
Big Data and Economics
Lecture 6: Webscraping: (1) Server-side and CSS

Kyle Coombs

Bates College | ECON 368

Contents
Software requirements . 1
Webscraping basics . 2
Webscraping with rvest (server-side) . 3
Application 1: Wikipedia . 4
Application 2: New York Times . 8
Examining the New York Times Article . 9
Reading the web page into R . 9
Collecting all of the records . 10
Extracting the date . 11
Extracting the lie . 11
Extracting the explanation . 12
Extracting the URL . 12
Building the dataset . 12
Exporting the dataset to a CSV file . 13
Full code summary . 13
Summary . 15
Further resources and exercises . 15

Software requirements
External software

Todaywe’ll be using SelectorGadget, which is a Chrome extension that makes it easy to discover CSS selectors. (Install the
extension directly here.) Please note that SelectorGadget is only available for Chrome. If you prefer using Firefox, then
you can try ScrapeMate. The student presentation will go in depth.

R packages

• New: rvest, janitor, polite, xml2
• Already used: tidyverse, lubridate

Recall that rvest was automatically installed with the rest of the tidyverse. These lecture notes assume that you have at
least installed rvest 1.0.0, which install.packages("tidyverse") should give you.
Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, rvest, lubridate, janitor, hrbrthemes,polite)
My preferred ggplot2 plotting theme (optional)
theme_set(theme_minimal())

1

https://github.com/-big-data-and-economics/big-data-class-materials
https://selectorgadget.com/
https://chrome.google.com/webstore/detail/selectorgadget/mhjhnkcfbdhnjickkkdbjoemdmbfginb
https://addons.mozilla.org/en-US/firefox/addon/scrapemate/

Attribution

Most of these notes taken from work by Grant McDermott and José Roberto Ayala Solares.

Webscraping basics
The next two lectures are about getting data, or “content”, off the web and onto our computers. We’re all used to seeing
this content in our browsers (Chrome, Firefox, etc.). So we know that it must exist somewhere. However, it’s important
to realize that there are actually two ways that web content gets rendered in a browser:

1. Server-side
2. Client side

You can read here for more details (including example scripts), but for our purposes the essential features are as follows:

1. Server-side

• The scripts that “build” the website are not run on our computer, but rather on a host server that sends down all of
the HTML code.

– E.g. Wikipedia tables are already populated with all of the information — numbers, dates, etc. — that we see
in our browser.

• In other words, the information that we see in our browser has already been processed by the host server.
• You can think of this information being embedded directly in the webpage’s HTML.
• Webscraping challenges: Finding the correct CSS (or Xpath) “selectors”. Iterating through dynamic webpages

(e.g. “Next page” and “Show More” tabs).
• Key concepts: CSS, Xpath, HTML

2. Client-side

• The website contains an empty template of HTML and CSS.
– E.g. It might contain a “skeleton” table without any values.

• However, when we actually visit the page URL, our browser sends a request to the host server.
• If everything is okay (e.g. our request is valid), then the server sends a response script, which our browser executes

and uses to populate the HTML template with the specific information that we want.
• Webscraping challenges: Finding the “API endpoints” can be tricky, since these are sometimes hidden from view.
• Key concepts: APIs, API endpoints

Over the next two lectures, we’ll go over the main differences between the two approaches and cover the implications for
any webscraping activity. I want to forewarn you that webscraping typically involves a fair bit of detective work. You will
often have to adjust your steps according to the type of data you want, and the steps that worked on one website may not
work on another. (Or even work on the same website a few months later). All this is to say that webscraping involves as
much art as it does science.

The good news is that both server-side and client-side websites allow for webscraping.1 If you can see it in your browser,
you can scrape it.

Caveat: Ethical and legal considerations

The previous sentence elides some important ethical/legal considerations. Just because you can scrape it, doesn’t mean
you should. Now, I first have to tell you that this paragraph used to contain awarning about the legal restrictions pertaining
to webscraping activity. I’ve decided to drop those in the wake of the landmark hiQ Labs vs LinkedIn court ruling. (Short
version: It is currently legal to scrape data from the web using automated tools, as long as the data are publicly available.)
However, it’s still important to realize that the tools we’ll be using over these next two lectures are very powerful. A
computer can process commands much, much faster than we can ever type them up manually. It’s pretty easy to write up
a function or program that can overwhelm a host server or application through the sheer weight of requests.Or, just as

1As we’ll see during the next lecture, scraping a website or application that is built on a client-side (i.e. API) framework is often easier; particularly
when it comes to downloading information en masse.

2

https://raw.githack.com/uo-ec607/lectures/master/06-web-css/06-web-css.html
https://towardsdatascience.com/web-scraping-tutorial-in-r-5e71fd107f32
https://www.codeconquest.com/website/client-side-vs-server-side/
https://en.wikipedia.org/wiki/HiQ_Labs_v._LinkedIn

likely, the host server has built-in safeguards that will block you in case of a suspected malicious attack. We’ll return to
the “be nice” mantra at the end of this lecture, as well as in the next lecture.

