
Data Science for Economists
Lecture 3: Data tips

Kyle Coombs
Bates College | ECON/DCS 368

https://github.com/big-data-and-economics

Table of contents
Prologue
Empirical Work�ow

Downloading data
File formats
Archiving & �le compression
Data checks

Big Data �le types (if time)
Dictionaries (if time)

2 / 58

ProloguePrologue

Prologue
Today we'll focus on grappling with data

Checklist to ensure data quality

File formats and extensions

Archiving & �le compression

If time:

Dictionaries (hash tables)

Big Data �le types

4 / 58

Why do we need to do this?
We summarize data because we can't look at every data point and see a pattern
But lots of data are messy or frankly bogus, but you wouldn't know it from sum stats
Meet Anscombe's Quartet (Anscombe, 1973)

5 / 58

DataSarus Dozen

6 / 58

Not every odd dataset is wrong
Sometimes bizarre looking dataset is real (see the Japan Phillips curve)

For example, sometimes there are real outliers in the data

You'll need to decide what to do about them

But sometimes they're a sign of nonsense or "NA"/missing values

If you �nd an oddity in your data, you still have to decide what it is and how to handle it

Maybe that odd outlier is real, so you shouldn't drop it
Are the data missing? Due to randomness or a systematic error?

Throughout this course we'll think about how to deal with these issues

Today we're making sure you have safeguards in place so you don't write an entire paper only to
discover your dataset looks like a T-rex

7 / 58

https://twitter.com/BaldwinRE/status/1372920323943886849/photo/1

Types of data
�. "Long" data (a.k.a. "Big-N" data because very, very large [and may not all �t onto a single hard

drive!], government tax records, Medicare claims data, etc.)

�. "Wide" data (a.k.a. "Big-K" data because , customer data sets where each click is a variable)

�. "Wild" data (unstructured; happenstance; collected without a particular intention; e.g. twitter,
contrast with Census surveys)

�. "Big Data" is a catch-all for any combination of the above data types that is hard to analyze with
classical methods like OLS regression

Too many variables
Too many observations
Needs special wrangling or analysis

N

K > N

8 / 58

Long data

Main application: identifying causal effects
Example: effects of improving schools on income

9 / 58

Wide data

Main application: prediction
Example: predicting income to target ads from tons of information like location, links clicked, etc.

10 / 58

Wild Data

<caption>List of men's Olympic records in athletics
��caption>
<tbody><tr>
<th scope="col" width="12%">Event
��th>
<th class="unsortable" width="5%">Record
��th>
<th scope="col" width="10%">Athlete(s)
��th>
<th scope="col" width="15%">Nation
��th>
<th scope="col" width="10%">Games
��th>
<th scope="col" width="5%">Date
��th>
<th scope="col" class="unsortable" width="3%">Ref(s)
��th>��tr>
<tr>
<th scope="row">100
��th>
<td align="right">9.63
��td>
<td><a href="/wiki/Usain_Bolt"
��td>

11 / 58

Why does data type matter?

12 / 58

Why does data type matter?
�. Data type determines how much memory is required to store information

�. Data type determines what method you can use to read and analyze the data

12 / 58

Why does data type matter?
�. Data type determines how much memory is required to store information

�. Data type determines what method you can use to read and analyze the data

A difference-in-difference model requires a different data shape than a regression
discontinuity model
You cannot have a wide data set with one row per unit and one column per year

12 / 58

What question are you asking?
Any dataset, no matter how big, has simpli�ed the world in some way

You want the simpli�cation to match the question

How do you record where a person is?

County? Lots of people have same location.
IP address? Changes frequently
GPS coordinates? Too precise, and changes every second!

Your question and theory should guide your data collection

Are you curious about the effect of local government policies or �rms on people?
Are you looking to measure the effect of air pollution on health?
Do you want to see how people change their commute patterns over time? When there is a
road closure?

