
Data Science for Economists
Lecture 5: Data cleaning & wrangling: (1) Tidyverse

Grant McDermott, adapted by Kyle Coombs
Bates College | EC/DCS 368

https://github.com/big-data-and-economics

Table of contents
1. Prologue

2. Tidyverse basics

3. Data wrangling with dplyr

filter
arrange
select
mutate
summarise
joins

4. Data tidying with tidyr

pivot_longer / pivot_wider

5. Summary

2 / 53

ProloguePrologue

Why so many packages?
You are probably wondering why there are so many packages in R that do similar things.

How come you need to know this many packages? Isn't this a bit much?

Think back to our clean code principles.

One of the key practices of clean code is to abstract away complexity.
This is what packages do. They abstract away the complexity to make code easier to
read, write, and debug.
They offer a consistent interface and set of help documentation.
Different packages prioritize different goals -- so you can choose the one that best
fits your needs.
e.g. the tidyverse packages prioritize relational database management (called
"tidy" data)
data.table prioritizes speed and memory efficiency in completing data operations,
assumes you're doing the RDBM yourself

4 / 53

Why so many packages?
You are probably wondering why there are so many packages in R that do similar things.

How come you need to know this many packages? Isn't this a bit much?

Think back to our clean code principles.

One of the key practices of clean code is to abstract away complexity.
This is what packages do. They abstract away the complexity to make code easier to
read, write, and debug.
They offer a consistent interface and set of help documentation.
Different packages prioritize different goals -- so you can choose the one that best
fits your needs.
e.g. the tidyverse packages prioritize relational database management (called
"tidy" data)
data.table prioritizes speed and memory efficiency in completing data operations,
assumes you're doing the RDBM yourself

Of course, different packages have different ways of abstracting away complexity.

So yes, it is a bit much, but it's also a good thing.
4 / 53

Checklist

R packages you'll need for this lecture
☑ tidyverse

This is a meta-package that loads a suite of other packages, including dplyr and tidyr,
which includes the starwars dataset that we'll use for practice.

☑ nycflights13

5 / 53

https://www.tidyverse.org/
https://github.com/hadley/nycflights13

Checklist

R packages you'll need for this lecture
☑ tidyverse

This is a meta-package that loads a suite of other packages, including dplyr and tidyr,
which includes the starwars dataset that we'll use for practice.

☑ nycflights13

The following code chunk will install (if necessary) and load everything for you.

if (!require(pacman)) install.packages('pacman', repos = 'https://cran.rstudio.com')
pacman/:p_load(tidyverse, nycflights13)

5 / 53

https://www.tidyverse.org/
https://github.com/hadley/nycflights13

What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

6 / 53

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf

What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

6 / 53

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf

What is "tidy" data?

Resources:
Vignettes (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

6 / 53

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf
https://en.wikipedia.org/wiki/Wide_and_narrow_data

Relational Database Management with R
Remember Relational Database Management from our work on Empirical Organization?

Today, we'll learn how to implement it using packages in the tidyverse

We'll cover:

Subsetting data
Variable creation, renaming, selection
Grouping and summarizing data
Joining and appending datasets

7 / 53

https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/02-empirical-workflow/02-empirical-workflow.html#1

Tidyverse basicsTidyverse basics

Tidyverse vs. base R
There is often a direct correspondence between a tidyverse command and its base R
equivalent.

These generally follow a tidyverse/:snake_case vs base/:period.case rule:

tidyverse base
?readr/:read_csv ?utils/:read.csv

?dplyr/:if_else ?base/:ifelse

?tibble/:tibble ?base/:data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative:

Offers enhancements or other useful options (and some restrictions too)
Better documentation
More consistent syntax

9 / 53

Tidyverse vs. base R
There is often a direct correspondence between a tidyverse command and its base R
equivalent.

These generally follow a tidyverse/:snake_case vs base/:period.case rule:

tidyverse base
?readr/:read_csv ?utils/:read.csv

?dplyr/:if_else ?base/:ifelse

?tibble/:tibble ?base/:data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative:

Offers enhancements or other useful options (and some restrictions too)
Better documentation
More consistent syntax

Remember: There are (almost) always multiple ways to achieve a single goal in R.

9 / 53

Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)

10 / 53

Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)

We have actually loaded a number of packages (which could also be loaded individually):
ggplot2, tibble, dplyr, etc.

