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ProloguePrologue



Why so many packages?
You are probably wondering why there are so many packages in R that do similar things.

How come you need to know this many packages? Isn't this a bit much?

Think back to our clean code principles.

One of the key practices of clean code is to abstract away complexity.
This is what packages do. They abstract away the complexity to make code easier to
read, write, and debug.
They offer a consistent interface and set of help documentation.
Different packages prioritize different goals -- so you can choose the one that best
fits your needs.
e.g. the tidyverse  packages prioritize relational database management (called
"tidy" data)
data.table  prioritizes speed and memory efficiency in completing data operations,
assumes you're doing the RDBM yourself
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Why so many packages?
You are probably wondering why there are so many packages in R that do similar things.

How come you need to know this many packages? Isn't this a bit much?

Think back to our clean code principles.

One of the key practices of clean code is to abstract away complexity.
This is what packages do. They abstract away the complexity to make code easier to
read, write, and debug.
They offer a consistent interface and set of help documentation.
Different packages prioritize different goals -- so you can choose the one that best
fits your needs.
e.g. the tidyverse  packages prioritize relational database management (called
"tidy" data)
data.table  prioritizes speed and memory efficiency in completing data operations,
assumes you're doing the RDBM yourself

Of course, different packages have different ways of abstracting away complexity.

So yes, it is a bit much, but it's also a good thing.
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Checklist

R packages you'll need for this lecture
☑ tidyverse

This is a meta-package that loads a suite of other packages, including dplyr and tidyr,
which includes the starwars  dataset that we'll use for practice.

☑ nycflights13
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Checklist

R packages you'll need for this lecture
☑ tidyverse

This is a meta-package that loads a suite of other packages, including dplyr and tidyr,
which includes the starwars  dataset that we'll use for practice.

☑ nycflights13

The following code chunk will install (if necessary) and load everything for you.

if (!require(pacman)) install.packages('pacman', repos = 'https://cran.rstudio.com')
pacman/:p_load(tidyverse, nycflights13)
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What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)
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What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.
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What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.
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Relational Database Management with R
Remember Relational Database Management from our work on Empirical Organization?

Today, we'll learn how to implement it using packages in the tidyverse

We'll cover:

Subsetting data
Variable creation, renaming, selection
Grouping and summarizing data
Joining and appending datasets
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Tidyverse basicsTidyverse basics



Tidyverse vs. base R
There is often a direct correspondence between a tidyverse command and its base R
equivalent.

These generally follow a tidyverse/:snake_case  vs base/:period.case  rule:

tidyverse base
?readr/:read_csv ?utils/:read.csv

?dplyr/:if_else ?base/:ifelse

?tibble/:tibble ?base/:data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative:

Offers enhancements or other useful options (and some restrictions too)
Better documentation
More consistent syntax
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Tidyverse vs. base R
There is often a direct correspondence between a tidyverse command and its base R
equivalent.

These generally follow a tidyverse/:snake_case  vs base/:period.case  rule:

tidyverse base
?readr/:read_csv ?utils/:read.csv

?dplyr/:if_else ?base/:ifelse

?tibble/:tibble ?base/:data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative:

Offers enhancements or other useful options (and some restrictions too)
Better documentation
More consistent syntax

Remember: There are (almost) always multiple ways to achieve a single goal in R.
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Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)
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Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)

We have actually loaded a number of packages (which could also be loaded individually):
ggplot2, tibble, dplyr, etc.

We can also see information about the package versions and some namespace
conflicts.
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Tidyverse packages (cont.)
The tidyverse actually comes with a lot more packages than those loaded automatically.1

tidyverse_packages()

/#  [1] "broom"         "conflicted"    "cli"           "dbplyr"       
/#  [5] "dplyr"         "dtplyr"        "forcats"       "ggplot2"      
/#  [9] "googledrive"   "googlesheets4" "haven"         "hms"          
/# [13] "httr"          "jsonlite"      "lubridate"     "magrittr"     
/# [17] "modelr"        "pillar"        "purrr"         "ragg"         
/# [21] "readr"         "readxl"        "reprex"        "rlang"        
/# [25] "rstudioapi"    "rvest"         "stringr"       "tibble"       
/# [29] "tidyr"         "xml2"          "tidyverse"

We'll use most of these packages during the remainder of this course.

lubridate for dates, rvest for webscraping, broom to tidy()  R objects into tables
However, packages still have to be loaded separately with library()

1 It also includes a lot of dependencies upon installation. This is a matter of some controversy.
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Tidyverse packages (cont.)
Today, however, I'm only really going to focus on two packages:

1. dplyr
2. tidyr

These are the workhorse packages for cleaning and wrangling data.