13 / 58

Empirical Work�owEmpirical Work�ow

Work�ow work�ow work�ow

The Cunningham Empirical Work�ow Conjecture
The cause of most of your empirical coding errors is not due to insuf�cient knowledge of syntax in
your chosen programming language

The cause of most of your errors is due to a poorly designed Empirical Work�ow

Empirical Work�ow: A �xed set of routines you always follow to identify the most common errors

Think of it as your morning routine: alarm goes off, go to wash up, make your coffee/tea, put
pop tart in toaster, contemplate your existence in the universe until ding, eat pop tart repeat
ad in�nitum

Finding weird errors is a different task; empirical work�ows catch typical and common errors

Empirical work�ows follow a checklist

15 / 58

Why do we use checklists?
My weekly Tuesday routine involves driving from Melrose, MA to Lewiston, ME by class start

I need to make sure I have everything I need for the next two days (minimum)

I have a checklist of things I need to do before I leave the house

☐ Wake up by 7am, ideally 6am

☐ Start coffee

☐ Boil water for tea

☐ Prep breakfast

☐ Bring my spouse coffee in bed (bonus item)

☐ Pour tea into travel mug

☐ Make sure laptop, charger, lunch, and phone are in bag

☐ Eat breakfast

☐ etc

16 / 58

To remember the obvious stuff
When I stop to think, I know I need to do everything on my checklists

But then I forget when I move onto the next task

Programming is the same, except you have an empirical checklist:

The empirical checklist:

Covers the intermediate step between "getting the data" and "analyzing the data"
It largely focuses on ensuring data quality for the most common, easy to identify problems
It'll make you a better coauthor

17 / 58

Simple data checklist items
Simple, yet non-negotiable, programming commands and exercises to check for data errors

1. Read the documentation

2. Download the data and documentation

3. Open the data

4. Look at the data ("Real eyes realize real lies"1)

5. Look at summaries and frequency tables of variables

6. Plot histograms of key variables

7. Visualize by key groups

8. Check sum stats by key groups

9. Check if the data are the right "size"

There are many more potential checklist: you'll develop your own with experience

First, above all else, read any documentation associated with the �le

Codebooks, READMEs, etc.: not riveting, but they clarify little things and save hours of work
1 Attributed to Ray Charles, Woody Guthrie, Tupac Shakur, Machine Head, and others 18 / 58

Downloading dataDownloading data

2. Downloading data
Often it is good practice to have a script that downloads the data for you

This way, you can rerun the script and get the latest version of the data

Of course, there is a tradeoff to this -- your results may not replicate exactly with newer data

But it's a good practice to get into for reproducibility

Also, if you have to downloading thousands of �les manually, you'll go insane

Automate it

20 / 58

R makes it easy to download
The R function to download is download.file()

Here is an example that downloads my copy of the Bertrand and Mullainathan (2004) data off of
GitHub

download.file(
 url='https:��raw.githubusercontent.com/big�data�and�economics/big�data�class�materials/main/lectures/
 destfile='data/lakisha_aer.zip')

Several R packages will read �les right off of the internet

readr��read_csv(
 file='https:��raw.githubusercontent.com/big�data�and�economics/big�data�class�materials/main/lectures

�� # A tibble: 4,873 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3
�� 6 Lakisha female afam no 1
�� 7 Latonya female afam no 4
�� 8 Carrie female cauc no 3
�� 9 Jay male cauc no 2
� 10 Jill female cauc no 2

21 / 58

Reading �le formatsReading �le formats

3. Reading �le extensions
A �le extension is the part of the �le name after the period .dta , .csv , .tab , etc.

Often, if you download a �le, you will immediately understand what type of a �le it is by its
extension

File extensions in and of themselves don't serve any particular purpose other than convenience

File extensions were created so that humans could keep track of which �les on their workspace are
scripts, which are binaries, etc.

