
Big Data and Economics
Lecture 4: R language basics

Grant McDermott, adapted by Kyle Coombs
Bates College | EC/DCS 368

https://github.com/ECON368-fall2023-big-data-and-economics

Table of contents
1. Prologue

2. Introduction

3. Object-oriented programming in R

4. "Everything is an object"

5. "Everything has a name"

6. Indexing1

7. Cleaning up1

1 Items 6 and 7 are less critical to complete today. 6 is helpful to understand, but we can come
back to it later as needed. 7 is just tips on how to refresh your R session without restarting.

2 / 56

Prologue

3 / 56

Housekeeping
Full version of these slides available on Grant McDermott's website

Project proposals looked good:

Note: Some of these papers have proprietary data components, I need you to
confirm that you can replicate sufficient parts of their analysis
Note 2: Some of you picked experimental data (cool), I want you to spend some
time stress-testing to confirm the data are "real"
Unless I specifically say otherwise, you should not upload to Lyceum

Please navigate to these slides on your desktop to follow along

Try the code interactively on your laptop (with a Codespace or by forking/cloning the
repository to your computer)

4 / 56

https://github.com/uo-ec607/lectures

Checklist
☑ Fork repo class material if you haven't done so

☑ Clone repo if you haven't done so

☑ Pull from the lecture repo to get the latest slides.

☑ Update your R packages. Do this regularly as a matter of good habit. (update.packages()
should do the trick, or click Update under the Packages tab (lower right-hand side))

5 / 56

Agenda
We're going to spent a lot of time live coding together. This is deliberate.

I want you to type R commands — and navigate RStudio — without copy+paste.

Slightly more painful in the beginning, but much better payoff in the long-run.

Goal:

Today's goal is to make sure you know how to do basic skills in R

These skills may seem simple, but are a critical foundation for the rest of the course

There will also be some review from PS1

This is intentional: it is easier to understand a concept you see in multiple contexts
It also proves to you that you can figure a lot out on your own

Not the goal: Fluency

My goal is not that you leave this lecture, or even this class, fluent in R
That's outside the scope of 80 minutes, let alone 12 weeks

6 / 56

While I still have your attention
Guess what? Everything I'm teaching you is summarized in a cheatsheet

Posit, the parent organization of R, hosts loads of cheatsheets

I link to them on the course website

I cannot stress enough how useful these are when trying to figure out how to write code

It will save you time painstakingly searching Google, StackOverflow, scouring help files,
and bickering with ChatGPT/GitHub CoPilot, etc.

7 / 56

https://posit.co/resources/cheatsheets/

Introduction

(Some important R concepts)

8 / 56

Basic arithmetic
R is a powerful calculator and recognizes all of the standard arithmetic operators:

1+2 ## Addition

[1] 3

6-7 ## Subtraction

[1] -1

5/2 ## Division

[1] 2.5

2^3 ## Exponentiation

[1] 8

2+4*1^3 ## Please Excuse My Dear Aunt Sally (PEMDAS)

[1] 6
9 / 56

Basic arithmetic (cont.)
We can also invoke modulo operators (integer division & remainder).

Very useful when dealing with time, for example.

100 %/% 60 ## How many whole hours in 100 minutes?

[1] 1

100 %% 60 ## How many minutes are left over?

[1] 40

10 / 56

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

[1] FALSE

1 > 2 & 1 > 0.5 ## The "&" stands for "and"

[1] FALSE

1 > 2 | 1 > 0.5 ## The "|" stands for "or" (not a pipe a la the shell)

[1] TRUE

isTRUE (1 < 2)

[1] TRUE

11 / 56

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

[1] FALSE

1 > 2 & 1 > 0.5 ## The "&" stands for "and"

[1] FALSE

1 > 2 | 1 > 0.5 ## The "|" stands for "or" (not a pipe a la the shell)

[1] TRUE

isTRUE (1 < 2)

[1] TRUE

You can read more about logical operators and types here and here. In the next few slides,
however, I want to emphasise some special concepts and gotchas... 11 / 56

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Logic.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/logical.html

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

12 / 56

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , == , etc) are evaluated before Boolean operators (& and |). Failure to
recognise this can lead to unexpected behaviour...

12 / 56

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , == , etc) are evaluated before Boolean operators (& and |). Failure to
recognise this can lead to unexpected behaviour...

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2)==TRUE .

12 / 56

Logic (cont.)