Data cleaning and wrangling occupies an inordinate amount of time, no matter where
you are in your research career.
I cannot underscore this enough
This course can add structure to the cleaning and wrangling, but it is still a time-
consuming process.
It can be a real bummer, so pick data projects that you are excited about.
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dplyrdplyr



Key dplyr verbs
There are five key dplyr verbs that you need to learn.

1. filter : Filter (i.e. subset) rows based on their values.

2. arrange : Arrange (i.e. reorder) rows based on their values.

3. select : Select (i.e. subset) columns by their names:

4. mutate : Create new columns.

5. summarise : Collapse multiple rows into a single summary value.1

1 summarize  with a "z" works too, but Hadley Wickham is from New Sealand.
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Learn the verbs
Practice these commands together using the starwars  data frame that comes pre-packaged
with dplyr. Stop when you hit the last summarise  slide (approx. 33).

starwars

/# # A tibble: 87 × 14
/#    name     height  mass hair_color skin_color eye_color birth_year sex   gender
/#    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/#  1 Luke Sk…    172    77 blond      fair       blue            19   male  mascu…
/#  2 C-3PO       167    75 <NA>       gold       yellow         112   none  mascu…
/#  3 R2-D2        96    32 <NA>       white, bl… red             33   none  mascu…
/#  4 Darth V…    202   136 none       white      yellow          41.9 male  mascu…
/#  5 Leia Or…    150    49 brown      light      brown           19   fema… femin…
/#  6 Owen La…    178   120 brown, gr… light      blue            52   male  mascu…
/#  7 Beru Wh…    165    75 brown      light      blue            47   fema… femin…
/#  8 R5-D4        97    32 <NA>       white, red red             NA   none  mascu…
/#  9 Biggs D…    183    84 black      light      brown           24   male  mascu…
/# 10 Obi-Wan…    182    77 auburn, w… fair       blue-gray       57   male  mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>
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1) dplyr::filter
Filter means "subset" the rows of a data frame based on some condition(s).

starwars %>% 
  filter(species /= "Human", height /= 190)

/# # A tibble: 4 × 14
/#   name      height  mass hair_color skin_color eye_color birth_year sex   gender
/#   <chr>      <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/# 1 Darth Va…    202   136 none       white      yellow          41.9 male  mascu…
/# 2 Qui-Gon …    193    89 brown      fair       blue            92   male  mascu…
/# 3 Dooku        193    80 white      fair       brown          102   male  mascu…
/# 4 Bail Pre…    191    NA black      tan        brown           67   male  mascu…
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>

We can chain multiple commands with the pipe %>%  as we've seen1.

1 Pipes were invented by Doug McIlroy in 1964, are widely used in Unix shells (e.g. bash) and other programming
languages (e.g. F# ). They pass the preceding object as the first argument to the following function. In R, they
allow you to chain together code in a way that reads from left to right. 16 / 53



The pipe
The pipe %>%  is important for making your code readable, and minimizing balanced-
parentheses errors

It takes whatever is on its left and makes it the first argument of the function on the
right

So whatever object you're working with you take, ship it along to the next function,
process, then ship along again, then ship along again! Like a conveyer belt

Notice that all dplyr functions take the data frame as the first argument, making it easy
to chain them

"Ships along" anything, including vectors or single numbers, not just data frames! Track
what the object being shipped is in each step.
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The pipe
See how clean it can make the code!

mean(starwars[starwars$species /= "Human" & starwars$height/=190,]$height, na.rm = TRUE)

/# [1] 194.75

vs.

starwars %>% # Specify data
  filter(species /= "Human", height /= 190) %>% # Specify filter
  pull(height) %>% # Specify the column you want
  mean(na.rm = TRUE) # Calculate the mean

/# [1] 194.75
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1) dplyr::filter cont.
A very common filter  use case is identifying (or removing) missing data cases.

starwars %>% 
  filter(is.na(height))

/# # A tibble: 6 × 14
/#   name      height  mass hair_color skin_color eye_color birth_year sex   gender
/#   <chr>      <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/# 1 Arvel Cr…     NA    NA brown      fair       brown             NA male  mascu…
/# 2 Finn          NA    NA black      dark       dark              NA male  mascu…
/# 3 Rey           NA    NA brown      light      hazel             NA fema… femin…
/# 4 Poe Dame…     NA    NA brown      light      brown             NA male  mascu…
/# 5 BB8           NA    NA none       none       black             NA none  mascu…
/# 6 Captain …     NA    NA unknown    unknown    unknown           NA <NA>  <NA>  
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>