Why is the �le format important?
File formats matter because they may need to match the coding tools you're using

If you use the wrong �le format, it may cause your computations to run slower than otherwise

To the extent that the tools you're using require a speci�c �le format, then using the correct format
is essential

23 / 58

Open-format �le extensions
The following �le extensions are not tied to a speci�c software program

In this sense they are "raw" and can be viewed in any sort of text editor

File
extension Description

CSV Comma separated values; data is in tabular form with column breaks marked by
commas

TSV Tab separated values; data is in tabular form with column breaks marked by tabs
DAT Tab-delimited tabular data (ASCII �le)

TXT Plain text; not organized in any speci�c manner (though usually columns are
delimited with tabs or commas)

TEX LaTeX; markup-style typesetting system used in scienti�c writing
XML eXtensible Markup Language; data is in text form with tags marking different �elds
HTML HyperText Markup Language; similar to XML; used for almost every webpage you view
YAML YAML Ain't Markup Language; human readable version of XML

Here's a more complete list of almost every �le extension (note: missed Stata's .do and .dta
formats).

Another great discussion about �le formats is here on stackexchange

24 / 58

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/List_of_file_formats
https://opendata.stackexchange.com/questions/1208/a-python-guide-for-open-data-file-formats

Proprietary �le extensions
The following �le extensions typically require additional software to read, edit, or convert to another
format

File extension Description
DB A common �le extension for tabular data for SQLite
SQLITE Another common �le extension for tabular data for SQLite
XLS, XLSX Tab-delimited tabular data for Microsoft Excel
RDA, RDATA Tabular �le format for R
MAT ... for Matlab
SAS7BDAT ... for SAS
SAV ... for SPSS
DTA ... for Stata

25 / 58

Other �le types that aren't data
There are many �le types that don't correspond to readable data. For example, script �les (e.g. .R ,
.py , .jl , .sql , .do , .cpp , .f90 , ...) are text �les with convenient extensions to help the user
remember which programming language the code is in

As a rule of thumb, if you don't recognize the extension of a �le, it's best to inspect the �le in a text
editor (though pay attention to the size of the �le as this can also help you discern whether it's
code or data)

26 / 58

Tips for opening �les with r
If you're working with tabular data, you can use the read_csv() function from the readr (tidyverse)
package or fread from data.table
If you're working with a proprietary �le format, you can use the read_*() functions from the haven
package
If you're reading in any table format, read_table() might work!
If you're working with a JSON �le, you can use the jsonlite package
When in doubt, Google/ChatGPT "How do I open �le .XXX in R?"

I bet you someone has already needed to solve this problem

df_csv �� read_csv('data/lakisha_aer.csv')
df_fread �� data.table��fread('data/lakisha_aer.tab')
df_stata �� haven��read_dta('data/lakisha_aer.dta')
df_xlsx �� readxl��read_xlsx('data/lakisha_aer.xlsx')

27 / 58

Help! This �le froze my computer!
Sometimes we'll be reading quite large �les

These can be too big to �t in memory

Consult the codebook for the necessary columns

Or read in a single row to see the column names:

df �� read_csv('data/lakisha_aer.csv',n_max=1)
print(names(df))

�� [1] "firstname" "gender" "race" "call" "ofjobs"

28 / 58

Help! This �le froze my computer!
Once you know your columns, read those in:

read_csv('data/lakisha_aer.csv',
 col_select=c('firstname', 'race', 'gender','call','ofjobs'))

�� # A tibble: 4,873 × 5
�� firstname race gender call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 race row 1 gender row 1 call row 1 NA
�� 2 firstname row 2 race row 2 gender row 2 call row 2 NA
�� 3 firstname row 3 race row 3 gender row 3 call row 3 NA
�� 4 Allison cauc female no 2
�� 5 Kristen cauc female no 3
�� 6 Lakisha afam female no 1
�� 7 Latonya afam female no 4
�� 8 Carrie cauc female no 3
�� 9 Jay cauc male no 2
�� 10 Jill cauc female no 2
�� # ℹ 4,863 more rows

29 / 58

Archiving & �le compressionArchiving & �le compression

Archiving & �le compression
Because data can be big and bulky, it is often easier to store and share the data in compressed form