One way to stay ethical is to use the polite package. I’ll show you how to use this package alongside the rvest package
below when we start scraping the NYT website. Essentially, polite checks the robots.txt file of a website to see if it is okay
to scrape. If it is, then it will automatically add a delay between each request that you make. This is a good way to avoid
overwhelming a host server. A robots.txt function is a file that is hosted on a website that tells you what you can and
cannot scrape. You can find the robots.txt file for any website by typing the url of the website followed by “/robots.txt”.
For example, here is the robots.txt file for the New York Times and the robots.txt for Wikipedia. Technically these are
not legally binding, but they give guidance on how to proceed. Here is a deeper dive into robots.txt files and how they are
used to help regulate traffic from search engines like Google.

If you scrape the site over and over – likely if you are collecting big data – please use the polite package alongside rvest.
Nothing today will come close to causing problems, but it is good practice to be nice.

Caveat: Stability and dependencies

Webscraping is extremely tricky and code may stop working after just a small change to the underlying HTML. Organi-
zations are constantly rewriting their webpages, which can break webscraping code – whether intentionally or not. This
is why it is important to be able to read HTML and CSS. You can often find the information you want by looking at the
HTML and CSS. For example, these lecture notes used to feature a Craigslist example, but that company has made it far
harder to scrape since 2021, so I need to find a new scraping example. (NYT below.)

Webscraping with rvest (server-side)
TheprimaryRpackage thatwe’ll be using today is rvest (link), a simplewebscraping library inspired byPython’sBeautiful
Soup (link), but with extra tidyverse functionality. rvest is designed to work with webpages that are built server-side and
thus requires knowledge of the relevant CSS selectors… Which means that now is probably a good time for us to cover
what these are.

Some notes on Cascading Style Sheets (CSS) and Seletor Gadgets (SelectorGadget).

Whenyourwebbrowser displays anHTML (HypertextMarkupLanguage) document (i.e. awebpage), itmerges the content
(words, pictures, data, videos) with style information to make it look good. The style information is specified using a
language called Cascading Style Sheets (CSS), which provides rules.

Here’s how that works:

1. The browser downloads the HTML document from the web server.
2. The browser parses the HTMLdocument and builds a “DocumentObjectModel” (DOM) tree. This is a fancyway of

saying that the browser creates a hierarchical representation of the document’s content called a “tree” that is similar
to the file paths on your computer. Each node in the tree represents an HTML element (e.g. a paragraph, a table, a
header, etc.) and the relationship between nodes represents the nesting of these elements. For example, a paragraph
element that is nested within a table element will be a child node of the table element.

3. The browser fetches the different resources linked to by the HTML document. This includes things like images,
videos, and CSS files.

4. The browser parses the fetched CSS and sorts the rules into “buckets,” like element, class, ID, etc. It then applies
the rules to the DOM tree to determine how the document should be displayed, which is called a render tree.

5. The render tree is then laid out in the browser window according to the specific screen dimensions of the user’s
device. This is called the layout.

6. The visual display of the page is shown on the screen.

In short, CSS is a language for specifying the appearance of HTML documents (including web pages). It does this by
providing web browsers a set of display rules, which are formed by:

1. Properties. CSS properties are the “how” of the display rules. These are things like which font family, styles and
colours to use, page width, etc.

3

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://github.com/dmi3kno/polite
https://www.nytimes.com/robots.txt
https://en.wikipedia.org/robots.txt
https://developers.google.com/search/docs/crawling-indexing/robots/intro
https://rvest.tidyverse.org/
https://www.crummy.com/software/BeautifulSoup/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works
http://selectorgadget.com/

2. Selectors. CSS selectors are the “what” of the display rules. They identify which rules should be applied to which
elements. E.g. Text elements that are selected as “.h1” (i.e. top line headers) are usually larger and displayed more
prominently than text elements selected as “.h2” (i.e. sub-headers).

The key point is that if you can identify the CSS selector(s) of the data you want, then you can isolate the data from the
rest of the webpage content that you don’t want. This where SelectorGadget comes in. We’ll work through an extended
example (with a twist!) below, but I highly recommend looking over this quick vignette before proceding.

Application 1: Wikipedia
Okay, let’s get to an application. Say that we want to scrape the Wikipedia page on the Men’s 100 metres world record
progression.

First, open up this page in your browser. Take a look at its structure: What type of objects does it contain? How many
tables does it have? Do these tables all share the same columns? What row- and columns-spans? Etc.