To remove missing observations, simply use negation: filter(!is.na(height)) . Try this
yourself.
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2) dplyr::arrange
starwars %>% 
  arrange(birth_year)

/# # A tibble: 87 × 14
/#    name     height  mass hair_color skin_color eye_color birth_year sex   gender
/#    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/#  1 Wicket …     88  20   brown      brown      brown            8   male  mascu…
/#  2 IG-88       200 140   none       metal      red             15   none  mascu…
/#  3 Luke Sk…    172  77   blond      fair       blue            19   male  mascu…
/#  4 Leia Or…    150  49   brown      light      brown           19   fema… femin…
/#  5 Wedge A…    170  77   brown      fair       hazel           21   male  mascu…
/#  6 Plo Koon    188  80   none       orange     black           22   male  mascu…
/#  7 Biggs D…    183  84   black      light      brown           24   male  mascu…
/#  8 Han Solo    180  80   brown      fair       brown           29   male  mascu…
/#  9 Lando C…    177  79   black      dark       brown           31   male  mascu…
/# 10 Boba Fe…    183  78.2 black      fair       brown           31.5 male  mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>
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2) dplyr::arrange
starwars %>% 
  arrange(birth_year)

/# # A tibble: 87 × 14
/#    name     height  mass hair_color skin_color eye_color birth_year sex   gender
/#    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/#  1 Wicket …     88  20   brown      brown      brown            8   male  mascu…
/#  2 IG-88       200 140   none       metal      red             15   none  mascu…
/#  3 Luke Sk…    172  77   blond      fair       blue            19   male  mascu…
/#  4 Leia Or…    150  49   brown      light      brown           19   fema… femin…
/#  5 Wedge A…    170  77   brown      fair       hazel           21   male  mascu…
/#  6 Plo Koon    188  80   none       orange     black           22   male  mascu…
/#  7 Biggs D…    183  84   black      light      brown           24   male  mascu…
/#  8 Han Solo    180  80   brown      fair       brown           29   male  mascu…
/#  9 Lando C…    177  79   black      dark       brown           31   male  mascu…
/# 10 Boba Fe…    183  78.2 black      fair       brown           31.5 male  mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>

Note: Arranging on a character-based column (i.e. strings) will sort alphabetically. Try this
yourself by arranging according to the "name" column.

20 / 53



2) dplyr::arrange cont.
We can also arrange items in descending order using arrange(desc()) .

starwars %>% 
  arrange(desc(birth_year))

/# # A tibble: 87 × 14
/#    name     height  mass hair_color skin_color eye_color birth_year sex   gender
/#    <chr>     <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
/#  1 Yoda         66    17 white      green      brown            896 male  mascu…
/#  2 Jabba D…    175  1358 <NA>       green-tan… orange           600 herm… mascu…
/#  3 Chewbac…    228   112 brown      unknown    blue             200 male  mascu…
/#  4 C-3PO       167    75 <NA>       gold       yellow           112 none  mascu…
/#  5 Dooku       193    80 white      fair       brown            102 male  mascu…
/#  6 Qui-Gon…    193    89 brown      fair       blue              92 male  mascu…
/#  7 Ki-Adi-…    198    82 white      pale       yellow            92 male  mascu…
/#  8 Finis V…    170    NA blond      fair       blue              91 male  mascu…
/#  9 Palpati…    170    75 grey       pale       yellow            82 male  mascu…
/# 10 Cliegg …    183    NA brown      fair       blue              82 male  mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# #   vehicles <list>, starships <list>
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3) dplyr::select
Select means subset the columns of a data frame based on their names.

