Big Data and Economics

Lecture 5: Data cleaning \& wrangling: (1) Tidyverse

Grant McDermott, adapted by Kyle Coombs Bates College I EC/DCS 368

Table of contents

1. Prologue

2. Tidyverse basics
3. Data wrangling with dplyr

- filter
- arrange
- select
- mutate
- summarise
- joins

4. Data tidying with tidyr

- pivot_longer / pivot_wider
- separate
- unite

5. Summary

Prologue

Housekeeping

- Full version of these slides available on Grant McDermott's website
- Participate using GitHub Codespaces created from the course materials repository (not your fork)
- That will ensure we're all working with the same versions of the data and packages
- If you want to use your own fork or the clone in your local environment, first sync your fork with the parent repository
- Then, pull the latest changes from the parent repository onto your local machine or create a GitHub Codespace

Checklist

R packages you'll need for this lecture

V tidyverse

- This is a meta-package that loads a suite of other packages, including dplyr and tidyr, which includes the starwars dataset that we'll use for practice.

V nycflights13

Checklist

R packages you'll need for this lecture

マ tidyverse

- This is a meta-package that loads a suite of other packages, including dplyr and tidyr, which includes the starwars dataset that we'll use for practice.

V nycflights13

The following code chunk will install (if necessary) and load everything for you.

```
if (!require(pacman)) install.packages('pacman', repos = 'https://cran.rstudio.com')
pacman::p_load(tidyverse, ggplot2, nycflights13)
```


For problem set

On the problem set you'll be using the National Longitudinal Survey of Youth, 1997 cohort (NLSY 1997).

- This is a long-running survey of a representative sample of U.S. youth born between 1980 and 1984.
- The data is available from the NLS Investigator website.
- I've provided a zipped folder with the data in the data/raw folder, which you can access from the problem set
- You may not recognize all the file extensions, but the NLSY documentation can help
- The key file to note is nlsy1997-ps2.nLSY97 is a tagset file that you can upload to the NLS Investigator to get an exact copy of the data to use for the problem set
- Further details provided on the problem set
- Replication alert: tagsets are one way to ensure that your data is reproducible.

What is "tidy" data?

Resources:

- Vignettes (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

What is "tidy" data?

Resources:

- Vignettes (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

Key points:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

What is "tidy" data?

Resources:

- Vignettes (from the tidyr package)
- Original paper (Hadley Wickham, 2014 JSS)

Key points:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

Relational Database Management with R

- Remember Relational Database Management from our work on Empirical Organization?
- Today, we'll learn how to implement it using packages in the tidyverse
- We'll cover:
- Subsetting data
- Variable creation, renaming, selection
- Grouping and summarizing data
- Joining and appending datasets

Tidyverse basics

Tidyverse vs. base R

(Almost) everything you can do in the tidyverse can be done in base R without loading new packages.

I won't delve into the debate, because I think the answer is clear: We should teach the tidyverse first (or, at least, early).

- The documentation and community support are outstanding.
- Having a consistent philosophy and syntax makes it easier to learn.
- Provides a convenient "front-end" to big data tools.
- For data cleaning, wrangling, and plotting, the tidyverse really is a no-brainer. ${ }^{1}$

Tidyverse vs. base R

(Almost) everything you can do in the tidyverse can be done in base R without loading new packages.

I won't delve into the debate, because I think the answer is clear: We should teach the tidyverse first (or, at least, early).

- The documentation and community support are outstanding.
- Having a consistent philosophy and syntax makes it easier to learn.
- Provides a convenient "front-end" to big data tools.
- For data cleaning, wrangling, and plotting, the tidyverse really is a no-brainer. ${ }^{1}$

But... this certainly shouldn't put you off learning base R alternatives.

- Base R is extremely flexible and powerful (and stable).
- There are some things that you'll have to venture outside of the tidyverse for.
- A combination of tidyverse and base R is often the best solution to a problem.
- Excellent base R data manipulation tutorials: here and here.
${ }^{1}$ I'm also a huge fan of data.table. This package will be the subject of our next lecture.

Tidyverse vs. base R (cont.)

One point of convenience is that there is often a direct correspondence between a tidyverse command and its base R equivalent.

These generally follow a tidyverse :: snake_case vs base :: period.case rule. E.g. Compare:

tidyverse	base
?readr:: read_csv	?utils:: read.csv
?dplyr:: if_else	?base :: ifelse
?tibble :: tibble	?base :: data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative typically offers some enhancements or other useful options (and sometimes restrictions) over its base counterpart.

Tidyverse vs. base R (cont.)

One point of convenience is that there is often a direct correspondence between a tidyverse command and its base R equivalent.