Once you’ve familiarised yourself with the structure, read the whole page into R using the rvest::read_html() func-
tion, which returns an XML document that contains all the information about the web page.

library(rvest) ## Already loaded

m100 = read_html("http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression")
m100

{html_document}
<html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-zebra-design-disabled vector-feature-custom-font-size-clientpref-disabled vector-feature-client-preferences-disabled" lang="en" dir="ltr">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body class="skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr ...

As you can see, this is an XML document2 that contains everything needed to render the Wikipedia page. It’s kind of like
viewing someone’s entire LaTeX document (preamble, syntax, etc.) when all we want are the data from some tables in
their paper.

Table 1: Pre-IAAF (1881–1912)

Let’s start by scraping the first table on the page, which documents the unofficial progression before the IAAF. The first
thing we need to do is identify the table’s unique CSS selector. Here’s a GIF of me using SelectorGadget to do that.

Sorry, this GIF is only available in the the HTML version of the notes.

As you can see, working through this iterative process yields “div+ .wikitable :nth-child(1)”. We can now use this unique
CSS selector to isolate the pre-IAAF table content from the rest of the HTML document. The core rvest function that
we’ll use to extract the table content is html_element(), before piping it on to html_table() to parse the HTML table
into an R data frame. Notice that I am using the %>% pipe-operator from the magrittr package, which can help to express
complex operations as elegant pipelines composed of simple, easily understood pieces.
pre_iaaf =

m100 %>%
html_element("div+ .wikitable :nth-child(1)") %>% ## select table element
html_table() ## convert to data frame

pre_iaaf

A tibble: 21 x 5
Time Athlete Nationality `Location of races` Date
<dbl> <chr> <chr> <chr> <chr>
1 10.8 Luther Cary United States Paris, France July 4, 1~
2 10.8 Cecil Lee United Kingdom Brussels, Belgium September~

2XML stands for Extensible Markup Language and is one of the primary languages used for encoding and formatting web pages.

4

https://rvest.tidyverse.org/articles/selectorgadget.html
http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression
http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression#Unofficial_progression_before_the_IAAF
http://selectorgadget.com/
http://magrittr.tidyverse.org/

3 10.8 Étienne De Ré Belgium Brussels, Belgium August 4,~
4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany April 13,~
5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands August 28~
6 10.8 Harald Anderson-Arbin Sweden Helsingborg, Sweden August 9,~
7 10.8 Isaac Westergren Sweden Gävle, Sweden September~
8 10.8 Isaac Westergren Sweden Gävle, Sweden September~
9 10.8 Frank Jarvis United States Paris, France July 14, ~
10 10.8 Walter Tewksbury United States Paris, France July 14, ~
i 11 more rows

Great, it worked!

I’ll tidy things up a bit so that the data frame is easier to work with in R. First, I’ll use the janitor::clean_names()
convenience function to remove spaces and capital letters from the column names. (Q: How else could we have done this?)
Second, I’ll use the lubridate::mdy() function to convert the date string to a format that R actually understands.

library(janitor) ## Already loaded
library(lubridate) ## Already loaded

pre_iaaf =
pre_iaaf %>%
clean_names() %>% ## fix the column names
mutate(date = mdy(date)) ## convert string to date format

pre_iaaf

A tibble: 21 x 5
time athlete nationality location_of_races date
<dbl> <chr> <chr> <chr> <date>
1 10.8 Luther Cary United States Paris, France 1891-07-04
2 10.8 Cecil Lee United Kingdom Brussels, Belgium 1892-09-25
3 10.8 Étienne De Ré Belgium Brussels, Belgium 1893-08-04
4 10.8 L. Atcherley United Kingdom Frankfurt/Main, Germany 1895-04-13
5 10.8 Harry Beaton United Kingdom Rotterdam, Netherlands 1895-08-28
6 10.8 Harald Anderson-Arbin Sweden Helsingborg, Sweden 1896-08-09
7 10.8 Isaac Westergren Sweden Gävle, Sweden 1898-09-11
8 10.8 Isaac Westergren Sweden Gävle, Sweden 1899-09-10
9 10.8 Frank Jarvis United States Paris, France 1900-07-14
10 10.8 Walter Tewksbury United States Paris, France 1900-07-14
i 11 more rows

Now that we have our cleaned pre-IAAF data frame, we could easily plot it. I’m going to hold off doing that until we’ve
scraped the rest of the WR data. But first, an aside on browser inspection tools.

Aside: Get CSS selectors via browser inspection tools SelectorGadget is a great tool. But it isn’t available on all
browsers and can involve more work than I’d like sometimes, with all that iterative clicking.3 I therefore wanted to men-
tion an alternative (and very precise) approach to obtaining CSS selectors: Use the “inspect web element” feature of your
browser.