Use commas to select multiple columns out of a data frame. (You can also use "first:last" for
consecutive columns). Deselect a column with "-".

starwars %>% 
  select(name:skin_color, species, -height) %>% 
  head()

/# # A tibble: 6 × 5
/#   name            mass hair_color  skin_color  species
/#   <chr>          <dbl> <chr>       <chr>       <chr>  
/# 1 Luke Skywalker    77 blond       fair        Human  
/# 2 C-3PO             75 <NA>        gold        Droid  
/# 3 R2-D2             32 <NA>        white, blue Droid  
/# 4 Darth Vader      136 none        white       Human  
/# 5 Leia Organa       49 brown       light       Human  
/# 6 Owen Lars        120 brown, grey light       Human
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3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
  select(alias=name, crib=homeworld, sex=gender) %>% 
  head()

/# # A tibble: 6 × 3
/#   alias          crib     sex      
/#   <chr>          <chr>    <chr>    
/# 1 Luke Skywalker Tatooine masculine
/# 2 C-3PO          Tatooine masculine
/# 3 R2-D2          Naboo    masculine
/# 4 Darth Vader    Tatooine masculine
/# 5 Leia Organa    Alderaan feminine 
/# 6 Owen Lars      Tatooine masculine
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3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
  select(alias=name, crib=homeworld, sex=gender) %>% 
  head()

/# # A tibble: 6 × 3
/#   alias          crib     sex      
/#   <chr>          <chr>    <chr>    
/# 1 Luke Skywalker Tatooine masculine
/# 2 C-3PO          Tatooine masculine
/# 3 R2-D2          Naboo    masculine
/# 4 Darth Vader    Tatooine masculine
/# 5 Leia Organa    Alderaan feminine 
/# 6 Owen Lars      Tatooine masculine

If you just want to rename columns without subsetting them, you can use rename . Try this
now by replacing select(//.)  in the above code chunk with rename(//.) .
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4) dplyr::mutate
You can create new columns from scratch, or (more commonly) as transformations of
existing columns.

starwars %>% 
  select(name, birth_year) %>%
  mutate(dog_years = birth_year * 7) %>%
  mutate(comment = paste0(name, " is ", dog_years, " in dog years.")) %>%
  head()

/# # A tibble: 6 × 4
/#   name           birth_year dog_years comment                            
/#   <chr>               <dbl>     <dbl> <chr>                              
/# 1 Luke Skywalker       19        133  Luke Skywalker is 133 in dog years.
/# 2 C-3PO               112        784  C-3PO is 784 in dog years.         
/# 3 R2-D2                33        231  R2-D2 is 231 in dog years.         
/# 4 Darth Vader          41.9      293. Darth Vader is 293.3 in dog years. 
/# 5 Leia Organa          19        133  Leia Organa is 133 in dog years.   
/# 6 Owen Lars            52        364  Owen Lars is 364 in dog years.
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4) dplyr::mutate cont.
Boolean, logical and conditional operators all work well with mutate  too.

starwars %>% 
  select(name, height) %>%
  filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>% 
  mutate(tall1 = height > 180) %>%
  mutate(tall2 = ifelse(height > 180, "Tall", "Short")) /# Same effect, but can choose label

/# # A tibble: 2 × 4
/#   name             height tall1 tall2
/#   <chr>             <int> <lgl> <chr>
/# 1 Luke Skywalker      172 FALSE Short
/# 2 Anakin Skywalker    188 TRUE  Tall
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4) dplyr::mutate cont.
Lastly, combining mutate  with the across  feature allows you to easily work on a subset of
variables. For example:

starwars %>% 
  select(name:eye_color) %>% 
  mutate(across(where(is.character), toupper)) %>%
  head(5)

/# # A tibble: 5 × 6
/#   name           height  mass hair_color skin_color  eye_color
/#   <chr>           <int> <dbl> <chr>      <chr>       <chr>    
/# 1 LUKE SKYWALKER    172    77 BLOND      FAIR        BLUE     
/# 2 C-3PO             167    75 <NA>       GOLD        YELLOW   
/# 3 R2-D2              96    32 <NA>       WHITE, BLUE RED      
/# 4 DARTH VADER       202   136 NONE       WHITE       YELLOW   
/# 5 LEIA ORGANA       150    49 BROWN      LIGHT       BROWN
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5) dplyr::summarise
Particularly useful in combination with the group_by 1 command.

starwars %>% 
  group_by(species, gender) %>% 
  summarise(mean_height = mean(height, na.rm = TRUE)) %>%
  head()

/# # A tibble: 6 × 3
/# # Groups:   species [6]
/#   species  gender    mean_height
/#   <chr>    <chr>           <dbl>
/# 1 Aleena   masculine          79
/# 2 Besalisk masculine         198
/# 3 Cerean   masculine         198
/# 4 Chagrian masculine         196
/# 5 Clawdite feminine          168
/# 6 Droid    feminine           96

Note: dplyr 1.0.0 also notifies you about grouping variables every time you do operations on or with them. YMMV,
but I switch them off with options(dplyr.summarise.inform = FALSE)  in my .Rprofile . 27 / 53



5) dplyr::summarise cont.
Note that including "na.rm = TRUE" (or, its alias "na.rm = T") is usually a good idea with
summarise functions. Otherwise, your output will be missing too.