These generally follow a tidyverse :: snake_case vs base :: period.case rule. E.g. Compare:

tidyverse	base
?readr:: read_csv	?utils:: read.csv
?dplyr:: if_else	?base :: ifelse
?tibble :: tibble	?base :: data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative typically offers some enhancements or other useful options (and sometimes restrictions) over its base counterpart.

Remember: There are (almost) always multiple ways to achieve a single goal in R.

Tidyverse packages

Let's load the tidyverse meta-package and check the output.
library(tidyverse)

Tidyverse packages

Let's load the tidyverse meta-package and check the output.
library(tidyverse)

We see that we have actually loaded a number of packages (which could also be loaded individually): ggplot2, tibble, dplyr, etc.

- We can also see information about the package versions and some namespace conflicts.

Tidyverse packages (cont.)

The tidyverse actually comes with a lot more packages than those loaded automatically. ${ }^{1}$

```
tidyverse_packages()
```

$\# \#$	[1] "broom"	"conflicted"	"cli"
$\# \#$ [5] "dplyr"	"dtplyr"	"forcats"	"gbplyr"
\#\# [9] "googledrive"	"googlesheets4"	"haven"	"hms"
\#\# [13] "httr"	"jsonlite"	"lubridate"	"magrittr"
\# [17] "modelr"	"pillar"	"purrr"	"ragg"
\# [21] "readr"	"readxl"	"reprex"	"rlang"
\# [25] "rstudioapi"	"rvest"	"stringr"	"tibble"
\# [29] "tidyr"	"xml2"	"tidyverse"	

We'll use most of these packages during the remainder of this course.

- E.g. The lubridate for dates, rvest for webscraping, broom to tidy() R objects into tables
- However, bear in mind that these packages will have to be loaded separately with
${ }^{1}$ It also library (ludes a lot of dependencies upon installation. This is a matter of some controversy.

Tidyverse packages (cont.)

We will cover most of the tidyverse packages over the length of this course.

Today, however, I'm only really going to focus on two packages:

1. dplyr
 2. tidyr

These are the workhorse packages for cleaning and wrangling data. They are thus the ones that you will likely make the most use of (alongside ggplot2, which we already met back in Lecture 1).

- Data cleaning and wrangling occupies an inordinate amount of time, no matter where you are in your research career.
dplyr

dplyr

Note: dplyr 1.0.0 also notifies you about grouping variables every time you do operations on or with them. YMMV, but, personally, I find these messages annoying and so prefer to switch them off.
options(dplyr.summarise.inform = FALSE) \#\# Add to. Rprofile to make permanent

Key dplyr verbs

There are five key dplyr verbs that you need to learn.

1. filter : Filter (i.e. subset) rows based on their values.
2. arrange : Arrange (i.e. reorder) rows based on their values.
3. select: Select (i.e. subset) columns by their names:
4. mutate : Create new columns.
5. summarise : Collapse multiple rows into a single summary value. ${ }^{1}$

1 summarize with a "z" works too, but Hadley Wickham is from New Sealand.

Learn the verbs

Practice these commands together using the starwars data frame that comes pre-packaged with dplyr. Stop when you hit the last summarise slide (approx. 33).

```
starwars
```

\#	name	height	mass	hair_color	skin_color	eye_color	birth_year	sex	gender
\#\#	<chr>	<int>	<dbl>	<chr>	<chr>	<chr>	<dbl>	<chr>	<chr>
\#\#	1 Luke Sk...	172	77	blond	fair	blue	19	male	mascu...
\#\#	$2 \mathrm{C}-3 \mathrm{PO}$	167	75	<NA>	gold	yellow	112	none	mascu...
\#\#	3 R2-D2	96	32	<NA>	white, bl...	red	33	none	mascu...
\#\#	4 Darth V...	202	136	none	white	yellow	41.9	male	mascu...
\#\#	5 Leia Or...	150	49	brown	light	brown	19	fema...	femin...
\#\#	6 Owen La...	178	120	brown, gr...	light	blue	52	male	mascu...
\#\#	7 Beru Wh...	165	75	brown	light	blue	47	fema...	femin...
\#\#	8 R5-D4	97	32		white, red	red	NA	none	mascu...
\#\#	9 Biggs D...	183	84	black	light	brown	24	male	mascu...
\#\#	10 Obi-Wan...	182	77	auburn, w...	fair	blue-gray	57	male	mascu...
	\# i 77 more	ows							
	\# i 5 more v \# vehicles	ariables <list>		meworld <chr rships <lis	>, species	chr>, fi	ns <list>,		

1) dplyr::filter

Filter means "subset" the rows of a data frame based on some condition(s).