We can also see information about the package versions and some namespace
conflicts.

10 / 53

https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/04-rlang/04-rlang.html#83
https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/04-rlang/04-rlang.html#83

Tidyverse packages (cont.)
The tidyverse actually comes with a lot more packages than those loaded automatically.1

tidyverse_packages()

/# [1] "broom" "conflicted" "cli" "dbplyr"
/# [5] "dplyr" "dtplyr" "forcats" "ggplot2"
/# [9] "googledrive" "googlesheets4" "haven" "hms"
/# [13] "httr" "jsonlite" "lubridate" "magrittr"
/# [17] "modelr" "pillar" "purrr" "ragg"
/# [21] "readr" "readxl" "reprex" "rlang"
/# [25] "rstudioapi" "rvest" "stringr" "tibble"
/# [29] "tidyr" "xml2" "tidyverse"

We'll use most of these packages during the remainder of this course.

lubridate for dates, rvest for webscraping, broom to tidy() R objects into tables
However, packages still have to be loaded separately with library()

1 It also includes a lot of dependencies upon installation. This is a matter of some controversy.
11 / 53

http://www.tinyverse.org/

Tidyverse packages (cont.)
Today, however, I'm only really going to focus on two packages:

1. dplyr
2. tidyr

These are the workhorse packages for cleaning and wrangling data.

Data cleaning and wrangling occupies an inordinate amount of time, no matter where
you are in your research career.
I cannot underscore this enough
This course can add structure to the cleaning and wrangling, but it is still a time-
consuming process.
It can be a real bummer, so pick data projects that you are excited about.

12 / 53

https://dplyr.tidyverse.org/
https://tidyr.tidyverse.org/

dplyrdplyr

Key dplyr verbs
There are five key dplyr verbs that you need to learn.

1. filter : Filter (i.e. subset) rows based on their values.

2. arrange : Arrange (i.e. reorder) rows based on their values.

3. select : Select (i.e. subset) columns by their names:

4. mutate : Create new columns.

5. summarise : Collapse multiple rows into a single summary value.1

1 summarize with a "z" works too, but Hadley Wickham is from New Sealand.
14 / 53

Learn the verbs
Practice these commands together using the starwars data frame that comes pre-packaged
with dplyr. Stop when you hit the last summarise slide (approx. 33).

starwars

/# # A tibble: 87 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
/# 2 C-3PO 167 75 <NA> gold yellow 112 none mascu…
/# 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu…
/# 4 Darth V… 202 136 none white yellow 41.9 male mascu…
/# 5 Leia Or… 150 49 brown light brown 19 fema… femin…
/# 6 Owen La… 178 120 brown, gr… light blue 52 male mascu…
/# 7 Beru Wh… 165 75 brown light blue 47 fema… femin…
/# 8 R5-D4 97 32 <NA> white, red red NA none mascu…
/# 9 Biggs D… 183 84 black light brown 24 male mascu…
/# 10 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

15 / 53

1) dplyr::filter
Filter means "subset" the rows of a data frame based on some condition(s).

starwars %>%
 filter(species /= "Human", height /= 190)

/# # A tibble: 4 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Darth Va… 202 136 none white yellow 41.9 male mascu…
/# 2 Qui-Gon … 193 89 brown fair blue 92 male mascu…
/# 3 Dooku 193 80 white fair brown 102 male mascu…
/# 4 Bail Pre… 191 NA black tan brown 67 male mascu…
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

We can chain multiple commands with the pipe %>% as we've seen1.

1 Pipes were invented by Doug McIlroy in 1964, are widely used in Unix shells (e.g. bash) and other programming
languages (e.g. F#). They pass the preceding object as the first argument to the following function. In R, they
allow you to chain together code in a way that reads from left to right. 16 / 53

The pipe
The pipe %>% is important for making your code readable, and minimizing balanced-
parentheses errors

It takes whatever is on its left and makes it the first argument of the function on the
right

So whatever object you're working with you take, ship it along to the next function,
process, then ship along again, then ship along again! Like a conveyer belt

Notice that all dplyr functions take the data frame as the first argument, making it easy
to chain them

"Ships along" anything, including vectors or single numbers, not just data frames! Track
what the object being shipped is in each step.