Order of precedence
Is this statement TRUE or FALSE?

1 > 0.5 & 2

Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , == , etc) are evaluated before Boolean operators (& and |). Failure to
recognise this can lead to unexpected behaviour...

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2)==TRUE .

Solution: Be explicit about each component of your logic statement(s).

1 > 0.5 & 1 > 2

[1] FALSE
12 / 56

Logic (cont.)

Negation: !
We use ! as a short hand for negation. This will come in very handy when we start filtering
data objects based on non-missing (i.e. non-NA) observations.

is.na(1:10)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

!is.na(1:10)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Negate(is.na)(1:10) ## This also works. Try it yourself.

13 / 56

Logical operators (cont.)

Value matching: %in%
To see whether an object is contained within (i.e. matches one of) a list of items, use %in% 1 .

4 %in% 1:10

[1] TRUE

4 %in% 5:10

[1] FALSE

1 There's no equivalent "not in" command, but how might we go about creating one? See here.

14 / 56

Logical operators (cont.)

Evaluation
We'll get to assignment shortly. However, to preempt it somewhat, we use two equal signs
for logical evaluation.

1 = 1 ## This doesn't work

Error in 1 = 1: invalid (do_set) left-hand side to assignment

1 == 1 ## This does.

[1] TRUE

1 != 2 ## Note the single equal sign when combined with a negation.

[1] TRUE

15 / 56

if/else
The if/else statement is a fundamental building block of programming logic. It allows us to
evaluate a logical statement and then execute a particular command if that statement is
TRUE. For example:

x = 5
if (1>x) {
 print("x is greater than 1")
} else {
 print("x is less than or equal to 1")
}

[1] "x is less than or equal to 1"

R's ifelse collapses this into one line. (Try it yourself.)

ifelse(1>x, "x is greater than 1", "x is less than or equal to 1")

[1] "x is less than or equal to 1"

16 / 56

Assignment
In R, we can use either <- or = to handle assignment.1

17 / 56

Assignment
In R, we can use either <- or = to handle assignment.1

Assignment with <-
<- is normally read aloud as "gets". You can think of it as a (left-facing) arrow saying assign
in this direction.2

a <- 10 + 5
a

[1] 15

17 / 56

Assignment
In R, we can use either <- or = to handle assignment.1

Assignment with <-
<- is normally read aloud as "gets". You can think of it as a (left-facing) arrow saying assign
in this direction.2

a <- 10 + 5
a

[1] 15

1 The <- is really a < followed by a - . It just looks like one thing b/c of the font I'm using here.

2 An arrow can point in the other direction too (i.e. ->). So, 10 + 5 -> a following code chunk is
equivalent, although used much less frequently.

17 / 56

https://github.com/tonsky/FiraCode

Assignment (cont.)

Assignment with =
You can also use = for assignment.

b = 10 + 10 ## Note that the assigned object *must* be on the left with "=".
b

[1] 20

18 / 56

Assignment (cont.)

Assignment with =
You can also use = for assignment.

b = 10 + 10 ## Note that the assigned object *must* be on the left with "=".
b

[1] 20

Which assignment operator to use?
Most R users (purists?) seem to prefer <- for assignment, since = also has specific role for
evaluation within functions.

We'll see lots of examples of this later.
But I don't think it matters; = is quicker to type and is more intuitive if you're coming
from another programming language. (More discussion here and here.)

Bottom line: Pick one and be consistent.

18 / 56

https://github.com/Robinlovelace/geocompr/issues/319#issuecomment-427376764
https://www.separatinghyperplanes.com/2018/02/why-you-should-use-and-never.html

Challenge: Detect government payments
Imagine that you have a large bank transaction dataset. You know government payments are
only divisible by $100, but never divisible by $4 or $400.

Write code to check if a transaction is possibly a government payment.

Implement the modulo operator %
Employ the corder order of logical operators (& , |)
Utilize any arithmetic operations you need

transaction <- 9400
Your code here

I had to do a slightly more complicated verison of this for my dissertation.

19 / 56

Help
For more information on a (named) function or object in R, consult the "help"
documentation. For example:

help(plot)

Or, more simply, just use ? :

?plot # This is what most people use.

20 / 56

Help
For more information on a (named) function or object in R, consult the "help"
documentation. For example:

help(plot)

Or, more simply, just use ? :

?plot # This is what most people use.

Aside 1: Comments in R are demarcated by # .