1) dplyr::filter cont. (pipes)

We can chain multiple commands with the pipe \%>\% from the magrittr package ${ }^{1}$.

```
starwars %>%
    filter(species = "Human", height \geqslant 190)
## # A tibble: 4 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Darth Va... 202 136 none white yellow 41.9 male mascu...
\#\# 2 Qui-Gon ... 19389 brown fair blue 92 male mascu...
\#\# 3 Dooku 19380 white fair brown 102 male mascu...
## 4 Bail Pre... 191 NA black tan brown male mascu...
## # i 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
```

1 Pipes were invented by Doug Mcllroy in 1964, are widely used in Unix shells (e.g. bash) and other programming languages (e.g. F\#). They pass the preceding object as the first argument to the following function. In R, they allow you to chain together code in a way that reads from left to right.

1) dplyr::filter cont.

String operations from the stringr package are also auto-loaded with tidyverse and work well with filter too.

```
starwars %>%
    filter(str_detect(name,'Skywalker')) # str_detect is from the stringr package
## # A tibble: 3 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Luke Sky... 172 77 blond fair blue male mascu...
## 2 Anakin S... 188 84 blond fair blue 41.9 male mascu...
## 3 Shmi Sky... 163 NA black fair brown fema... femin...
## # i 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
```


1) dplyr::filter cont.

A very common filter use case is identifying (or removing) missing data cases.

```
starwars %>%
    filter(is.na(height))
## # A tibble: 6 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Arvel Cr... NA NA brown fair brown male mascu...
# 2 Finn NA NA black dark NA male mascu...
## 3 Rey NA NA brown light hazel NA fema... femin...
## 4 Poe Dame... NA NA brown light brown male mascu...
## 5 BB8 NA NA none none black none mascu...
## 6 Captain ... NA NA unknown unknown unknown NA <NA> <NA>
## # i 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
```

To remove missing observations, simply use negation: filter(!is.na(height)). Try this yourself.

2) dplyr::arrange

2) dplyr::arrange

Note: Arranging on a character-based column (i.e. strings) will sort alphabetically. Try this yourself by arranging according to the "name" column.

2) dplyr::arrange cont.

We can also arrange items in descending order using arrange(desc()).

```
starwars %>%
    arrange(desc(birth_year))
## # A tibble: 87 x 14
```



```
\#\# \# i 77 more rows
## # i 5 more variables: homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>
```


3) dplyr::select

Select means subset the columns of a data frame based on their names.
Use commas to select multiple columns out of a data frame. (You can also use "first:last" for consecutive columns). Deselect a column with "-".

```
starwars %>%
    select(name:skin_color, species, -height) %>%
    head()
## # A tibble: 6 x 5
## name mass hair_color skin_color species
## <chr> <dbl> <chr> <chr> <chr>
## 1 Luke Skywalker 77 blond fair Human
# 2 C-3PO 75 <NA> gold Droid
# 3 R2-D2 32 <NA> white, blue Droid
## 4 Darth Vader white 136 none Human
## 5 Leia Organa 49 brown light Human
## 6 Owen Lars 120 brown, grey light Human
```


3) dplyr::select cont.

You can also rename some (or all) of your selected variables in place.

```
starwars %>%
    select(alias=name, crib=homeworld, sex=gender) %>%
    head()
## # A tibble: 6 x 3
\#\# alias \begin{tabular}{lll} 
\#\# & crib & sex \\
<chr> & <chr>
\end{tabular}
## 1 Luke Skywalker Tatooine masculine
## 2 C-3PO Tatooine masculine
## 3 R2-D2 Naboo masculine
## 4 Darth Vader Tatooine masculine
## 5 Leia Organa Alderaan feminine
## 6 Owen Lars Tatooine masculine
```


3) dplyr::select cont.

You can also rename some (or all) of your selected variables in place.

```
starwars %>%
    select(alias=name, crib=homeworld, sex=gender) %>%
    head()
## # A tibble: 6 x 3
\#\# alias \begin{tabular}{lll} 
\#\# & crib & sex \\
<chr> & <chr>
\end{tabular}
## 1 Luke Skywalker Tatooine masculine
## 2 C-3PO Tatooine masculine
## 3 R2-D2 Naboo masculine
## 4 Darth Vader Tatooine masculine
## 5 Leia Organa Alderaan feminine
## 6 Owen Lars Tatooine masculine
```

If you just want to rename columns without subsetting them, you can use rename. Try this now by replacing select (...) in the above code chunk with rename(...).

3) dplyr::select cont.