17 / 53

The pipe
See how clean it can make the code!

mean(starwars[starwars$species /= "Human" & starwars$height/=190,]$height, na.rm = TRUE)

/# [1] 194.75

vs.

starwars %>% # Specify data
 filter(species /= "Human", height /= 190) %>% # Specify filter
 pull(height) %>% # Specify the column you want
 mean(na.rm = TRUE) # Calculate the mean

/# [1] 194.75

18 / 53

1) dplyr::filter cont.
A very common filter use case is identifying (or removing) missing data cases.

starwars %>%
 filter(is.na(height))

/# # A tibble: 6 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Arvel Cr… NA NA brown fair brown NA male mascu…
/# 2 Finn NA NA black dark dark NA male mascu…
/# 3 Rey NA NA brown light hazel NA fema… femin…
/# 4 Poe Dame… NA NA brown light brown NA male mascu…
/# 5 BB8 NA NA none none black NA none mascu…
/# 6 Captain … NA NA unknown unknown unknown NA <NA> <NA>
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

To remove missing observations, simply use negation: filter(!is.na(height)) . Try this
yourself.

19 / 53

2) dplyr::arrange
starwars %>%
 arrange(birth_year)

/# # A tibble: 87 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Wicket … 88 20 brown brown brown 8 male mascu…
/# 2 IG-88 200 140 none metal red 15 none mascu…
/# 3 Luke Sk… 172 77 blond fair blue 19 male mascu…
/# 4 Leia Or… 150 49 brown light brown 19 fema… femin…
/# 5 Wedge A… 170 77 brown fair hazel 21 male mascu…
/# 6 Plo Koon 188 80 none orange black 22 male mascu…
/# 7 Biggs D… 183 84 black light brown 24 male mascu…
/# 8 Han Solo 180 80 brown fair brown 29 male mascu…
/# 9 Lando C… 177 79 black dark brown 31 male mascu…
/# 10 Boba Fe… 183 78.2 black fair brown 31.5 male mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

20 / 53

2) dplyr::arrange
starwars %>%
 arrange(birth_year)

/# # A tibble: 87 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Wicket … 88 20 brown brown brown 8 male mascu…
/# 2 IG-88 200 140 none metal red 15 none mascu…
/# 3 Luke Sk… 172 77 blond fair blue 19 male mascu…
/# 4 Leia Or… 150 49 brown light brown 19 fema… femin…
/# 5 Wedge A… 170 77 brown fair hazel 21 male mascu…
/# 6 Plo Koon 188 80 none orange black 22 male mascu…
/# 7 Biggs D… 183 84 black light brown 24 male mascu…
/# 8 Han Solo 180 80 brown fair brown 29 male mascu…
/# 9 Lando C… 177 79 black dark brown 31 male mascu…
/# 10 Boba Fe… 183 78.2 black fair brown 31.5 male mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

Note: Arranging on a character-based column (i.e. strings) will sort alphabetically. Try this
yourself by arranging according to the "name" column.

20 / 53

2) dplyr::arrange cont.
We can also arrange items in descending order using arrange(desc()) .

starwars %>%
 arrange(desc(birth_year))

/# # A tibble: 87 × 14
/# name height mass hair_color skin_color eye_color birth_year sex gender
/# <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
/# 1 Yoda 66 17 white green brown 896 male mascu…
/# 2 Jabba D… 175 1358 <NA> green-tan… orange 600 herm… mascu…
/# 3 Chewbac… 228 112 brown unknown blue 200 male mascu…
/# 4 C-3PO 167 75 <NA> gold yellow 112 none mascu…
/# 5 Dooku 193 80 white fair brown 102 male mascu…
/# 6 Qui-Gon… 193 89 brown fair blue 92 male mascu…
/# 7 Ki-Adi-… 198 82 white pale yellow 92 male mascu…
/# 8 Finis V… 170 NA blond fair blue 91 male mascu…
/# 9 Palpati… 170 75 grey pale yellow 82 male mascu…
/# 10 Cliegg … 183 NA brown fair blue 82 male mascu…
/# # ℹ 77 more rows
/# # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
/# # vehicles <list>, starships <list>

21 / 53

3) dplyr::select
Select means subset the columns of a data frame based on their names.