File extension Description
ZIP The most common format for �le compression
Z Alternative to ZIP; uses a slightly different format for compression
7Z Alternative to ZIP; uses 7-Zip software for compression

GZ Another alternative to ZIP (primarily used in Linux systems), using what's
called gzip

TAR So-called "tarball" which is a way to collect many �les into one archive �le.
TAR stands for "Tape ARchive"

TAR.GZ; TGZ A compressed version of a tarball (compression via gzip)

TAR.BZ2; .TB2; .TBZ;
.TBZ2 Compressed tarball (via bzip2)

31 / 58

http://www.7-zip.org/

Unzipping in two-steps
unzip('data/lakisha_aer.zip',exdir='data') # already done
read_csv('data/lakisha_aer.csv') %>% head(5)

�� # A tibble: 5 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3

Make that a one-step process?

Hairier syntax, but yes1

read_csv(unz('data/lakisha_aer.zip','lakisha_aer.csv')) %>% # Unzip the file
 head(5) # pipe to a read csv

�� # A tibble: 5 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3
1 Check appendix for what happens with "bigger" �les when you attempt this. 32 / 58

How do I zip a �le?
You can zip a �le using the zip command in the R terminal

It allows you to zip one or many �les

zip(zipfile='data/lakisha_aer_one.zip',
 files='lakisha_aer.csv',
 exdir='data') # extract to a directory

zip(zipfile='data/lakisha_aer.zip',
 files=c('lakisha_aer.rds','lakisha_aer.csv',
 'lakisha_aer.tsv','lakisha_aer.xlsx',
 'lakisha_aer.dta','lakisha_aer.json'))

33 / 58

4. Look at the data
Open the raw data and look at it:

resumes �� read_csv('data/lakisha_aer.csv',
 show_col_types= FALSE) # Don't tell me the column types
head(resumes,10)

�� # A tibble: 10 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3
�� 6 Lakisha female afam no 1
�� 7 Latonya female afam no 4
�� 8 Carrie female cauc no 3
�� 9 Jay male cauc no 2
�� 10 Jill female cauc no 2

34 / 58

Drop junk rows
Oh weird, the �rst few rows are junk, let's skip them and give more informative names

resumes �� read_csv('data/lakisha_aer.csv',
 skip=4, # skip some rows
 col_names=c('firstname','gender','race','call','ofjobs'), # Column names
 show_col_types = FALSE) # Don't tell me the column types
head(resumes)

�� # A tibble: 6 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 Allison female cauc no 2
�� 2 Kristen female cauc no 3
�� 3 Lakisha female afam no 1
�� 4 Latonya female afam no 4
�� 5 Carrie female cauc no 3
�� 6 Jay male cauc no 2

35 / 58

5. Look at summaries of variables
Do factor variables have multiple spellings?

table(resumes$race,resumes$gender)

��
�� female FEMALE male MALE MLE WOMN
�� afam 1855 15 548 0 0 14
�� BLACK 0 0 0 1 0 2
�� cauc 1761 13 541 0 2 0
�� Caucasian 73 0 32 0 0 13

36 / 58

6. Visualize the raw data
Go beyond the eyeball and graph the data

ggplot is a great tool for visualizing data
ggplot(data=resumes,mapping=aes(x=ofjobs))+
 geom_histogram()

Wait a minute! What's going on with the -99 values?

37 / 58

7. Visualize by group
resumes �� mutate(resumes,race=ifelse(race��'cauc' | race��'Caucasian','White',
 ifelse(race��"BLACK" | race��"afam", "Black",race))) # change the data up
ggplot(data=resumes,aes(x=ofjobs,fill=race))+
 geom_histogram(alpha=0.25) # alpha makes bars see through!

Oh! I bet -99 means NA or missing
This only occurs for fake black name applicant pro�les
That could be bad news for an RCT...