Hit Ctrl+Shift+c (Cmd+Shift+c on Macs) in RStudio to (un)comment whole sections of
highlighted code.
In Rmarkdown files, <!--- ---> is the equivalent syntax for comments. NOT # .

Yes, that's confusing. Yes, I expect you to use the syntax correctly.

20 / 56

Help
For more information on a (named) function or object in R, consult the "help"
documentation. For example:

help(plot)

Or, more simply, just use ? :

?plot # This is what most people use.

Aside 1: Comments in R are demarcated by # .

Hit Ctrl+Shift+c (Cmd+Shift+c on Macs) in RStudio to (un)comment whole sections of
highlighted code.
In Rmarkdown files, <!--- ---> is the equivalent syntax for comments. NOT # .

Yes, that's confusing. Yes, I expect you to use the syntax correctly.

Aside 2: See the Examples section at the bottom of the help file?

You can run them with the example() function. Try it: example(plot) .

20 / 56

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

21 / 56

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

I highly encourage reading package vignettes if they are available.

They are often the best way to learn how to use a package.

21 / 56

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

I highly encourage reading package vignettes if they are available.

They are often the best way to learn how to use a package.

One complication is that you need to know the exact name of the package vignette(s).

E.g. The dplyr package actually has several vignettes associated with it: "dplyr",
"window-functions", "programming", etc.
You can run vignette() (i.e. without any arguments) to list the available vignettes of
every installed package installed on your system.
Or, run vignette(all = FALSE) if you only want to see the vignettes of any loaded
packages.

21 / 56

Help (cont.)

Demos
Similar to vignettes, many packages come with built-in, interactive demos.

To list all available demos on your system:1

demo(package = .packages(all.available = TRUE))

1 How would you limit the demos to one particular package?

22 / 56

Help (cont.)

Demos
Similar to vignettes, many packages come with built-in, interactive demos.

To list all available demos on your system:1

demo(package = .packages(all.available = TRUE))

To run a specific demo, just tell R which one and the name of the parent package. For
example:

demo("graphics", package = "graphics")

1 How would you limit the demos to one particular package?

22 / 56

Object-oriented programming in R

23 / 56

Motivation
R is an object-oriented programming (OOP)1 , which is often summarised as:

"Everything is an object and everything has a name."

24 / 56

https://en.wikipedia.org/wiki/Object-oriented_programming

Motivation
R is an object-oriented programming (OOP)1 , which is often summarised as:

"Everything is an object and everything has a name."

In the next two sections, I want to dive into this idea a little more. I also want to preempt
some issues that might trip you up if you new to R or OOP in general.

At least, they were things that tripped me up at the beginning (and still do)

The good news is that avoiding and solving these issues is pretty straightforward.

Not to mention: A very small price to pay for the freedom and control that R offers us.

1 Technically, there are actually multiple OOP frameworks in R (S3, S4, R6). Hadley Wickham's
"Advanced R" provides a very thorough overview of the main ones. Read his book sometime if
you're into this stuff, it is superbly helpful.

24 / 56

https://en.wikipedia.org/wiki/Object-oriented_programming
https://adv-r.hadley.nz/oo.html

"Everything is an object"

25 / 56

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful
simply to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

26 / 56

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful
simply to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

Most likely, you already have a good idea of what distinguishes these objects and how to
use them.

However, there are subtleties that may confuse while you're still getting used to R.
E.g. There are different kinds of data frames. "tibbles" and "data.tables" are enhanced
versions of the standard data frame in R.

26 / 56

https://tibble.tidyverse.org/
https://rdatatable.gitlab.io/data.table/articles/datatable-intro.html#what-is-datatable-1a

Object class, type, and structure
Create a small data frame called "df1".
df1 = data.frame(x = 1:2, y = 3:4)

Use the class , typeof , and str commands to understand more about a particular object.

class(df1) ## Evaluate its class.

[1] "data.frame"

typeof(df1) ## Evaluate its type.

[1] "list"

str(df1) ## Show its structure.

'data.frame': 2 obs. of 2 variables:
$ x: int 1 2
$ y: int 3 4

27 / 56

Object class, type, and structure
Create a small data frame called "df1".
df1 = data.frame(x = 1:2, y = 3:4)

Use the class , typeof , and str commands to understand more about a particular object.

class(df1) ## Evaluate its class.

[1] "data.frame"

typeof(df1) ## Evaluate its type.