Use commas to select multiple columns out of a data frame. (You can also use "first:last" for
consecutive columns). Deselect a column with "-".

starwars %>%
 select(name:skin_color, species, -height) %>%
 head()

/# # A tibble: 6 × 5
/# name mass hair_color skin_color species
/# <chr> <dbl> <chr> <chr> <chr>
/# 1 Luke Skywalker 77 blond fair Human
/# 2 C-3PO 75 <NA> gold Droid
/# 3 R2-D2 32 <NA> white, blue Droid
/# 4 Darth Vader 136 none white Human
/# 5 Leia Organa 49 brown light Human
/# 6 Owen Lars 120 brown, grey light Human

22 / 53

3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
 select(alias=name, crib=homeworld, sex=gender) %>%
 head()

/# # A tibble: 6 × 3
/# alias crib sex
/# <chr> <chr> <chr>
/# 1 Luke Skywalker Tatooine masculine
/# 2 C-3PO Tatooine masculine
/# 3 R2-D2 Naboo masculine
/# 4 Darth Vader Tatooine masculine
/# 5 Leia Organa Alderaan feminine
/# 6 Owen Lars Tatooine masculine

23 / 53

3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
 select(alias=name, crib=homeworld, sex=gender) %>%
 head()

/# # A tibble: 6 × 3
/# alias crib sex
/# <chr> <chr> <chr>
/# 1 Luke Skywalker Tatooine masculine
/# 2 C-3PO Tatooine masculine
/# 3 R2-D2 Naboo masculine
/# 4 Darth Vader Tatooine masculine
/# 5 Leia Organa Alderaan feminine
/# 6 Owen Lars Tatooine masculine

If you just want to rename columns without subsetting them, you can use rename . Try this
now by replacing select(//.) in the above code chunk with rename(//.) .

23 / 53

4) dplyr::mutate
You can create new columns from scratch, or (more commonly) as transformations of
existing columns.

starwars %>%
 select(name, birth_year) %>%
 mutate(dog_years = birth_year * 7) %>%
 mutate(comment = paste0(name, " is ", dog_years, " in dog years.")) %>%
 head()

/# # A tibble: 6 × 4
/# name birth_year dog_years comment
/# <chr> <dbl> <dbl> <chr>
/# 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
/# 2 C-3PO 112 784 C-3PO is 784 in dog years.
/# 3 R2-D2 33 231 R2-D2 is 231 in dog years.
/# 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
/# 5 Leia Organa 19 133 Leia Organa is 133 in dog years.
/# 6 Owen Lars 52 364 Owen Lars is 364 in dog years.

24 / 53

4) dplyr::mutate cont.
Boolean, logical and conditional operators all work well with mutate too.

starwars %>%
 select(name, height) %>%
 filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>%
 mutate(tall1 = height > 180) %>%
 mutate(tall2 = ifelse(height > 180, "Tall", "Short")) /# Same effect, but can choose label

/# # A tibble: 2 × 4
/# name height tall1 tall2
/# <chr> <int> <lgl> <chr>
/# 1 Luke Skywalker 172 FALSE Short
/# 2 Anakin Skywalker 188 TRUE Tall

25 / 53

4) dplyr::mutate cont.
Lastly, combining mutate with the across feature allows you to easily work on a subset of
variables. For example:

starwars %>%
 select(name:eye_color) %>%
 mutate(across(where(is.character), toupper)) %>%
 head(5)

/# # A tibble: 5 × 6
/# name height mass hair_color skin_color eye_color
/# <chr> <int> <dbl> <chr> <chr> <chr>
/# 1 LUKE SKYWALKER 172 77 BLOND FAIR BLUE
/# 2 C-3PO 167 75 <NA> GOLD YELLOW
/# 3 R2-D2 96 32 <NA> WHITE, BLUE RED
/# 4 DARTH VADER 202 136 NONE WHITE YELLOW
/# 5 LEIA ORGANA 150 49 BROWN LIGHT BROWN

26 / 53

5) dplyr::summarise
Particularly useful in combination with the group_by 1 command.

starwars %>%
 group_by(species, gender) %>%
 summarise(mean_height = mean(height, na.rm = TRUE)) %>%
 head()

/# # A tibble: 6 × 3
/# # Groups: species [6]
/# species gender mean_height
/# <chr> <chr> <dbl>
/# 1 Aleena masculine 79
/# 2 Besalisk masculine 198
/# 3 Cerean masculine 198
/# 4 Chagrian masculine 196
/# 5 Clawdite feminine 168
/# 6 Droid feminine 96

Note: dplyr 1.0.0 also notifies you about grouping variables every time you do operations on or with them. YMMV,
but I switch them off with options(dplyr.summarise.inform = FALSE) in my .Rprofile . 27 / 53

5) dplyr::summarise cont.
Note that including "na.rm = TRUE" (or, its alias "na.rm = T") is usually a good idea with
summarise functions. Otherwise, your output will be missing too.