Here’s a quick example usingGoogleChrome. First, I open up the inspect console (Ctrl+Shift+I, or right-click and choose
“Inspect”). I then proceed to scroll over the source elements, until Chrome highlights the table of interest on the actual
page. Once the table (or other element of interest) is highlighted, I can grab its CSS by right-clicking and selecting Copy
-> Copy selector.

Sorry, this GIF is only available in the the HTML version of the notes.
3Historically, at least, it also had a tendency to provide CSS selectors that weren’t exactly what wewere looking for. To be fair, thismay have reflected

some issues coming from the R + rvest as much as anything else. These minor incompatibilities have been largely eliminated with rvest 1.0.0.

5

https://www.lifewire.com/get-inspect-element-tool-for-browser-756549

In general, I prefer to obtain CSS selectors using this “inspect” method with my browser. But each to their own.

Challenge

Your turn: Download the next two tables from the sameWR100mpage. Combine these two new tables with the one above
into a single data frame and then plot the record progression. Answer below. (No peeking until you have tried first.)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 2: Pre-automatic timing (1912–1976) Let’s start with the second table. Note: Selector gadget may give you a
slightly different CSS selector (“h3+ .wikitable :nth-child(1)”) than the one I use below. That’s fine. I pulled my selector
from the browser inspection tool.
Refresh the m100, it was forgotten from the last code chunk when run within Rmarkdown.
m100 = read_html("http://en.wikipedia.org/wiki/Men%27s_100_metres_world_record_progression")
iaaf_76 =

m100 %>%
html_element("#mw-content-text > div.mw-parser-output > table:nth-child(17)") %>%
html_table()

As we did with the previous table, let’s fix the column names and coerce the date string to a format that R understands.
iaaf_76 =

iaaf_76 %>%
clean_names() %>%
mutate(date = mdy(date))

iaaf_76

A tibble: 54 x 8
time wind auto athlete nationality location_of_race date ref
<dbl> <chr> <dbl> <chr> <chr> <chr> <date> <chr>
1 10.6 "" NA Donald Lippi~ United Sta~ Stockholm, Swed~ 1912-07-06 [2]
2 10.6 "" NA Jackson Scho~ United Sta~ Stockholm, Swed~ 1920-09-16 [2]
3 10.4 "" NA Charley Padd~ United Sta~ Redlands, USA 1921-04-23 [2]

6

4 10.4 "0.0" NA Eddie Tolan United Sta~ Stockholm, Swed~ 1929-08-08 [2]
5 10.4 "" NA Eddie Tolan United Sta~ Copenhagen, Den~ 1929-08-25 [2]
6 10.3 "" NA Percy Willia~ Canada Toronto, Canada 1930-08-09 [2]
7 10.3 "0.4" 10.4 Eddie Tolan United Sta~ Los Angeles, USA 1932-08-01 [2]
8 10.3 "" NA Ralph Metcal~ United Sta~ Budapest, Hunga~ 1933-08-12 [2]
9 10.3 "" NA Eulace Peaco~ United Sta~ Oslo, Norway 1934-08-06 [2]
10 10.3 "" NA Chris Berger Netherlands Amsterdam, Neth~ 1934-08-26 [2]
i 44 more rows

Table 3: Modern Era (1977 onwards) For the final table, I’ll just run the code all at once. By now you should recognise
all of the commands. Again, SelectorGadget might tell you it is “p+ .wikitable :nth-child(1)” instead. I pulled my selector
from the browser inspection tool.
iaaf =

m100 %>%
html_element(".wikitable:nth-child(23) :nth-child(1)") %>%
html_table() %>%
clean_names() %>%
mutate(date = mdy(date))

iaaf

A tibble: 24 x 9
time wind auto athlete nationality location_of_race date
<dbl> <chr> <dbl> <chr> <chr> <chr> <date>
1 10.1 1.3 NA Bob Hayes United States Tokyo, Japan 1964-10-15
2 10.0 0.8 NA Jim Hines United States Sacramento, USA 1968-06-20
3 10.0 2.0 NA Charles Greene United States Mexico City, Mexico 1968-10-13
4 9.95 0.3 NA Jim Hines United States Mexico City, Mexico 1968-10-14
5 9.93 1.4 NA Calvin Smith United States Colorado Springs, ~ 1983-07-03
6 9.83 1.0 NA Ben Johnson Canada Rome, Italy 1987-08-30
7 9.93 1.0 NA Carl Lewis United States Rome, Italy 1987-08-30
8 9.93 1.1 NA Carl Lewis United States Zürich, Switzerland 1988-08-17
9 9.79 1.1 NA Ben Johnson Canada Seoul, South Korea 1988-09-24
10 9.92 1.1 NA Carl Lewis United States Seoul, South Korea 1988-09-24
i 14 more rows
i 2 more variables: notes_note_2 <chr>, duration_of_record <chr>