/# Probably not what we want
starwars %>% 
  summarise(mean_height = mean(height))

/# # A tibble: 1 × 1
/#   mean_height
/#         <dbl>
/# 1          NA

/# Much better
starwars %>% 
  summarise(mean_height = mean(height, na.rm = TRUE))

/# # A tibble: 1 × 1
/#   mean_height
/#         <dbl>
/# 1        174.
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5) dplyr::summarise cont.
The same across -based workflow that we saw with mutate  a few slides back also works
with summarise . For example:

starwars %>% 
  group_by(species) %>% 
  summarise(across(where(is.numeric), ~mean(.x, na.rm=T))) %>%
  head()

/# # A tibble: 6 × 4
/#   species  height  mass birth_year
/#   <chr>     <dbl> <dbl>      <dbl>
/# 1 Aleena      79   15        NaN  
/# 2 Besalisk   198  102        NaN  
/# 3 Cerean     198   82         92  
/# 4 Chagrian   196  NaN        NaN  
/# 5 Clawdite   168   55        NaN  
/# 6 Droid      131.  69.8       53.3
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5) dplyr::summarise cont.
The same across -based workflow that we saw with mutate  a few slides back also works
with summarise . For example:

starwars %>% 
  group_by(species) %>% 
  summarise(across(where(is.numeric), ~mean(.x, na.rm=T))) %>%
  head()

/# # A tibble: 6 × 4
/#   species  height  mass birth_year
/#   <chr>     <dbl> <dbl>      <dbl>
/# 1 Aleena      79   15        NaN  
/# 2 Besalisk   198  102        NaN  
/# 3 Cerean     198   82         92  
/# 4 Chagrian   196  NaN        NaN  
/# 5 Clawdite   168   55        NaN  
/# 6 Droid      131.  69.8       53.3

Try to intuit what .x  does above!
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Other dplyr goodies
group_by  and ungroup : For (un)grouping.

Particularly useful with the summarise  and mutate  commands, as we've already seen.
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Other dplyr goodies
group_by  and ungroup : For (un)grouping.

Particularly useful with the summarise  and mutate  commands, as we've already seen.

slice : Subset rows by position rather than filtering by values.

starwars %>% slice(c(1, 5))

pull : Extract a column as a vector or scalar.

starwars %>% filter(gender/="female") %>% pull(height)  returns height  as a vector

count  and distinct : Number and isolate unique observations.

starwars %>% count(species) , or starwars %>% distinct(species)
Or use mutate , group_by , and n() , e.g. starwars %>% group_by(species) %>%
mutate(num = n()) .

There are also window functions for leads and lags, ranks, cumulative aggregation, etc.

See vignette("window-functions") .
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Quick quiz
Write me code that will tells me the average birth year of characters by homeworld of the
human characters in the starwars  dataset.
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Combining data frames
The final set of dplyr "goodies" are the family of append and join operations. However, these
are important enough that I want to go over some concepts in a bit more depth...

We will encounter and practice these many more times as the course progresses.

Imagine you have two data frames, df1  and df2 , that you want to combine.

You can append or bind: stack the datasets on top of each other and match up the
columns using bind_rows()
You can merge or join: match the rows based on a common identifier using
left_join() , inner_join() , etc.

The appropriate choice depends on the task you are trying to accomplish

Are you trying to add new observations or new variables?
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Visualize the difference

Taken from Pere A. Taberner. 33 / 53

https://www.peretaberner.eu/merging-and-appending-datasets-with-dplyr/


Appending
One way to append in the tidyverse  is with bind_rows()

Base R has rbind() , which requires column names to match
data.table  has rbindlist() , which requires column names to match unless you
specify fill

df1 /- data.frame(x = 1:3, y = 4:6)
df2 /- data.frame(x = 1:4, y = 10:13, z=letters[1:4])

/# Append df2 to df1
bind_rows(df1, df2)

/#   x  y    z
/# 1 1  4 <NA>
/# 2 2  5 <NA>
/# 3 3  6 <NA>
/# 4 1 10    a
/# 5 2 11    b
/# 6 3 12    c
/# 7 4 13    d
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Joins
One of the mainstays of the dplyr package is merging data with the family join operations.

inner_join(df1, df2)

left_join(df1, df2)

right_join(df1, df2)

full_join(df1, df2)

semi_join(df1, df2)

anti_join(df1, df2)

Joins are how you get Relational Database Managment (RDBM) to work in R.