/# Probably not what we want
starwars %>%
 summarise(mean_height = mean(height))

/# # A tibble: 1 × 1
/# mean_height
/# <dbl>
/# 1 NA

/# Much better
starwars %>%
 summarise(mean_height = mean(height, na.rm = TRUE))

/# # A tibble: 1 × 1
/# mean_height
/# <dbl>
/# 1 174.

28 / 53

5) dplyr::summarise cont.
The same across -based workflow that we saw with mutate a few slides back also works
with summarise . For example:

starwars %>%
 group_by(species) %>%
 summarise(across(where(is.numeric), ~mean(.x, na.rm=T))) %>%
 head()

/# # A tibble: 6 × 4
/# species height mass birth_year
/# <chr> <dbl> <dbl> <dbl>
/# 1 Aleena 79 15 NaN
/# 2 Besalisk 198 102 NaN
/# 3 Cerean 198 82 92
/# 4 Chagrian 196 NaN NaN
/# 5 Clawdite 168 55 NaN
/# 6 Droid 131. 69.8 53.3

29 / 53

5) dplyr::summarise cont.
The same across -based workflow that we saw with mutate a few slides back also works
with summarise . For example:

starwars %>%
 group_by(species) %>%
 summarise(across(where(is.numeric), ~mean(.x, na.rm=T))) %>%
 head()

/# # A tibble: 6 × 4
/# species height mass birth_year
/# <chr> <dbl> <dbl> <dbl>
/# 1 Aleena 79 15 NaN
/# 2 Besalisk 198 102 NaN
/# 3 Cerean 198 82 92
/# 4 Chagrian 196 NaN NaN
/# 5 Clawdite 168 55 NaN
/# 6 Droid 131. 69.8 53.3

Try to intuit what .x does above!

29 / 53

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

30 / 53

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than filtering by values.

starwars %>% slice(c(1, 5))

30 / 53

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than filtering by values.

starwars %>% slice(c(1, 5))

pull : Extract a column as a vector or scalar.

starwars %>% filter(gender/="female") %>% pull(height) returns height as a vector

30 / 53

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than filtering by values.

starwars %>% slice(c(1, 5))

pull : Extract a column as a vector or scalar.

starwars %>% filter(gender/="female") %>% pull(height) returns height as a vector

count and distinct : Number and isolate unique observations.

starwars %>% count(species) , or starwars %>% distinct(species)
Or use mutate , group_by , and n() , e.g. starwars %>% group_by(species) %>%
mutate(num = n()) .

There are also window functions for leads and lags, ranks, cumulative aggregation, etc.

See vignette("window-functions") .
30 / 53

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Quick quiz
Write me code that will tells me the average birth year of characters by homeworld of the
human characters in the starwars dataset.

31 / 53

Combining data frames
The final set of dplyr "goodies" are the family of append and join operations. However, these
are important enough that I want to go over some concepts in a bit more depth...

We will encounter and practice these many more times as the course progresses.

Imagine you have two data frames, df1 and df2 , that you want to combine.

You can append or bind: stack the datasets on top of each other and match up the
columns using bind_rows()
You can merge or join: match the rows based on a common identifier using
left_join() , inner_join() , etc.

The appropriate choice depends on the task you are trying to accomplish

Are you trying to add new observations or new variables?

32 / 53

Visualize the difference

Taken from Pere A. Taberner. 33 / 53

https://www.peretaberner.eu/merging-and-appending-datasets-with-dplyr/

Appending
One way to append in the tidyverse is with bind_rows()

Base R has rbind() , which requires column names to match
data.table has rbindlist() , which requires column names to match unless you
specify fill

df1 /- data.frame(x = 1:3, y = 4:6)
df2 /- data.frame(x = 1:4, y = 10:13, z=letters[1:4])

/# Append df2 to df1
bind_rows(df1, df2)

/# x y z
/# 1 1 4 <NA>
/# 2 2 5 <NA>
/# 3 3 6 <NA>
/# 4 1 10 a
/# 5 2 11 b
/# 6 3 12 c
/# 7 4 13 d

34 / 53

Joins
One of the mainstays of the dplyr package is merging data with the family join operations.

inner_join(df1, df2)

left_join(df1, df2)

right_join(df1, df2)

full_join(df1, df2)

semi_join(df1, df2)

anti_join(df1, df2)

Joins are how you get Relational Database Managment (RDBM) to work in R.