The select(contains(PATTERN)) option provides a nice shortcut in relevant cases.

```
starwars %>%
    select(name, contains("color")) %>%
    head()
```

\#\# \# A tibble: 6×4

$\# \#$	name	hair_color	skin_color	eye_color
$\# \#$	<chr>	<chr>	<chr>	<chr>
$\# \#$	1	Luke Skywalker	blond	fair

4) dplyr::mutate

You can create new columns from scratch, or (more commonly) as transformations of existing columns.

```
starwars %>%
    select(name, birth_year) %>%
    mutate(dog_years = birth_year * 7) %>%
    mutate(comment = paste0(name, " is ", dog_years, " in dog years.")) %>%
    head()
## # A tibble: 6 x 4
## name birth_year dog_years comment
## <chr> <dbl> <dbl> <chr>
## 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
## 2 C-3PO 112
## 3 R2-D2 33
    784 C-3PO is 784 in dog years.
    231 R2-D2 is 231 in dog years.
## 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
## 5 Leia Organa 19
## 6 Owen Lars 52
133 Leia Organa is 133 in dog years.
    364 Owen Lars is 364 in dog years.
```


4) dplyr::mutate cont.

Note: mutate is order aware. So you can chain multiple mutates in a single call.

```
starwars %>%
    select(name, birth_year) %>%
    mutate(
        dog_years = birth_year * 7, ## Separate with a comma
        comment = paste0(name, " is ", dog_years, " in dog years.")) %>%
        head()
## # A tibble: 6 x 4
## name birth_year dog_years comment
## <chr> <dbl> <dbl> <chr>
## 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
## 2 C-3PO 112
## 3 R2-D2 33
## 4 Darth Vader 41.9
## 5 Leia Organa 19
## 6 Owen Lars 52
        784 C-3PO is 784 in dog years.
        231 R2-D2 is 231 in dog years.
        293. Darth Vader is 293.3 in dog years.
        133 Leia Organa is 133 in dog years.
        364 Owen Lars is 364 in dog years.
```


4) dplyr::mutate cont.

Boolean, logical and conditional operators all work well with mutate too.

```
starwars %>%
    select(name, height) %>%
    filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>%
    mutate(tall1 = height > 180) %>%
    mutate(tall2 = ifelse(height > 180, "Tall", "Short")) ## Same effect, but can choost
## # A tibble: 2 x 4
## name height tall1 tall2
## <chr> <int> <lgl> <chr>
## 1 Luke Skywalker 172 FALSE Short
## 2 Anakin Skywalker 188 TRUE Tall
```


4) dplyr::mutate cont.

Lastly, combining mutate with the across feature allows you to easily work on a subset of variables. For example:

```
starwars %>%
    select(name:eye_color) %>%
    mutate(across(where(is.character), \(x) toupper(x))) %>%
    head(5)
## # A tibble: 5 x 6
\begin{tabular}{llrclll}
\(\# \#\) & name & height & mass & hair_color & skin_color & eye_color \\
\(\# \#\) & <chr> & <int> & <dbl> & <chr> & <chr> & <chr> \\
\(\# \#\) & 1 & LUKE SKYWALKER & 172 & 77 & BLOND & FAIR
\end{tabular} BLUE
```


4) dplyr::mutate cont.

Lastly, combining mutate with the across feature allows you to easily work on a subset of variables. For example:

```
starwars %>%
    select(name:eye_color) %>%
    mutate(across(where(is.character), \(x) toupper(x))) %>%
    head(5)
```

\#\# \# A tibble: 5×6

$\# \#$	name	height	mass	hair_color	skin_color	eye_color
$\# \#$	<chr>	<int>	<dbl>	<chr>	<chr>	<chr>
$\# \#$	1	LUKE SKYWALKER	172	77	BLOND	FAIR

Try to intuit what $\backslash(x)$ does above!

5) dplyr::summarise

Particularly useful in combination with the group_by command.

```
starwars %>%
    group_by(species, gender) %>%
    summarise(mean_height = mean(height, na.rm = TRUE)) %>%
    head()
## # A tibble: 6 x 3
## # Groups: species [6]
## species gender mean_height
## <chr> <chr> <dbl>
## 1 Aleena masculine 79
## 2 Besalisk masculine 198
## 3 Cerean masculine 198
## 4 Chagrian masculine 196
## 5 Clawdite feminine 168
## 6 Droid feminine 96
```


5) dplyr::summarise cont.

Note that including "na.rm = TRUE" (or, its alias "na.rm = T") is usually a good idea with summarise functions. Otherwise, your output will be missing too.

```
    ## Probably not what we want
starwars %>%
    summarise(mean_height = mean(height))
## # A tibble: 1 x 1
## mean_height
## <dbl>
## 1 NA
    ## Much better
starwars %>%
    summarise(mean_height = mean(height, na.rm = TRUE))
## # A tibble: 1 × 1
## mean_height
## <dbl>
## 1 174.
```


5) dplyr::summarise cont.