Combined eras plot

Let’s combine our three separate tables into a single data frame. I’ll use base R’s rbind() to bind by row and include only
the variables that are common to all of the three data frames. For good measure, I’ll also add an extra column describing
which era each record was recorded under.
wr100 =

rbind(
pre_iaaf %>% select(time, athlete, nationality, date) %>% mutate(era = "Pre-IAAF"),
iaaf_76 %>% select(time, athlete, nationality, date) %>% mutate(era = "Pre-automatic"),
iaaf %>% select(time, athlete, nationality, date) %>% mutate(era = "Modern")
)

wr100

A tibble: 99 x 5
time athlete nationality date era
<dbl> <chr> <chr> <date> <chr>

7

1 10.8 Luther Cary United States 1891-07-04 Pre-IAAF
2 10.8 Cecil Lee United Kingdom 1892-09-25 Pre-IAAF
3 10.8 Étienne De Ré Belgium 1893-08-04 Pre-IAAF
4 10.8 L. Atcherley United Kingdom 1895-04-13 Pre-IAAF
5 10.8 Harry Beaton United Kingdom 1895-08-28 Pre-IAAF
6 10.8 Harald Anderson-Arbin Sweden 1896-08-09 Pre-IAAF
7 10.8 Isaac Westergren Sweden 1898-09-11 Pre-IAAF
8 10.8 Isaac Westergren Sweden 1899-09-10 Pre-IAAF
9 10.8 Frank Jarvis United States 1900-07-14 Pre-IAAF
10 10.8 Walter Tewksbury United States 1900-07-14 Pre-IAAF
i 89 more rows

All that hard works deserves a nice plot, don’t you think?

wr100 %>%
ggplot(aes(x=date, y=time, col=fct_reorder2(era, date, time))) +
geom_point(alpha = 0.7) +
labs(

title = "Men's 100m world record progression",
x = "Date", y = "Time",
caption = "Source: Wikipedia") +

theme(legend.title = element_blank()) ## Switch off legend title

10.0

10.5

1900 1950 2000
Date

Ti
m

e

Pre-IAAF

Pre-automatic

Modern

Men's 100m world record progression

Source: Wikipedia

Application 2: New York Times
There are several features of the previous Wikipedia example that make it a good introductory application. Most notably,
the HTML table format provides a regular structure that is easily coercible into a data frame (via html_table()). Of-

8

tentimes, however, the information that we want to scrape off the web doesn’t have this nice regular structure. For this
next example, then, I’m going to walk you through a slightly more messy application: Scraping items from The New York
Times. The following is adapted from an R notebook of a Medium blog post from August 2, 2017 by José Roberto Ayala
Solares, who adapted it from work by Kevin Markham. The post walks through a tutorial to scrape the Trump Lies article
from the NYT. I’ve made some minor modifications to the code and added some extra commentary.

Examining the New York Times Article
For a nice description about the article that we’ll be working with, look at Kevin’s tutorial. In summary, the data that we
are interested in consists of a record of lies, each with 4 parts:

• The date of the lie
• The lie itself
• An explanation of why it was a lie
• A URL for an article that supports the explanation (embedded within the text)

Figure 1: NYT snapshot with SelectorGadget

Reading the web page into R
I will show you how to readwith rvest andpolite here. Note for yourself that the output is the same, but the polite version
works behind the scenes to guarantee that you are not overwhelming the host server.

First with polite

library(polite)

nyt_session = bow("https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html") #start your session politely

webpage <- scrape(nyt_session) # politely scrape
webpage
{html_document}
<html lang="en" class="no-js page-interactive section-opinion page-theme-standard tone-opinion page-interactive-default limit-small layout-xlarge app-interactive" itemid="https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html" itemtype="https://schema.org/NewsArticle" itemscope="" xmlns:og="http://opengraphprotocol.org/schema/">

9

https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html
https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html
https://towardsdatascience.com/web-scraping-tutorial-in-r-5e71fd107f32
https://twitter.com/justmarkham?lang=en
https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html
http://www.dataschool.io/python-web-scraping-of-president-trumps-lies/

[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body>\n<style>\n.lt-ie10 .messenger.suggestions {\n display: block !imp ...

Next with rvest

webpage_html <- read_html("https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html")
webpage_html
{html_document}
<html lang="en" class="no-js page-interactive section-opinion page-theme-standard tone-opinion page-interactive-default limit-small layout-xlarge app-interactive" itemid="https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html" itemtype="https://schema.org/NewsArticle" itemscope="" xmlns:og="http://opengraphprotocol.org/schema/">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body>\n<style>\n.lt-ie10 .messenger.suggestions {\n display: block !imp ...

