggplot2 syntax.

library(modelsummary) ## Already loaded
mods = list('No clustering' = summary(ols_fixest, se = 'standard'))

modelplot(mods) +
You can further modify with normal ggplot2 commands...
coord_flip() +
labs(
title = "Relationship between Pov Rate (1990) and Income Mobility",
subtitle = "Comparing fixed effect models"
)

0

2

4

6

(Intercept) poor_share1990

C
oe

ffi
ci

en
t e

st
im

at
es

 a
nd

 9
5%

 c
on

fid
en

ce
 in

te
rv

al
s

Comparing fixed effect models

Relationship between Pov Rate (1990) and Income Mobility

Further resources
• Ed Rubin has outstanding teaching notes for econometrics with R on his website. This includes both undergrad-

20

https://sebkrantz.github.io/collapse
https://vincentarelbundock.github.io/modelsummary/articles/modelplot.html
https://twitter.com/edrubin
http://edrub.in/teaching.html
https://github.com/edrubin/EC421S19

and graduate-level courses. Seriously, check them out.
• Several introductory texts are freely available, including Introduction to Econometrics with R (ChristophHanck et al.),
Using R for Introductory Econometrics (Florian Heiss), and Modern Dive (Chester Ismay and Albert Kim).

• Tyler Ransom has a nice cheat sheet for common regression tasks and specifications.
• Itamar Caspi has written a neat unofficial appendix to this lecture, recipes for Dummies. The title might be a little

inscrutable if you haven’t heard of the recipes package before, but basically it handles “tidy” data preprocessing,
which is an especially important topic for machine learning methods. We’ll get to that later in course, but check out
Itamar’s post for a good introduction.

• I promised to provide some links to time series analysis. The good news is that R’s support for time series is very,
very good. The Time Series Analysis task view on CRAN offers an excellent overview of available packages and
their functionality.

• Lastly, for more on visualizing regression output, I highly encourage you to look over Chapter 6 of Kieran Healy’s
Data Visualization: A Practical Guide. Not only will learn how to produce beautiful and effective model visualiza-
tions, but you’ll also pick up a variety of technical tips.

21

https://github.com/edrubin/EC525S19
https://www.econometrics-with-r.org/
http://www.urfie.net/
https://moderndive.com/
https://twitter.com/tyleransom
https://github.com/tyleransom/EconometricsLabs/blob/master/tidyRcheatsheet.pdf
https://twitter.com/itamarcaspi
https://itamarcaspi.rbind.io/post/recipes-for-dummies/
https://cran.r-project.org/web/views/TimeSeries.html
https://socviz.co/modeling.html

	Software requirements
	Regression basics
	Nonstandard errors
	Dummy variables and interaction terms
	Presentation
	Further resources