The same across-based workflow that we saw with mutate a few slides back also works with summarise. For example:

```
starwars %>%
    group_by(species) %>%
    summarise(across(where(is.numeric), \(x) (mean(x, na.rm=T)))) %>%
    head()
## # A tibble: 6 x 4
## species height mass birth_year
## <chr> <dbl> <dbl> <dbl>
## 1 Aleena 79 15 NaN
## 2 Besalisk 198 102 NaN
## 3 Cerean 198 82 92
## 4 Chagrian 196 NaN NaN
## 5 Clawdite 168 55 NaN
## 6 Droid 131. 69.8 53.3
```


Other dplyr goodies

group_by and ungroup: For (un)grouping.

- Particularly useful with the summarise and mutate commands, as we've already seen.

Other dplyr goodies

group_by and ungroup: For (un)grouping.

- Particularly useful with the summarise and mutate commands, as we've already seen.
slice : Subset rows by position rather than filtering by values.
- starwars \%>\% slice(c(1, 5))

Other dplyr goodies

group_by and ungroup: For (un)grouping.

- Particularly useful with the summarise and mutate commands, as we've already seen.
slice: Subset rows by position rather than filtering by values.
- starwars \%>\% slice(c(1, 5))
pull: Extract a column as a vector or scalar.
- starwars \%>\% filter(gender="female") \%>\% pull(height) returns height as a vector

Other dplyr goodies

group_by and ungroup: For (un)grouping.

- Particularly useful with the summarise and mutate commands, as we've already seen.
slice: Subset rows by position rather than filtering by values.
- starwars \%>\% slice(c(1, 5))
pull : Extract a column as a vector or scalar.
- starwars \%>\% filter(gender="female") \%>\% pull(height) returns height as a vector
count and distinct: Number and isolate unique observations.
- starwars \%>\% count(species), or starwars \%>\% distinct(species)
- Or use mutate, group_by, and n(), e.g. starwars \%>\% group_by(species) \%>\% mutate(num $=n())$.

There are also window functions for leads and lags, ranks, cumulative aggregation, etc.

- See vignette("window-functions").

Quick quiz

Write me code that will tells me the average birth year, unique skin colors, and number of characters by homeworld of the human characters in the starwars dataset.

Submit on mentimeter:
https://www.mentimeter.com/app/presentation/bleq87wo3evgh3j6ks3wqro6zdfh7nwz/v5wc59b5w
Join at menti.com | use code 9737373

Combining data frames

The final set of dplyr "goodies" are the family of append and join operations. However, these are important enough that I want to go over some concepts in a bit more depth...

- We will encounter and practice these many more times as the course progresses.
- Imagine you have two data frames, df1 and df2, that you want to combine.
- You can append: stack the datasets on top of each other and match up the columns
- You can merge (AKA a join): match the rows based on a common identifier
- Each of these is possible with base R, dplyr, and data.table.
- The appropriate choice depends on the task you are trying to accomplish
- Are you trying to add new observations or new variables?

Visualize the difference

Appending

- One way to append in the tidyverse is with bind_rows()
- Base R has rbind(), which requires column names to match
- data.table has rbindlist(), which requires column names to match unless you specify fill

```
df1 \leftarrow data.frame(x = 1:3, y = 4:6)
df2 \leftarrow data.frame(x = 1:4, y = 10:13, z=letters[1:4])
```

\#\# Append df2 to df1
bind_rows(df1, df2)

\#	x	y	z	
$\# \#$	1	1	4	<NA>
$\# \#$	2	2	5	<NA>
$\# \#$	3	3	6	<NA>
$\# \#$	4	1	10	a
$\# \#$	5	2	11	b
$\# \#$	6	3	12	c
$\# \#$	7	4	13	d

One of the mainstays of the dplyr package is merging data with the family join operations.

- inner_join(df1, df2)
- left_join(df1, df2)
- right_join(df1, df2)
- full_join(df1, df2)
- semi_join(df1, df2)
- anti_join(df1, df2)

Joins are how you get Relational Database Managment (RDBM) to work in R.
(See visual depictions of the different join operations here.)

One of the mainstays of the dplyr package is merging data with the family join operations.

- inner_join(df1, df2)
- left_join(df1, df2)
- right_join(df1, df2)
- full_join(df1, df2)
- semi_join(df1, df2)
- anti_join(df1, df2)

Joins are how you get Relational Database Managment (RDBM) to work in R.
(See visual depictions of the different join operations here.)
For the simple examples that I'm going to show here, we'll need some data sets that come bundled with the nycflights13 package.