(See visual depictions of the different join operations here.)

35 / 53

https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
https://r4ds.had.co.nz/relational-data.html

Joins (cont.)

36 / 53

/# # A tibble: 6 × 6
/# flight tailnum year month day dep_time
/# <int> <chr> <int> <int> <int> <int>
/# 1 1545 N14228 2013 1 1 517
/# 2 1714 N24211 2013 1 1 533
/# 3 1141 N619AA 2013 1 1 542
/# 4 725 N804JB 2013 1 1 544
/# 5 461 N668DN 2013 1 1 554
/# 6 1696 N39463 2013 1 1 554

/# # A tibble: 6 × 4
/# tailnum year manufacturer model
/# <chr> <int> <chr> <chr>
/# 1 N10156 2004 EMBRAER EMB-145XR
/# 2 N102UW 1998 AIRBUS INDUSTRIE A320-214
/# 3 N103US 1999 AIRBUS INDUSTRIE A320-214
/# 4 N104UW 1999 AIRBUS INDUSTRIE A320-214
/# 5 N10575 2002 EMBRAER EMB-145LR
/# 6 N105UW 1999 AIRBUS INDUSTRIE A320-214

Relational Database Management with R
Remember relational database management?
Each dataframe has a unique identifier (a "key") that links it to other dataframes.
All the dataframes have the keys in common, so you can match them up
Let's get a less abstract example using flights

nycflights13 data

The flights data frame contains information flights that departed from NYC in 2013.

All flight information is stored in the flights data frame.
Information about the planes (like year built) in the planes data frame.

37 / 53

Joins (cont.)
Let's perform a left join on the flights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

38 / 53

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins (cont.)
Let's perform a left join on the flights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

left_join(flights, planes) %>%
 select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, model)

/# Joining with by = join_by(year, tailnum)

/# # A tibble: 336,776 × 10
/# year month day dep_time arr_time carrier flight tailnum type model
/# <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
/# 1 2013 1 1 517 830 UA 1545 N14228 <NA> <NA>
/# 2 2013 1 1 533 850 UA 1714 N24211 <NA> <NA>
/# 3 2013 1 1 542 923 AA 1141 N619AA <NA> <NA>
/# 4 2013 1 1 544 1004 B6 725 N804JB <NA> <NA>
/# 5 2013 1 1 554 812 DL 461 N668DN <NA> <NA>
/# 6 2013 1 1 554 740 UA 1696 N39463 <NA> <NA>
/# 7 2013 1 1 555 913 B6 507 N516JB <NA> <NA>
/# 8 2013 1 1 557 709 EV 5708 N829AS <NA> <NA>
/# 9 2013 1 1 557 838 B6 79 N593JB <NA> <NA>
/# 10 2013 1 1 558 753 AA 301 N3ALAA <NA> <NA>
/# # ℹ 336,766 more rows

38 / 53

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

/# Joining, by = c("year", "tailnum")

However, there's a problem here: the variable "year" does not have a consistent meaning
across our joining datasets!

In one it refers to the year of flight, in the other it refers to year of construction.

39 / 53

Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

/# Joining, by = c("year", "tailnum")

However, there's a problem here: the variable "year" does not have a consistent meaning
across our joining datasets!

In one it refers to the year of flight, in the other it refers to year of construction.

Luckily, there's an easy way to avoid this problem.

See if you can figure it out before turning to the next slide.
Get help with ?dplyr/:join

39 / 53

Joins (cont.)
(continued from previous slide)

You just need to be more explicit in your join call by using the by = argument.