38 / 58

8. Visualize summaries by group
ggplot(data=resumes,aes(y=ofjobs,x=race)) +
 geom_bar(stat='summary',fun='mean')

Yep, the job counts differ meaningfully by race -- uh oh.

39 / 58

9. Are the data the right-size?
Check if the data are the right-size

If you have a panel dataset is 50 states over 20 years, check if there are 1000 observations

If not, �nd out why!

Maybe there are 1020 because DC is (rightfully) included
Alternatively, data are missing for a few states in a few years and dropped entirely

Search for outliers or oddities and work out possible explanations using:

Codebooks
Intuition
Emails to the source/creator of data

40 / 58

Big Data File TypesBig Data File Types

General Types of Data
When you think of data, you probably think of rows and columns, like a matrix or a spreadsheet

But it turns out there are other ways to store data, and you should know their similarities and
differences to tabular data

42 / 58

Examples JSON
A possible JSON representation describing a person (source)

{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 },
 {
 "type": "mobile",
 "number": "123 456-7890"
 }
],
 "children": [],

43 / 58

https://en.wikipedia.org/wiki/JSON#Example

Examples: XML
The same example as previously, but in XML: (source)

<person>
 <firstName>John��firstName>
 <lastName>Smith��lastName>
 <age>25��age>
 <address>
 <streetAddress>21 2nd Street��streetAddress>
 <city>New York��city>
 <state>NY��state>
 <postalCode>10021��postalCode>
 ��address>
 <phoneNumber>
 <type>home��type>
 <number>212 555-1234��number>
 ��phoneNumber>
 <phoneNumber>
 <type>fax��type>
 <number>646 555-4567��number>
 ��phoneNumber>
 <gender>
 <type>male��type>
 ��gender>
��person>

44 / 58

https://en.wikipedia.org/wiki/JSON#Example

Examples: YAML
The same example, but in YAML: (source)

firstName: John
lastName: Smith
age: 25
address:
 streetAddress: 21 2nd Street
 city: New York
 state: NY
 postalCode: '10021'
phoneNumber:
- type: home
 number: 212 555-1234
- type: fax
 number: 646 555-4567
gender:
 type: male

Note that the JSON code above is also valid YAML; YAML simply has an alternative syntax that makes it
more human-readable

45 / 58

https://en.wikipedia.org/wiki/JSON#Example

Read a JSON
library(jsonlite)

Read in the JSON file
resumes_json �� read_json('data/lakisha_aer.json',
 simplifyVector = TRUE # Simplify the data to a dataframe
)
head(resumes_json)

�� firstname gender race call ofjobs
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3
�� 6 Lakisha female afam no 1

46 / 58

Big Data �le types
Big Data �le systems like Hadoop and Spark often use the same �le types as R, SQL, Python, and
Julia

That is, CSV and TSV �les are the workhorse

Because of the nature of distributed �le systems (which we will discuss in much greater detail next
time), it is often the case that JSON and XML are not good choices because they can't be broken up
across machines

Note: there is a distinction between JSON �les and JSON records; see the second link at the end of
this document for further details

47 / 58

Big Data File Types

Sequence
Sequence �les are dictionaries that have been optimized for Hadoop and friends

The advantage to taking the dictionary approach is that the �les can easily be coupled and
decoupled

Avro
Avro is an evolved version of Sequence---it contains more capability to store complex objects
natively

Parquet
Parquet is a format that allows Hadoop and friends to partition the data column-wise (rather than
row-wise)

Other formats in this vein are RC (Record Columnar) and ORC (Optimized Record Columnar)

48 / 58

DictionariesDictionaries

Dictionaries (a.k.a. Hash tables)
A dictionary is a list that contains keys and values

Each key points to one value

While this may seem like an odd way to store data, it turns out that there are many, many
applications in which this is the most ef�cient way to store things

We won't get into the nitty gritty details of dictionaries, but they are the workhorse of computer
science, and you should at least know what they are and how they differ from tabular data

In fact, dictionaries are often used to store multiple arrays in one �le (e.g. Matlab .mat �les, R
.RData �les, etc.)