- Load it now and then inspect these data frames in your own console.
library (nycflights13)
flights
planes

Datasets to merge:

name	country	name	age
Nick	USA	Nick	18
Tom	France	Tom	25
Sara	France	Jennifer	19

inner_join()		
name	country	age
Nick	USA	18
Tom	France	25

full_join()			left_join()		
name	country	age	name	country	age
Nick	USA	18	Nick	USA	18
Tom	France	25	Tom	France	25
Sara	France		Sara	France	
Jennifer		19			

right_join()

name	country	age
Nick	USA	18
Tom	France	25
Jennifer		19

semi_join()
anti_join()

name	country
Sara	France

Source: www.peretaberner.eu and @PereATaberner

Joins (cont.)

Let's perform a left join on the flights and planes datasets.

- Note: I'm going subset columns after the join, but only to keep text on the slide.

Joins (cont.)

Let's perform a left join on the flights and planes datasets.

- Note: I'm going subset columns after the join, but only to keep text on the slide.

```
left_join(flights, planes) %>%
    select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, model)
## Joining with by = join_by(year, tailnum)
## # A tibble: 336,776 x 10
```


\#\# \# i 336,766 more rows

Joins (cont.)

(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name). It also told us its choices:
\#\# Joining, by = c("year", "tailnum")
However, there's a problem here: the variable "year" does not have a consistent meaning across our joining datasets!

- In one it refers to the year of flight, in the other it refers to year of construction.

Joins (cont.)

(continued from previous slide)
Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that share the same name). It also told us its choices:
\#\# Joining, by = c("year", "tailnum")
However, there's a problem here: the variable "year" does not have a consistent meaning across our joining datasets!

- In one it refers to the year of flight, in the other it refers to year of construction.

Luckily, there's an easy way to avoid this problem.

- See if you can figure it out before turning to the next slide.
- Try ?dplyr :: join.
- Submit your answer to menti.com using code 9737373

Joins (cont.)

(continued from previous slide)

You just need to be more explicit in your join call by using the by = argument.

- You can also rename any ambiguous columns to avoid confusion.

```
left_join(
    flights,
    planes %>% rename(year_built = year), ## Not necessary w/ below line, but helpful
    by = "tailnum" ## Be specific about the joining column
    ) %>%
    select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_built, 1
    head(3) ## Just to save vertical space on the slide
```

\#\# \# A tibble: 3×11

\#\# \# i 1 more variable: model <chr>

Joins (cont.)

(continued from previous slide)
Last thing I'll mention for now; note what happens if we again specify the join column... but don't rename the ambiguous "year" column in at least one of the given data frames.

```
left_join(
    flights,
    planes, ## Not renaming "year" to "year_built" this time
    by = "tailnum"
    ) %>%
    select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, 1
    head(3)
## # A tibble: 3 x 11
```


Joins (cont.)

(continued from previous slide)
Last thing I'll mention for now; note what happens if we again specify the join column... but don't rename the ambiguous "year" column in at least one of the given data frames.

```
left_join(
    flights,
    planes, ## Not renaming "year" to "year_built" this time
    by = "tailnum"
    ) %>%
    select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnum, 1
    head(3)
## # A tibble: 3 x 11
```


Make sure you know what "year.x" and "year.y" are. Again, it pays to be specific.

tidyr

Key tidyr verbs

1. pivot_longer : Pivot wide data into long format. ${ }^{1}$
2. pivot_wider: Pivot long data into wide format. ${ }^{2}$
3. separate : Separate (i.e. split) one column into multiple columns.
4. unite: Unite (i.e. combine) multiple columns into one.
[^0]
Key tidyr verbs

1. pivot_longer : Pivot wide data into long format. ${ }^{1}$
2. pivot_wider: Pivot long data into wide format. ${ }^{2}$
3. separate : Separate (i.e. split) one column into multiple columns.
4. unite: Unite (i.e. combine) multiple columns into one.

Let's practice these verbs together in class.

- Side question: Which of pivot_longer vs pivot_wider produces "tidy" data?
${ }^{1}$ Updated version of tidyr :: gather .
2 Updated version of tidyr :: spread.