You can also rename any ambiguous columns to avoid confusion.

left_join(
 flights,
 planes %>% rename(year_built = year), /# Not necessary w/ below line, but helpful
 by = "tailnum" /# Be specific about the joining column
) %>%
 select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_built, type, m
 head(3) /# Just to save vertical space on the slide

/# # A tibble: 3 × 11
/# year month day dep_time arr_time carrier flight tailnum year_built type
/# <int> <int> <int> <int> <int> <chr> <int> <chr> <int> <chr>
/# 1 2013 1 1 517 830 UA 1545 N14228 1999 Fixed w…
/# 2 2013 1 1 533 850 UA 1714 N24211 1998 Fixed w…
/# 3 2013 1 1 542 923 AA 1141 N619AA 1990 Fixed w…
/# # ℹ 1 more variable: model <chr>

40 / 53

Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

left_join(
 flights,
 planes, /# Not renaming "year" to "year_built" this time
 by = "tailnum"
) %>%
 select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, m
 head(3)

/# # A tibble: 3 × 11
/# year.x year.y month day dep_time arr_time carrier flight tailnum type model
/# <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
/# 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
/# 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
/# 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

41 / 53

Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

left_join(
 flights,
 planes, /# Not renaming "year" to "year_built" this time
 by = "tailnum"
) %>%
 select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, type, m
 head(3)

/# # A tibble: 3 × 11
/# year.x year.y month day dep_time arr_time carrier flight tailnum type model
/# <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
/# 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
/# 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
/# 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

Make sure you know what "year.x" and "year.y" are. Again, it pays to be specific.

41 / 53

tidyrtidyr

Key tidyr verbs
1. pivot_longer : Pivot wide data into long format.

2. pivot_wider : Pivot long data into wide format.

3. separate , unite , fill , expand , nest , unnest : Various other data tidying operations.

There are many utilities in the tidyr package that help you clean and wrangle
data.
But they are best learned through experience

43 / 53

Key tidyr verbs
1. pivot_longer : Pivot wide data into long format.

2. pivot_wider : Pivot long data into wide format.

3. separate , unite , fill , expand , nest , unnest : Various other data tidying operations.

There are many utilities in the tidyr package that help you clean and wrangle
data.
But they are best learned through experience

Let's practice these verbs together in class.

Side question: Which of pivot_longer vs pivot_wider produces "tidy" data?

43 / 53

1) tidyr::pivot_longer
stocks = data.frame(/# Could use "tibble" instead of "data.frame" if you prefer
 time = as.Date('2009-01-01') + 0:1,
 X = rnorm(2, 0, 1), Y = rnorm(2, 0, 2), Z = rnorm(2, 0, 4))
stocks

/# time X Y Z
/# 1 2009-01-01 0.4139186 -0.3254475 2.087752
/# 2 2009-01-02 -1.2610702 -3.8178951 -3.455760

tidy_stocks = stocks %>% pivot_longer(-time, names_to="stock", values_to="price")
tidy_stocks

/# # A tibble: 6 × 3
/# time stock price
/# <date> <chr> <dbl>
/# 1 2009-01-01 X 0.414
/# 2 2009-01-01 Y -0.325
/# 3 2009-01-01 Z 2.09
/# 4 2009-01-02 X -1.26
/# 5 2009-01-02 Y -3.82
/# 6 2009-01-02 Z -3.46

44 / 53

2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

/# # A tibble: 2 × 4
/# time X Y Z
/# <date> <dbl> <dbl> <dbl>
/# 1 2009-01-01 0.0231 -2.08 -2.22
/# 2 2009-01-02 1.25 -3.45 6.01

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

/# # A tibble: 3 × 3
/# stock 2009-01-01 2009-01-02
/# <chr> <dbl> <dbl>
/# 1 X 0.0231 1.25
/# 2 Y -2.08 -3.45
/# 3 Z -2.22 6.01

45 / 53

2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

/# # A tibble: 2 × 4
/# time X Y Z
/# <date> <dbl> <dbl> <dbl>
/# 1 2009-01-01 0.0231 -2.08 -2.22
/# 2 2009-01-02 1.25 -3.45 6.01

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

/# # A tibble: 3 × 3
/# stock 2009-01-01 2009-01-02
/# <chr> <dbl> <dbl>
/# 1 X 0.0231 1.25
/# 2 Y -2.08 -3.45
/# 3 Z -2.22 6.01

Note that the second example — which has combined different pivoting arguments — has
effectively transposed the data.