[1] "list"

str(df1) ## Show its structure.

'data.frame': 2 obs. of 2 variables:
$ x: int 1 2
$ y: int 3 4
PS — Confused why typeof(df1) returns "list"? See here.

PPS — Convert classes with as.[class]() . e.g. as.matrix(df1) makes a matrix.

27 / 56

https://stackoverflow.com/questions/45396538/typeofdata-frame-shows-list-in-r

Object class, type, and structure (cont.)
Of course, you can always just inspect/print an object directly in the console.

E.g. Type df1 and hit Enter.

df1

x y
1 1 3
2 2 4

The View() function is also very helpful. This is the same as clicking on the object in your
RStudio Environment pane. (Try both methods now.)

E.g. View(df1) .

Why is it important to know how to inspect objects?

28 / 56

Object class, type, and structure (cont.)
Of course, you can always just inspect/print an object directly in the console.

E.g. Type df1 and hit Enter.

df1

x y
1 1 3
2 2 4

The View() function is also very helpful. This is the same as clicking on the object in your
RStudio Environment pane. (Try both methods now.)

E.g. View(df1) .

Why is it important to know how to inspect objects?

R is open source and you will often be working with functions that you did not write
which return objects that you are unfamiliar with.

28 / 56

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

df1

x y
1 1 3
2 2 4

29 / 56

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

df1

x y
1 1 3
2 2 4

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) ## The "lm" stands for linear model(s)

Error in eval(predvars, data, env): object 'y' not found

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.

29 / 56

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

df1

x y
1 1 3
2 2 4

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) ## The "lm" stands for linear model(s)

Error in eval(predvars, data, env): object 'y' not found

Uh-oh. What went wrong here? (Answer on next slide.)

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.

29 / 56

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

30 / 56

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

R can't find the variables that we've supplied in our Global Environment:

30 / 56

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
The error message provides the answer to our question:

Error in eval(predvars, data, env): object 'y' not found

R can't find the variables that we've supplied in our Global Environment:

Put differently: Because the variables "x" and "y" live as separate objects in the global
environment, we have to tell R that they belong to the object df1 .

Think about how you might do this before clicking through to the next slide. 30 / 56

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = df1) ## Works when we add "data = df1"!

Call:
lm(formula = y ~ x, data = df1)

Coefficients:
(Intercept) x
2 1

31 / 56

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = df1) ## Works when we add "data = df1"!

Call:
lm(formula = y ~ x, data = df1)

Coefficients:
(Intercept) x
2 1

I want to emphasize this global environment issue, because it is something that Stata users
(i.e. many economists) struggle with when they first come to R.

In Stata, the entire workspace essentially consists of one (and only one) data frame
meaning no ambiguity where variables are coming from.
That "convenience" has a high price -- literally you need to buy Stata 16 or higher to use
frames to open multiple data frames with less flexibility.
Speaking of which...

31 / 56

Working with multiple objects
R's ability to keep multiple objects in memory at the same time is a huge plus when it
comes to effective data work.

E.g. We can copy an exiting data frame, or create new one entirely from scratch. Either
will exist happily with our existing objects in the global environment.

df2 = data.frame(x = rnorm(10), y = runif(10))

32 / 56

Working with multiple objects (cont.)
Again, however, it does mean that you have to pay attention to the names of those distinct
data frames and be specific about which objects you are referring to.

Do we want to run a regression of "y" on "x" from data frame df1 or data frame df2 ?

33 / 56

"Everything has a name"

34 / 56

Reserved words
We've seen that we can assign objects to different names. However, there are a number of
special words that are "reserved" in R.

These are are fundamental commands, operators and relations in base R that you
cannot (re)assign, even if you wanted to.
We already encountered examples with the logical operators.

See here for a full list, including (but not limited to):

if
else
while
function
for
TRUE
FALSE
NULL
Inf
NaN
NA

35 / 56

http://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings you
might call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for
concatenation; i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

[1] 1 2 5

36 / 56

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings you
might call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for
concatenation; i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

[1] 1 2 5

What happens if you type the following? (Try it in your console.)

c = 4
c(1, 2 ,5)

36 / 56

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

37 / 56

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
conflicting definitions. And neither will you. For example:

pi

[1] 3.141593

pi = 2
pi

[1] 2

37 / 56

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
conflicting definitions. And neither will you. For example:

pi

[1] 3.141593

pi = 2
pi

[1] 2

Two fixes:

1. rm(pi)
2. Restart your RStudio session

i ()

37 / 56

Namespace conflicts
A similar issue crops up when we load two packages, which have functions that share the
same name. E.g. Look what happens we load the dplyr package.