1) tidyr::pivot_longer

```
stocks = data.frame( ## Could use "tibble" instead of "data.frame" if you prefer
    time = as.Date('2009-01-01') + 0:1,
    X = rnorm(2, 0, 1), Y = rnorm(2, 0, 2), Z = rnorm(2, 0, 4))
stocks
\begin{tabular}{rrrrr} 
\#\# & & time & \(X\) & \(Y\) \\
\#\# & 1 & \(2009-01-01\) & 0.4139186 & -0.3254475 \\
\#\# 2 & \(2009-01-02\) & -1.2610702 & -3.8178951 & -3.455760
\end{tabular}
tidy_stocks = stocks %>% pivot_longer(-time, names_to="stock", values_to="price")
tidy_stocks
## # A tibble: 6 x 3
\begin{tabular}{|c|c|c|c|}
\hline \#\# & time & stock & price \\
\hline \#\# & <date> & <chr> & <dbl> \\
\hline \#\# 1 & 1 2009-01-01 & X & 0.414 \\
\hline \#\# 2 & 2 2009-01-01 & Y & -0.325 \\
\hline \#\# 3 & 3 2009-01-01 & Z & 2.09 \\
\hline \#\# 4 & 4 2009-01-02 & \(X\) & -1.26 \\
\hline \#\# 5 & 5 2009-01-02 & Y & -3.82 \\
\hline \#\# 6 & 6 2009-01-02 & Z & -3.46 \\
\hline
\end{tabular}
```


2) tidyr::pivot_wider

```
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)
## # A tibble: 2 x 4
## time X Y Z
## <date> <dbl> <dbl> <dbl>
## 1 2009-01-01 0.0231 -2.08 -2.22
## 2 2009-01-02 1.25 -3.45 6.01
tidy_stocks %>% pivot_wider(names_from=time, values_from=price)
## # A tibble: 3 x 3
## stock 2009-01-01 2009-01-02
## <chr> <dbl> <dbl>
## 1 X 0.0231 1.25
## 2 Y -2.08 -3.45
## 3 Z
    -2.22
    6.01
```


2) tidyr::pivot_wider

```
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)
## # A tibble: 2 x 4
## time X Y Z
## <date> <dbl> <dbl> <dbl>
## 1 2009-01-01 0.0231 -2.08 -2.22
## 2 2009-01-02 1.25 -3.45 6.01
tidy_stocks %>% pivot_wider(names_from=time, values_from=price)
## # A tibble: 3 x 3
## stock 2009-01-01 2009-01-02
## <chr> <dbl> <dbl>
## 1 X 0.0231 1.25
## 2 Y -2.08 -3.45
## 3
    -2.22
    6.01
```

Note that the second example - which has combined different pivoting arguments - has effectively transposed the data.

2) tidyr::pivot_longer with prefix

Let's pivot the pre-loaded billboard data: showing weekly rankings of top 100 in the year 2000

2) tidyr::pivot_longer with prefix cont.

Wait, why is there 'wk' in the 'week' column?

```
billboard %>%
    pivot_longer(cols=starts_with('wk'), names_to="week",
        values_to="rank") %>%
    head()
## # A tibble: 6 x 5
## artist track date.entered week rank
## <chr> <chr> <date> <chr> <dbl>
## 1 2 Pac Baby Don't Cry (Keep ... 2000-02-26 wk1 87
## 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
## 3 2 Pac Baby Don't Cry (Keep ... 2000-02-26 wk3 72
## 4 2 Pac Baby Don't Cry (Keep ... 2000-02-26 wk4 77
## 5 2 Pac Baby Don't Cry (Keep ... 2000-02-26 wk5 87
## 6 2 Pac Baby Don't Cry (Keep ... 2000-02-26 wk6 94
```

Try to fix with the names_prefix argument. Submit your answer to menti.com using code 97 37373

2) tidyr::pivot_longer with prefix cont.

That fixed it.

```
billboard %>%
    pivot_longer(cols=starts_with('wk'), names_to="week",
        values_to="rank",names_prefix='wk') %>%
    mutate(week=as.numeric(week)) %>% # Make week a numeric variable
    head()
```

\#\# \# A tibble: 6×5

| $\# \#$ | artist track | | date.entered
 <date> | week
 <dbl> | rank |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| <dbl> | | | | | |

Aside: Remembering the pivot_* syntax

There's a long-running joke about no-one being able to remember Stata's "reshape" command. (Exhibit A.)

It's easy to see this happening with the pivot_* functions too. Remember the documentation is your friend!

```
?pivot_longer
```

And GitHub CoPilot, ChatGPT and other Al tools are also your friends if you use precise language about what you want the Al tool to do and you try their suggestions carefully.^[¹]
${ }^{1}$ Back in my day we had to scour StackOverflow for hours to find the right answer. And we liked it!