50 / 58

Dictionaries (a.k.a Hash tables) in R
Dictionraies are a little clunky in R

You'll mainly use them as lists or vectors

phone_numbers_list �� list('Jenny'='1 (623) 867-5309',
 'Rejection Hotline'='1 (518) 935-4012',
 'Santa'='1 (951) 262-3062')

print(phone_numbers_list)

�� $Jenny
�� [1] "1 (623) 867-5309"
��
�� $Rejection Hotline
�� [1] "1 (518) 935-4012"
��
�� $Santa
�� [1] "1 (951) 262-3062"

51 / 58

Why are dictionaries useful?
You might look at the previous example and think a vector would be a better way to store phone
numbers

The power of dictionaries is in their lookup speed

Looking up an index in a dictionary takes the same amount of time no matter how long the
dictionary is!

Computer scientists call this access time

Moreover, dictionaries can index objects, not just scalars

So I could have a dictionary of data frames, a dictionary of arrays, ...

O(1)

52 / 58

AppendixAppendix

Useful Links
A beginner's guide to Hadoop storage formats

Hadoop File Formats: It's not just CSV anymore

54 / 58

https://blog.matthewrathbone.com/2016/09/01/a-beginners-guide-to-hadoop-storage-formats.html
https://community.hds.com/community/products-and-solutions/pentaho/blog/2017/11/07/hadoop-file-formats-its-not-just-csv-anymore

What if there is only one �le in the zip?
Turns out, you can read the �le directly from the zip �le with read_csv() :

read_csv(unz('data/lakisha_aer.zip','lakisha_aer.csv'),show_col_type=FALSE)

�� # A tibble: 4,873 × 5
�� firstname gender race call ofjobs
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 firstname row 1 gender row 1 race row 1 call row 1 NA
�� 2 firstname row 2 gender row 2 race row 2 call row 2 NA
�� 3 firstname row 3 gender row 3 race row 3 call row 3 NA
�� 4 Allison female cauc no 2
�� 5 Kristen female cauc no 3
�� 6 Lakisha female afam no 1
�� 7 Latonya female afam no 4
�� 8 Carrie female cauc no 3
�� 9 Jay male cauc no 2
�� 10 Jill female cauc no 2
�� # ℹ 4,863 more rows

55 / 58

What is VROOM_CONNECTION_SIZE?
You'll often hit an error when reading zipped �les

read_csv('data/county_outcomes.zip',show_col_type=FALSE)

�� Error: The size of the connection buffer (131072) was not large enough
�� to fit a complete line:
�� * Increase it by setting Sys.setenv("VROOM_CONNECTION_SIZE")

56 / 58

What is VROOM_CONNECTION_SIZE?
VROOM_CONNECTION_SIZE is an environment variable that tells R how much data to read in at a time

It's a way to read in large �les without crashing your computer

It basically tells R to read in a certain number of bytes at a time

When R unzips and reads simultaneously, it needs more memory than usual while it decompresses

Think of it like having too narrow a space to squeeze the data through

If the data are wide, this can be a problem because of how read_csv() works

It reads in the entire �le and then tries to �gure out the column types

57 / 58

Two Fixes

Fix 1: Increase VROOM_CONNECTION_SIZE
Sys.setenv("VROOM_CONNECTION_SIZE"=1e6) # Telling R to read in 1 million bytes at a time
read_csv(unz('data/county_outcomes.zip','county_outcomes.csv'),show_col_type=FALSE)
Sys.setenv("VROOM_CONNECTION_SIZE"=131072) # Returning to default

Fix 2: Unzip then read
unz('data/county_outcomes.zip','county_outcomes.csv') %>% # Unzip the file
 read_csv(show_col_types = FALSE) # pipe to a read csv
rm('county_outcomes.csv') # remove the file

I don't evaluate the code because it will make knitting take awhile, but try it yourself

58 / 58