(See visual depictions of the different join operations here.)
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https://r4ds.had.co.nz/relational-data.html


Joins (cont.)
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/# # A tibble: 6 × 6
/#   flight tailnum  year month   day dep_time
/#    <int> <chr>   <int> <int> <int>    <int>
/# 1   1545 N14228   2013     1     1      517
/# 2   1714 N24211   2013     1     1      533
/# 3   1141 N619AA   2013     1     1      542
/# 4    725 N804JB   2013     1     1      544
/# 5    461 N668DN   2013     1     1      554
/# 6   1696 N39463   2013     1     1      554

/# # A tibble: 6 × 4
/#   tailnum  year manufacturer     model    
/#   <chr>   <int> <chr>            <chr>    
/# 1 N10156   2004 EMBRAER          EMB-145XR
/# 2 N102UW   1998 AIRBUS INDUSTRIE A320-214 
/# 3 N103US   1999 AIRBUS INDUSTRIE A320-214 
/# 4 N104UW   1999 AIRBUS INDUSTRIE A320-214 
/# 5 N10575   2002 EMBRAER          EMB-145LR
/# 6 N105UW   1999 AIRBUS INDUSTRIE A320-214

Relational Database Management with R
Remember relational database management?
Each dataframe has a unique identifier (a "key") that links it to other dataframes.
All the dataframes have the keys in common, so you can match them up
Let's get a less abstract example using flights

nycflights13 data

The flights  data frame contains information flights that departed from NYC in 2013.

All flight information is stored in the flights  data frame.
Information about the planes (like year built) in the planes  data frame.
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Joins (cont.)
Let's perform a left join on the flights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.
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Joins (cont.)
Let's perform a left join on the flights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

left_join(flights, planes) %>%
  select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, model)

/# Joining with by = join_by(year, tailnum)

/# # A tibble: 336,776 × 10
/#     year month   day dep_time arr_time carrier flight tailnum type  model
/#    <int> <int> <int>    <int>    <int> <chr>    <int> <chr>   <chr> <chr>
/#  1  2013     1     1      517      830 UA        1545 N14228  <NA>  <NA> 
/#  2  2013     1     1      533      850 UA        1714 N24211  <NA>  <NA> 
/#  3  2013     1     1      542      923 AA        1141 N619AA  <NA>  <NA> 
/#  4  2013     1     1      544     1004 B6         725 N804JB  <NA>  <NA> 
/#  5  2013     1     1      554      812 DL         461 N668DN  <NA>  <NA> 
/#  6  2013     1     1      554      740 UA        1696 N39463  <NA>  <NA> 
/#  7  2013     1     1      555      913 B6         507 N516JB  <NA>  <NA> 
/#  8  2013     1     1      557      709 EV        5708 N829AS  <NA>  <NA> 
/#  9  2013     1     1      557      838 B6          79 N593JB  <NA>  <NA> 
/# 10  2013     1     1      558      753 AA         301 N3ALAA  <NA>  <NA> 
/# # ℹ 336,766 more rows
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Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

/# Joining, by = c("year", "tailnum")

However, there's a problem here: the variable "year" does not have a consistent meaning
across our joining datasets!

In one it refers to the year of flight, in the other it refers to year of construction.
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Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

/# Joining, by = c("year", "tailnum")

However, there's a problem here: the variable "year" does not have a consistent meaning
across our joining datasets!

In one it refers to the year of flight, in the other it refers to year of construction.

Luckily, there's an easy way to avoid this problem.

See if you can figure it out before turning to the next slide.
Get help with ?dplyr/:join
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Joins (cont.)
(continued from previous slide)

You just need to be more explicit in your join call by using the by =  argument.