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

38 / 56

Namespace conflicts
A similar issue crops up when we load two packages, which have functions that share the
same name. E.g. Look what happens we load the dplyr package.

library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

The messages that you see about some object being masked from 'package:X' are warning
you about a namespace conflict.

E.g. Both dplyr and the stats package (which gets loaded automatically when you
start R) have functions named "filter" and "lag".

38 / 56

Namespace conflicts (cont.)
The potential for namespace conflicts is a result of the OOP approach.1

Also reflects the fundamental open-source nature of R and the use of external
packages. People are free to call their functions whatever they want, so some overlap is
only to be expected.

1 Similar problems arise in virtually every other programming language (Python, C, etc.)

39 / 56

Namespace conflicts (cont.)
The potential for namespace conflicts is a result of the OOP approach.1

Also reflects the fundamental open-source nature of R and the use of external
packages. People are free to call their functions whatever they want, so some overlap is
only to be expected.

Whenever a namespace conflict arises, the most recently loaded package will gain
preference. So the filter() function now refers specifically to the dplyr variant.

But what if we want the stats variant? Well, we have two options:

1. Temporarily use stats::filter()
2. Permanently assign filter = stats::filter

1 Similar problems arise in virtually every other programming language (Python, C, etc.)

39 / 56

Solving namespace conflicts

1. Use package::function()
We can explicitly call a conflicted function from a particular package using the
package::function() syntax. For example:

stats::filter(1:10, rep(1, 2))

Time Series:
Start = 1
End = 10
Frequency = 1
[1] 3 5 7 9 11 13 15 17 19 NA

40 / 56

Solving namespace conflicts

1. Use package::function()
We can explicitly call a conflicted function from a particular package using the
package::function() syntax. For example:

stats::filter(1:10, rep(1, 2))

Time Series:
Start = 1
End = 10
Frequency = 1
[1] 3 5 7 9 11 13 15 17 19 NA

We can also use :: for more than just conflicted cases.

E.g. Being explicit about where a function (or dataset) comes from can help add clarity
to our code. Try these lines of code in your R console.

dplyr::starwars ## Print the starwars data frame from the dplyr package
scales::comma(c(1000, 1000000)) ## Use the comma function, which comes from the scales

40 / 56

Solving namespace conflicts (cont.)

2. Assign function = package::function
A more permanent solution is to assign a conflicted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats::filter ## Note the lack of parentheses.
filter = dplyr::filter ## Change it back again.

41 / 56

Solving namespace conflicts (cont.)

2. Assign function = package::function
A more permanent solution is to assign a conflicted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats::filter ## Note the lack of parentheses.
filter = dplyr::filter ## Change it back again.

General advice
I would generally advocate for the temporary package::function() solution.

Another good rule of thumb is that you want to load your most important packages last. (E.g.
Load the tidyverse after you've already loaded any other packages.)

Other than that, simply pay attention to any warnings when loading a new package and ? is
your friend if you're ever unsure. (E.g. ?filter will tell you which variant is being used.)

In truth, problematic namespace conflicts are rare. But it's good to be aware of them.

41 / 56

User-side namespace conflicts
A final thing to say about namespace conflicts is that they don't only arise from loading
packages. They can arise when users create their own functions with a conflicting name.

E.g. If I was naive enough to create a new function called c() .

42 / 56

User-side namespace conflicts
A final thing to say about namespace conflicts is that they don't only arise from loading
packages. They can arise when users create their own functions with a conflicting name.

E.g. If I was naive enough to create a new function called c() .

In a similar vein, one of the most common and confusing errors that even experienced R
programmers run into is related to the habit of calling objects "df" or "data"... both of which
are functions in base R!1

See for yourself by typing ?df or ?data .

Again, R will figure out what you mean if you are clear/lucky enough. But, much the same as
with c() , it's relatively easy to run into problems.

Case in point: Triggering the infamous "object of type closure is not subsettable" error
message. (See from 1:45 here.)

1 Guess who has two thumbs and keeps making this mistake? This guy.

42 / 56

https://rstudio.com/resources/rstudioconf-2020/object-of-type-closure-is-not-subsettable/

Indexing

43 / 56

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.1 In this case,
a vector of length one equal to the value "3".