Collecting all of the records
Let’s use the SelectorGadget to figure out what the records are called. Above, we see that every record has the following
structure in the HTML code:

 DATE LIE
EXPLANATION

Therefore, to collect all the lies, we need to identify all the tags that belong to class="short-desc". The func-
tion that will help us to do so is html_elements() (Note: In the original article, José uses html_nodes, which are more
generic than elements.). This function requires the XML document that we have read and the nodes that we want to select.
For the latter, it is encouraged to use the SelectorGadget, an open source tool that makes CSS selector generation and
discovery easy. Using such a tool, we find that all the lies can be selected by using the selector ".short-desc".

results <- webpage %>% html_elements(".short-desc")
results

{xml_nodeset (180)}
[1] Jan. 21 “I wasn't a fan of Ira ...
[2] Jan. 21 “A reporter for Time m ...
[3] Jan. 23 “Between 3 million and ...
[4] Jan. 25 “Now, the audience was ...
[5] Jan. 25 “Take a look at the Pe ...
[6] Jan. 25 “You had millions of p ...
[7] Jan. 25 “So, look, when Presid ...
[8] Jan. 26 “We've taken in tens o ...
[9] Jan. 26 “I cut off hundreds of ...
[10] Jan. 28 “The coverage about me ...
[11] Jan. 29 “The Cuban-Americans, ...
[12] Jan. 30 “Only 109 people out o ...
[13] Feb. 3 “Professional anarchist ...
[14] Feb. 4 “After being forced to ...
[15] Feb. 5 “We had 109 people out ...
[16] Feb. 6 “I have already saved m ...
[17] Feb. 6 “It's gotten to a point ...
[18] Feb. 6 “The failing @nytimes w ...
[19] Feb. 6 “And the previous admin ...
[20] Feb. 7 “And yet the murder rat ...
...
#> {xml_nodeset (180)}
#> [1] Jan. 21 "I wasn't a fan of Iraq. I didn't want to go into Ir ...
#> [2] Jan. 21 "A reporter for Time magazine — and I have been on t ...

10

https://stackoverflow.com/questions/9979172/difference-between-node-object-and-element-object
https://stackoverflow.com/questions/9979172/difference-between-node-object-and-element-object
http://selectorgadget.com/

#> [3] Jan. 23 "Between 3 million and 5 million illegal votes cause ...
#> [4] Jan. 25 "Now, the audience was the biggest ever. But this cr ...
#> [5] Jan. 25 "Take a look at the Pew reports (which show voter fr ...
#> [6] Jan. 25 "You had millions of people that now aren't insured ...
#> [7] Jan. 25 "So, look, when President Obama was there two weeks ...
#> [8] Jan. 26 "We've taken in tens of thousands of people. We know ...
#> ...

This returns a list with 180 XML nodes that contain the information for each of the 180 lies in the web page.

Extracting the date
Youmight be tempted to just immediately use the html_table function again. But if we try that, what happens? We don’t
get a table. We get 180 empty tibbles because we have not yet added structure.
#Head keeps the output short.
html_table(results)

Let’s start simple and focus on extracting all the necessary details from the first lie. We can then extend this to all the
others easily. Remember that the general structure for a single record is:

 DATE LIE
EXPLANATION

Notice that the date is embedded within the tag. To select it, we can use the html_elements() or
html_nodes() function using the selector "strong".

first_result <- results[1]
first_result %>% html_elements("strong")

{xml_nodeset (1)}
[1] Jan. 21
#> {xml_nodeset (1)}
#> [1] Jan. 21

We then need to use the html_text() function to extract only the text, with the trim argument active to trim leading
and trailing spaces. Finally, we make use of the stringr package to add the year to the extracted date.

Extracting the lie
To select the lie, we need to make use of the xml_contents() function that is part of the xml2 package (this package is
required by the rvest package, so it is not necessary to load it). The function returns a list with the nodes that are part of
first_result.

library(xml2)
xml_contents(first_result)

{xml_nodeset (3)}
[1] Jan. 21
[2] “I wasn't a fan of Iraq. I didn't want to go into Iraq.”
[3] <a href="https://www.buzzfeed.com/andrewkaczyns ...
#> {xml_nodeset (3)}
#> [1] Jan. 21
#> [2] "I wasn't a fan of Iraq. I didn't want to go into Iraq."
#> [3] <a href="https://www.buzzfeed.com/andrewkaczynski/in-2002-don ...

We are interested in the lie, which is the text of the second node.

11

http://stringr.tidyverse.org/

xml_contents(first_result)[2] %>% html_text(trim = TRUE)

[1] "“I wasn't a fan of Iraq. I didn't want to go into Iraq.”"
#> [1] ""I wasn't a fan of Iraq. I didn't want to go into Iraq.""

Notice that there is an extra pair of quotes (“…”) surrounding the lie. To get rid of them, we simply use the str_sub()
function from the stringr package to select just the lie.

lie <- xml_contents(first_result)[2] %>% html_text(trim = TRUE)
str_sub(lie, 2, -2)

[1] "I wasn't a fan of Iraq. I didn't want to go into Iraq."
#> [1] "I wasn't a fan of Iraq. I didn't want to go into Iraq."