You can also rename any ambiguous columns to avoid confusion.

left_join(
  flights,
  planes %>% rename(year_built = year), /# Not necessary w/ below line, but helpful
  by = "tailnum" /# Be specific about the joining column
  ) %>%
  select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_built, type, m
  head(3) /# Just to save vertical space on the slide

/# # A tibble: 3 × 11
/#    year month   day dep_time arr_time carrier flight tailnum year_built type    
/#   <int> <int> <int>    <int>    <int> <chr>    <int> <chr>        <int> <chr>   
/# 1  2013     1     1      517      830 UA        1545 N14228        1999 Fixed w…
/# 2  2013     1     1      533      850 UA        1714 N24211        1998 Fixed w…
/# 3  2013     1     1      542      923 AA        1141 N619AA        1990 Fixed w…
/# # ℹ 1 more variable: model <chr>
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Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

left_join(
  flights,
  planes, /# Not renaming "year" to "year_built" this time
  by = "tailnum"
  ) %>%
  select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, m
  head(3)

/# # A tibble: 3 × 11
/#   year.x year.y month   day dep_time arr_time carrier flight tailnum type  model
/#    <int>  <int> <int> <int>    <int>    <int> <chr>    <int> <chr>   <chr> <chr>
/# 1   2013   1999     1     1      517      830 UA        1545 N14228  Fixe… 737-…
/# 2   2013   1998     1     1      533      850 UA        1714 N24211  Fixe… 737-…
/# 3   2013   1990     1     1      542      923 AA        1141 N619AA  Fixe… 757-…
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Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

left_join(
  flights,
  planes, /# Not renaming "year" to "year_built" this time
  by = "tailnum"
  ) %>%
  select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, m
  head(3)

/# # A tibble: 3 × 11
/#   year.x year.y month   day dep_time arr_time carrier flight tailnum type  model
/#    <int>  <int> <int> <int>    <int>    <int> <chr>    <int> <chr>   <chr> <chr>
/# 1   2013   1999     1     1      517      830 UA        1545 N14228  Fixe… 737-…
/# 2   2013   1998     1     1      533      850 UA        1714 N24211  Fixe… 737-…
/# 3   2013   1990     1     1      542      923 AA        1141 N619AA  Fixe… 757-…

Make sure you know what "year.x" and "year.y" are. Again, it pays to be specific.
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tidyrtidyr



Key tidyr verbs
1. pivot_longer : Pivot wide data into long format.

2. pivot_wider : Pivot long data into wide format.

3. separate , unite , fill , expand , nest , unnest : Various other data tidying operations.

There are many utilities in the tidyr  package that help you clean and wrangle
data.
But they are best learned through experience
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Key tidyr verbs
1. pivot_longer : Pivot wide data into long format.

2. pivot_wider : Pivot long data into wide format.

3. separate , unite , fill , expand , nest , unnest : Various other data tidying operations.

There are many utilities in the tidyr  package that help you clean and wrangle
data.
But they are best learned through experience

Let's practice these verbs together in class.

Side question: Which of pivot_longer  vs pivot_wider  produces "tidy" data?
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1) tidyr::pivot_longer
stocks = data.frame( /# Could use "tibble" instead of "data.frame" if you prefer
  time = as.Date('2009-01-01') + 0:1,
  X = rnorm(2, 0, 1), Y = rnorm(2, 0, 2), Z = rnorm(2, 0, 4))
stocks

/#         time          X          Y         Z
/# 1 2009-01-01  0.4139186 -0.3254475  2.087752
/# 2 2009-01-02 -1.2610702 -3.8178951 -3.455760

tidy_stocks = stocks %>% pivot_longer(-time, names_to="stock", values_to="price")
tidy_stocks

/# # A tibble: 6 × 3
/#   time       stock  price
/#   <date>     <chr>  <dbl>
/# 1 2009-01-01 X      0.414
/# 2 2009-01-01 Y     -0.325
/# 3 2009-01-01 Z      2.09 
/# 4 2009-01-02 X     -1.26 
/# 5 2009-01-02 Y     -3.82 
/# 6 2009-01-02 Z     -3.46
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2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

/# # A tibble: 2 × 4
/#   time            X     Y     Z
/#   <date>      <dbl> <dbl> <dbl>
/# 1 2009-01-01 0.0231 -2.08 -2.22
/# 2 2009-01-02 1.25   -3.45  6.01

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

/# # A tibble: 3 × 3
/#   stock 2009-01-01 2009-01-02
/#   <chr>        <dbl>        <dbl>
/# 1 X           0.0231         1.25
/# 2 Y          -2.08          -3.45
/# 3 Z          -2.22           6.01
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2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

/# # A tibble: 2 × 4
/#   time            X     Y     Z
/#   <date>      <dbl> <dbl> <dbl>
/# 1 2009-01-01 0.0231 -2.08 -2.22
/# 2 2009-01-02 1.25   -3.45  6.01