45 / 53

2) tidyr::pivot_longer with prefix
Let's pivot the pre-loaded billboard data: showing weekly rankings of top 100 in the year
2000

head(billboard)

/# # A tibble: 6 × 79
/# artist track date.entered wk1 wk2 wk3 wk4 wk5 wk6 wk7 wk8
/# <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
/# 1 2 Pac Baby… 2000-02-26 87 82 72 77 87 94 99 NA
/# 2 2Ge+her The … 2000-09-02 91 87 92 NA NA NA NA NA
/# 3 3 Doors Do… Kryp… 2000-04-08 81 70 68 67 66 57 54 53
/# 4 3 Doors Do… Loser 2000-10-21 76 76 72 69 67 65 55 59
/# 5 504 Boyz Wobb… 2000-04-15 57 34 25 17 17 31 36 49
/# 6 98^0 Give… 2000-08-19 51 39 34 26 26 19 2 2
/# # ℹ 68 more variables: wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>,
/# # wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>, wk17 <dbl>, wk18 <dbl>,
/# # wk19 <dbl>, wk20 <dbl>, wk21 <dbl>, wk22 <dbl>, wk23 <dbl>, wk24 <dbl>,
/# # wk25 <dbl>, wk26 <dbl>, wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>,
/# # wk31 <dbl>, wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>,
/# # wk37 <dbl>, wk38 <dbl>, wk39 <dbl>, wk40 <dbl>, wk41 <dbl>, wk42 <dbl>,
/# # wk43 <dbl>, wk44 <dbl>, wk45 <dbl>, wk46 <dbl>, wk47 <dbl>, wk48 <dbl>, …

46 / 53

2) tidyr::pivot_longer with prefix cont.
Wait, why is there 'wk' in the 'week' column?

billboard %>%
 pivot_longer(cols=starts_with('wk'), names_to="week",
 values_to="rank") %>%
 head()

/# # A tibble: 6 × 5
/# artist track date.entered week rank
/# <chr> <chr> <date> <chr> <dbl>
/# 1 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk1 87
/# 2 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk2 82
/# 3 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk3 72
/# 4 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk4 77
/# 5 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk5 87
/# 6 2 Pac Baby Don't Cry (Keep//. 2000-02-26 wk6 94

47 / 53

2) tidyr::pivot_longer with prefix cont.
That fixed it.

billboard %>%
 pivot_longer(cols=starts_with('wk'), names_to="week",
 values_to="rank",names_prefix='wk') %>%
 mutate(week=as.numeric(week)) %>% # Make week a numeric variable
 head()

/# # A tibble: 6 × 5
/# artist track date.entered week rank
/# <chr> <chr> <date> <dbl> <dbl>
/# 1 2 Pac Baby Don't Cry (Keep//. 2000-02-26 1 87
/# 2 2 Pac Baby Don't Cry (Keep//. 2000-02-26 2 82
/# 3 2 Pac Baby Don't Cry (Keep//. 2000-02-26 3 72
/# 4 2 Pac Baby Don't Cry (Keep//. 2000-02-26 4 77
/# 5 2 Pac Baby Don't Cry (Keep//. 2000-02-26 5 87
/# 6 2 Pac Baby Don't Cry (Keep//. 2000-02-26 6 94

48 / 53

Aside: Remembering the pivot_* syntax
There's a long-running joke about no-one being able to remember Stata's "reshape"
command. (Exhibit A.)

It's easy to see this happening with the pivot_* functions too. Remember the
documentation is your friend!

?pivot_longer

And GitHub CoPilot, ChatGPT and other AI tools are also your friends if you use precise
language about what you want the AI tool to do and you try their suggestions carefully.1

1 Back in my day we had to scour StackOverflow for hours to find the right answer. And we liked it! 49 / 53

https://twitter.com/helleringer143/status/1117234887902285836

Other tidyr goodies
separate : Split a single column into multiple columns.

separate(df, col, into = c("A", "B"), sep = "-") will split col into columns A
and B at the - separator.

unite : Combine multiple columns into a single column.

unite(df, col, A, B, sep = "-") combines columns A and B into column col
with - as the separator.

fill : Fill in missing values with the last non-missing value.

fill(df, starts_with("X")) will fill in all columns that start with "X".

drop_na : Drop rows with missing values.

expand : Create a complete set of combinations from a set of factors.

nest and unnest : Combine columns into lists within a single cell or split a column of
lists into separate rows.

Try with the starwars data frame: unnest(starwars, films,names_sep='') 50 / 53

SummarySummary

Key verbs

dplyr
1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr
1. pivot_longer
2. pivot_wider

52 / 53

Key verbs

dplyr
1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr
1. pivot_longer
2. pivot_wider

Other useful items include: pipes (%>%), grouping (group_by), joining functions (left_join ,
inner_join , etc.).

52 / 53

Next lecture: Scraping data!Next lecture: Scraping data!