44 / 56

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

[1] 3

The [1] above denotes the first (and, in this case, only) element of our output.1 In this case,
a vector of length one equal to the value "3".

Try the following in your console to see a more explicit example of indexed output:

rnorm(n = 100, mean = 0, sd = 1)
rnorm(100) ## Would work just as well. (Why? Hint: see ?rnorm)

[1] Indexing in R begins at 1. Not 0 like some languages (e.g. Python, JavaScript, or my problem
sets).

44 / 56

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] ## Get the 4th element of object "a"

[1] 4

a[c(4, 6)] ## Get the 4th and 6th elements

[1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

df1[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame

[1] 1

45 / 56

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] ## Get the 4th element of object "a"

[1] 4

a[c(4, 6)] ## Get the 4th and 6th elements

[1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

df1[1, 1] ## Show the cell corresponding to the 1st row & 1st column of the data frame

[1] 1

What does df2[1:3, 1] give you?

45 / 56

Option 1: [] (cont.)
We haven't covered them yet, but lists are a more complex type of array object in R.

They can contain an assortment of objects that don't share the same class, or have the
same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

46 / 56

Option 1: [] (cont.)
We haven't covered them yet, but lists are a more complex type of array object in R.

They can contain an assortment of objects that don't share the same class, or have the
same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

The relevance to indexing is that lists require two square brackets [[]] to index the parent
list item and then the standard [] within that parent item. An example might help to
illustrate:

my_list = list(a = "hello", b = c(1,2,3), c = data.frame(x = 1:5, y = 6:10))
my_list[[1]] ## Return the 1st list object

[1] "hello"

my_list[[2]][3] ## Return the 3rd element of the 2nd list object

[1] 3

46 / 56

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

$a
[1] "hello"

$b
[1] 1 2 3

$c
x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

47 / 56

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

$a
[1] "hello"

$b
[1] 1 2 3

$c
x y
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

Notice how our (named) parent list objects are demarcated: "$a", "$b" and "$c".

47 / 56

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a ## Return list object "a"

[1] "hello"

my_list$b[3] ## Return the 3rd element of list object "b"

[1] 3

my_listcx ## Return column "x" of list object "c"

[1] 1 2 3 4 5

48 / 56

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a ## Return list object "a"

[1] "hello"

my_list$b[3] ## Return the 3rd element of list object "b"

[1] 3

my_listcx ## Return column "x" of list object "c"

[1] 1 2 3 4 5

Aside: Typing View(my_list) (or, equivalently, clicking on the object in RStudio's
environment pane) provides a nice interactive window for exploring the nested structure of
lists.

48 / 56

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R, like data.frame s.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the our data frame.

df2$x[1]

[1] -0.8884779

49 / 56

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R, like data.frame s.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the our data frame.

df2$x[1]

[1] -0.8884779

However, note some key differences between the output from this example and that of our
previous df2[1, 1] example. What are they?

Hint: Apart from the visual cues, try wrapping each command in str() .

49 / 56

Option 2: $ (cont.)
The last thing that I want to say about $ is that it provides another way to avoid the "object
not found" problem that we ran into with our earlier regression example.

lm(y ~ x) ## Doesn't work

Error in eval(predvars, data, env): object 'y' not found

lm(df1$y ~ df1$x) ## Works!

Call:
lm(formula = df1$y ~ df1$x)

Coefficients:
(Intercept) df1$x
2 1

50 / 56

Cleaning up

51 / 56

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment
(except packages), but this is frowned upon.

Better just to start a new R session.

52 / 56

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment
(except packages), but this is frowned upon.

Better just to start a new R session.

Detaching packages is more complicated, because there are so many cross-dependencies
(i.e. one package depends on, and might even automatically load, another.) However, you can
try, e.g. detach(package:dplyr)

Again, better just to restart your R session.

52 / 56

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

53 / 56

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

You may also have noticed that RStudio has convenient buttons for clearing your workspace
environment and removing (individual) plots. Just look for these icons in the relevant
window panels:

53 / 56

Next lecture(s): Data wrangling and
cleaning

54 / 56

Appendix

55 / 56

Not in
There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

56 / 56

Not in
There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

`%ni%` = Negate(`%in%`) ## The backticks (`) help to specify functions.
4 %ni% 5:10

[1] TRUE

Back

56 / 56