Extracting the explanation
Hopefully by now it shouldn’t be too complicated to see that to extract the explanation we simply need to select the text
within the tag that belongs to class=".short-truth". This will extract the text together with the opening and
closing quotations, but we can easily get rid of them.

explanation <- first_result %>% html_element(".short-truth") %>% html_text(trim = TRUE)
str_sub(explanation, 2, -2)

[1] "He was for an invasion before he was against it."
#> [1] "He was for an invasion before he was against it."

Extracting the URL
Finally, to get the URL, notice that this is an attribute within the <a> tag. We simply select this element with the
html_element() function, and then select the href attribute with the html_attr() function.

url <- first_result %>% html_element("a") %>% html_attr("href")
url

[1] "https://www.buzzfeed.com/andrewkaczynski/in-2002-donald-trump-said-he-supported-invading-iraq-on-the"
#> [1] "https://www.buzzfeed.com/andrewkaczynski/in-2002-donald-trump-said-he-supported-invading-iraq-on-the"

Building the dataset
We found a way to extract each of the 4 parts of the first record. We can extend this process to all the rest using a for loop.
In the end, we want to have a data frame with 180 rows (one for each record) and 4 columns (to keep the date, the lie,
the explanation and the URL). One way to do so is to create an empty data frame and simply add a new row as each new
record is processed. However, this is not considered a good practice. As suggested here, we are going to create a single
data frame for each record and store all of them in a list. Once we have the 180 data frames, we’ll bind them together using
the bind_rows() function from the dplyr package. This creates our desired dataset.

library(dplyr)
records <- vector("list", length = length(results))

for (i in seq_along(results)) {
date <- str_c(results[i] %>% html_elements("strong") %>% html_text(trim = TRUE), ", 2017")
lie <- str_sub(xml_contents(results[i])[2] %>% html_text(trim = TRUE), 2, -2)
explanation <- str_sub(results[i] %>% html_elements(".short-truth") %>% html_text(trim = TRUE), 2, -2)
url <- results[i] %>% html_elements("a") %>% html_attr("href")

12

http://r4ds.had.co.nz/iteration.html#unknown-output-length
http://dplyr.tidyverse.org/

records[[i]] <- data_frame(date = date, lie = lie, explanation = explanation, url = url)
}

df <- bind_rows(records)
glimpse(df)

Rows: 180
Columns: 4
$ date <chr> "Jan. 21, 2017", "Jan. 21, 2017", "Jan. 23, 2017", "Jan. 2~
$ lie <chr> "I wasn't a fan of Iraq. I didn't want to go into Iraq.", ~
$ explanation <chr> "He was for an invasion before he was against it.", "Trump~
$ url <chr> "https://www.buzzfeed.com/andrewkaczynski/in-2002-donald-t~

Notice that the column for the date is considered a character vector. It’d be nice to have it as a datetime vector instead. To
do so, we can use the lubridate package and use the mdy() function (month-day-year) to make the conversion.

library(lubridate)
df$date <- mdy(df$date)
glimpse(df)

Rows: 180
Columns: 4
$ date <date> 2017-01-21, 2017-01-21, 2017-01-23, 2017-01-25, 2017-01-2~
$ lie <chr> "I wasn't a fan of Iraq. I didn't want to go into Iraq.", ~
$ explanation <chr> "He was for an invasion before he was against it.", "Trump~
$ url <chr> "https://www.buzzfeed.com/andrewkaczynski/in-2002-donald-t~

Exporting the dataset to a CSV file
If you want to export your dataset, you can use either the write.csv() function that comes by default with R, or the
write_csv() function from the readr package, which is twice faster and more convenient than the first one.

write_csv(df, "trump_lies.csv")

Similarly, to retrieve your dataset, you can use either the default function read.csv() or the read_csv() function from
the readr package.

df <- read_csv("trump_lies.csv")

Rows: 180 Columns: 4
-- Column specification --
Delimiter: ","
chr (3): lie, explanation, url
date (1): date
##
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Full code summary
The full code for this tutorial is shown below:
Load packages
library(rvest)
library(stringr)
library(dplyr)
library(lubridate)

13

http://readr.tidyverse.org/
http://readr.tidyverse.org/

library(readr)

Read web page
webpage <- read_html("https://www.nytimes.com/interactive/2017/06/23/opinion/trumps-lies.html")

Extract records info
results <- webpage %>% html_elements(".short-desc")