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

/# # A tibble: 3 × 3
/#   stock 2009-01-01 2009-01-02
/#   <chr>        <dbl>        <dbl>
/# 1 X           0.0231         1.25
/# 2 Y          -2.08          -3.45
/# 3 Z          -2.22           6.01

Note that the second example — which has combined different pivoting arguments — has
effectively transposed the data.
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2) tidyr::pivot_longer with prefix
Let's pivot the pre-loaded billboard data: showing weekly rankings of top 100 in the year
2000

head(billboard)

/# # A tibble: 6 × 79
/#   artist      track date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7   wk8
/#   <chr>       <chr> <date>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
/# 1 2 Pac       Baby… 2000-02-26      87    82    72    77    87    94    99    NA
/# 2 2Ge+her     The … 2000-09-02      91    87    92    NA    NA    NA    NA    NA
/# 3 3 Doors Do… Kryp… 2000-04-08      81    70    68    67    66    57    54    53
/# 4 3 Doors Do… Loser 2000-10-21      76    76    72    69    67    65    55    59
/# 5 504 Boyz    Wobb… 2000-04-15      57    34    25    17    17    31    36    49
/# 6 98^0        Give… 2000-08-19      51    39    34    26    26    19     2     2
/# # ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
/# #   wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
/# #   wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
/# #   wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
/# #   wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
/# #   wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>,
/# #   wk43 <dbl>, wk44 <dbl>, wk45 <dbl>, wk46 <dbl>, wk47 <dbl>, wk48 <dbl>, …
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2) tidyr::pivot_longer with prefix cont.
Wait, why is there 'wk' in the 'week' column?

billboard %>% 
  pivot_longer(cols=starts_with('wk'), names_to="week", 
    values_to="rank") %>%
  head()

/# # A tibble: 6 × 5
/#   artist track                   date.entered week   rank
/#   <chr>  <chr>                   <date>       <chr> <dbl>
/# 1 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk1      87
/# 2 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk2      82
/# 3 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk3      72
/# 4 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk4      77
/# 5 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk5      87
/# 6 2 Pac  Baby Don't Cry (Keep//. 2000-02-26   wk6      94
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2) tidyr::pivot_longer with prefix cont.
That fixed it.

billboard %>% 
  pivot_longer(cols=starts_with('wk'), names_to="week", 
    values_to="rank",names_prefix='wk') %>%
  mutate(week=as.numeric(week)) %>% # Make week a numeric variable
  head()

/# # A tibble: 6 × 5
/#   artist track                   date.entered  week  rank
/#   <chr>  <chr>                   <date>       <dbl> <dbl>
/# 1 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       1    87
/# 2 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       2    82
/# 3 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       3    72
/# 4 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       4    77
/# 5 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       5    87
/# 6 2 Pac  Baby Don't Cry (Keep//. 2000-02-26       6    94
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Aside: Remembering the pivot_* syntax
There's a long-running joke about no-one being able to remember Stata's "reshape"
command. (Exhibit A.)

It's easy to see this happening with the pivot_*  functions too. Remember the
documentation is your friend!

?pivot_longer

And GitHub CoPilot, ChatGPT and other AI tools are also your friends if you use precise
language about what you want the AI tool to do and you try their suggestions carefully.1

1 Back in my day we had to scour StackOverflow for hours to find the right answer. And we liked it! 49 / 53

https://twitter.com/helleringer143/status/1117234887902285836


Other tidyr goodies
separate : Split a single column into multiple columns.

separate(df, col, into = c("A", "B"), sep = "-")  will split col  into columns A
and B  at the -  separator.

unite : Combine multiple columns into a single column.

unite(df, col, A, B, sep = "-")  combines columns A  and B  into column col
with -  as the separator.

fill : Fill in missing values with the last non-missing value.

fill(df, starts_with("X"))  will fill in all columns that start with "X".

drop_na : Drop rows with missing values.

expand : Create a complete set of combinations from a set of factors.

nest  and unnest : Combine columns into lists within a single cell or split a column of
lists into separate rows.

Try with the starwars  data frame: unnest(starwars, films,names_sep='') 50 / 53



SummarySummary



Key verbs

dplyr
1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr
1. pivot_longer
2. pivot_wider
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Key verbs

dplyr
1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr
1. pivot_longer
2. pivot_wider

Other useful items include: pipes ( %>% ), grouping ( group_by ), joining functions ( left_join ,
inner_join , etc.).
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Next lecture: Scraping data!Next lecture: Scraping data!