3) tidyr::separate

```
economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
economists
\#\# name
## 1 Adam.Smith
## 2 Paul.Samuelson
## 3 Milton.Friedman
economists %>% separate(name, c("first_name", "last_name"))
## first_name last_name
## 1 Adam Smith
## 2 Paul Samuelson
## 3 Milton Friedman
```


3) tidyr::separate

```
economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"))
economists
## name
## 1 Adam.Smith
## 2 Paul.Samuelson
## 3 Milton.Friedman
economists %>% separate(name, c("first_name", "last_name"))
## first_name last_name
## 1 Adam Smith
## 2 Paul Samuelson
## 3 Milton Friedman
```

This command is pretty smart at detecting separators. But to avoid ambiguity, you can also specify the separation character with separate(... , sep=".").

3) tidyr::separate cont.

A related function is separate_rows, for splitting up cells that contain multiple fields or observations (a frustratingly common occurence with survey data).

```
jobs = data.frame(
    name = c("Jack", "Jill"),
    occupation = c("Homemaker", "Philosopher, Philanthropist, Troublemaker")
    )
jobs
\begin{tabular}{rrr} 
\#\# & name & \begin{tabular}{r} 
occupation \\
Homemaker
\end{tabular} \\
\# & 2 & Jack
\end{tabular} \begin{tabular}{r} 
Jill Philosopher, Philanthropist, \\
Troublemaker
\end{tabular}
## Now split out Jill's various occupations into different rows
jobs %>% separate_rows(occupation)
## # A tibble: 4 x 2
## name occupation
## <chr> <chr>
## 1 Jack Homemaker
## 2 Jill Philosopher
## 3 Jill Philanthropist
\#\# 4 Jill Troublemaker
```


4) tidyr::unite

```
gdp = data.frame(
    yr = rep(2016, times = 4),
    mnth = rep(1, times = 4),
    dy = 1:4,
    gdp = rnorm(4, mean = 100, sd = 2)
    )
gdp
```

| \#\# | yr | | mnth | dy |
| :--- | ---: | ---: | ---: | ---: |\quad gdp

\#\# Combine "yr", "mnth", and "dy" into one "date" column
gdp \%>\% unite(date, c("yr", "mnth", "dy"), sep = "-")
\#\# date gdp
\#\# 1 2016-1-1 98.78633
\#\# 2 2016-1-2 98.44948
\#\# 3 2016-1-3 95.33033
\#\# 4 2016-1-4 101.95293

4) tidyr::unite cont.

Note that unite will automatically create a character variable. You can see this better if we convert it to a tibble.

```
gdp_u = gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-") %>% as_tibble()
gdp_u
## # A tibble: 4 x 2
## date gdp
## <chr> <dbl>
## 1 2016-1-1 98.8
## 2 2016-1-2 98.4
## 3 2016-1-3 95.3
## 4 2016-1-4 102.
```


4) tidyr::unite cont.

Note that unite will automatically create a character variable. You can see this better if we convert it to a tibble.

```
gdp_u = gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-") %>% as_tibble()
gdp_u
## # A tibble: 4 x 2
## date gdp
## <chr> <dbl>
## 1 2016-1-1 98.8
## 2 2016-1-2 98.4
## 3 2016-1-3 95.3
## 4 2016-1-4 102.
```

If you want to convert it to something else (e.g. date or numeric) then you will need to modify it using mutate. See the next slide for an example, using the lubridate package's super helpful date conversion functions.

4) tidyr::unite cont.

```
(continued from previous slide)
library(lubridate)
gdp_u %>% mutate(date = ymd(date))
## # A tibble: 4 x 2
## date gdp
## <date> <dbl>
## 1 2016-01-01 98.8
## 2 2016-01-02 98.4
## 3 2016-01-03 95.3
## 4 2016-01-04 102.
```


Other tidyr goodies

- fill: Fill in missing values with the last non-missing value.
- fill(df, starts_with("X")) will fill in missing values in all columns that start with "X".
- drop_na: Drop rows with missing values.
- expand : Create a complete set of combinations from a set of factors.
- nest and unnest: Combine columns into lists within a single cell or split a column of lists into separate rows.
- Try with the starwars data frame: unnest(starwars, films, names_sep='')
- And much, much more

Summary

dplyr

1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr

1. pivot_longer
2. pivot_wider
3. separate
4. unite

Key verbs

dplyr

1. filter
2. arrange
3. select
4. mutate
5. summarise

tidyr

1. pivot_longer
2. pivot_wider
3. separate
4. unite

Other useful items include: pipes (\%>\%), grouping (group_by), joining functions (left_join, inner_join, etc.).

Start your problem set!

- Go to the course calendar and click on the link for problem set 2
- Fork and clone the repository to your GitHub account
- Follow instructions to get the NLSY downloaded and loaded into your R environment

Next lecture: Scraping data!

[^0]: ${ }^{1}$ Updated version of tidyr :: gather .
 ${ }^{2}$ Updated version of tidyr :: spread.