Building the dataset
records <- vector("list", length = length(results))

for (i in seq_along(results)) {
date <- str_c(results[i] %>%

html_elements("strong") %>%
html_text(trim = TRUE), ', 2017')

lie <- str_sub(xml_contents(results[i])[2] %>% html_text(trim = TRUE), 2, -2)
explanation <- str_sub(results[i] %>%

html_elements(".short-truth") %>%
html_text(trim = TRUE), 2, -2)

url <- results[i] %>% html_elements("a") %>% html_attr("href")
records[[i]] <- data_frame(date = date, lie = lie, explanation = explanation, url = url)

}

df <- bind_rows(records)

Transform to datetime format
df$date <- mdy(df$date)

Export to csv
write_csv(df, "trump_lies.csv")

I also want to mention that the stringr, dplyr, lubridate and readr packages are all part of the tidyverse family. In fact, you
could also use the popular purrr package to avoid the for loop. However, this would require the creation of a function
that maps each record to a data frame. For another example on how to do web scraping, have a look at this awesome blog
post from Dean Attali.

Hopefully you find this tutorial useful. Its purpose is not to show which programming language is better, but instead to
learn from both Python and R, as well as to increase your programming skills and tools to tackle a more diverse set of
problems.

Quick aside on HTML elements, nodes, and attributes

We played fast and loose with HTML nodes, elements, and attributes above. Let me more carefully explain them here
(with help from ChatGPT and GitHub CoPilot). HTML nodes, elements, and attributes are related, but slightly different
concepts. Here’s a quick summary:

• HTML nodes: The building blocks of any HTML document. Everything from text on the page, comments in the
code, whitespace, and HTML elements themselves are considered nodes. They are subdivided into text, element,
and comment nodes (among others).

• HTML elements: The structural and semantic parts of the webpage. These define the type of content and how to
display/structure it on the web page. Each HTML element has an opening and closing tag. For example, <p> is the
opening tag for a paragraph element, while </p> is the closing tag. Other examples:

– <a>, : Anchor element, used to create hyperlinks.
– <div>, </div>: Division element, used to group other elements together.

14

http://tidyverse.org/
http://purrr.tidyverse.org/
http://deanattali.com/blog/user2017/
http://deanattali.com/blog/user2017/
https://twitter.com/daattali

– <divpath>, </divpath>: Generic block container for other elements.
– , : Generic inline container for other elements.
– , : Unordered list element. These can be nested, i.e. if you have an anchor element within a para-

graph element.

Every HTML element is an HTML node, but not every HTML node is an HTML element. For example, text nodes are not
elements.

• HTML attributes: Additional information within a HTML element that modify the element in some way. As a
result, they are always foundwithin anHTML element and follow the syntax attribute=value_of_attribute.
For example, the<a> element canhave anhref attributewith the syntax.
Other examples:

– src: Specifies the URL of an image to be displayed within an element.
– class: Specifies one or more class names for an element. Used to reference elements from CSS.
– id: Specifies a unique id for an element. Used to reference elements from JavaScript.
– style: Specifies an inline CSS style for an element.
– width: Specifies the width of an element.
– height: Specifies the height of an element.

Summary
• Web content can be rendered either 1) server-side or 2) client-side.
• To scrape web content that is rendered server-side, we need to know the relevant CSS selectors.
• We can find these CSS selectors using SelectorGadget or, more precisely, by inspecting the element in our browser.
• We use the rvest package to read into the HTML document into R and then parse the relevant nodes.

– A typicalworkflow is: read_html(URL) %>% html_elements(CSS_SELECTORS) %>% html_table().
– You might need other functions depending on the content type (e.g. html_text).

• Just because you can scrape something doesn’t mean you should (i.e. ethical and possibly legal considerations).
• Webscraping involves as much art as it does science. Be prepared to do a lot of experimenting and data cleaning.
• Next lecture: Webscraping: (2) Client-side and APIs.

Further resources and exercises
In the next lecture, we’re going to focus on client-side web content and interacting with APIs. For the moment, you
can practice your rvest-based scraping skills by following along with any of the many (many) tutorials available online.
Lastly, we spoke a bit about the “be nice” scraping motto at the beginning of the lecture. I also wanted to point you to the
polite package (link). It provides some helpful tools to maintain web etiquette, such as checking for permission and not
hammering the host website with requests. As a bonus, it plays very nicely with the rvestworkflow that we covered today,
so please take a look. For more advanced webscraping, you’ll need to use RSelenium, which simulates clicking through
webpages, so it can be used to scrape client-side content that relies on JavaScript. It is rare that you’ll absolutely need to
access data this way, so I’ve left it out.

15

https://github.com/dmi3kno/polite

	Software requirements
	Webscraping basics
	Webscraping with rvest (server-side)
	Application 1: Wikipedia
	Application 2: New York Times
	Examining the New York Times Article
	Reading the web page into R
	Collecting all of the records
	Extracting the date
	Extracting the lie
	Extracting the explanation
	Extracting the URL
	Building the dataset
	Exporting the dataset to a CSV file
	Full code summary
	Summary
	Further resources and exercises

