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ProloguePrologue

Source: Source: xkcdxkcd

http://xkcd.com/1513/


Attribution
Today's material comes from these sources:

�. Clean Code by Tyler Ransom

�. Code and Data for the Social Sciences: A Practitioner's Guide, by Gentzkow and Shapiro

�. Causal Inference and Research Design by Scott Cunningham

�. Jenny Bryan's UseR 2018 keynote address

Also a small contribution from here and other sundry internet pages
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Reducing empirical chaos

Sad story
Once upon a time there was a boy who was writing a job market paper on unemployment
insurance during the pandemic

This boy presented the �ndings a half dozen times, spoke to the media some, and generally
thought he had cool results

Several people suggested he look at a handful of other outcome series and try changing his
analysis unit frequency from monthly to weekly

He also knew that he needed to restrict his sample to reduce noise
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The horror!
But then after making these changes and re-running his code that took two days, his new sample
dropped by 50 percent!
He was, understandably, terri�ed.
The young boy spent a week looking for the �x weeding through six different versions of the .do, .R,
.dta, .csv, .sh, .py �les with suf�xes like _v1 and _test and _test2 and _�nal_I_swear and
_okay_i_lied
Finally he discovered the phrase:

df %>% filter(insample_new��0)

instead of

df %>% filter(insample_new��1)

The boy was very frustrated and decided to work on these slides while re-running his code.

Today and next class are about minimizing these struggles through Clean Code and a reproducible
work�ow
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Clean CodeClean Code



What is Clean Code?
Clean Code: Code that is easy to understand, easy to modify, and hence easy to debug

Clean code advances scienti�c progress

Good science uses careful observations to iteratively test hypotheses/make predictions

Scienti�c progress is impeded if

mistaken previous results are erroneously given authority
previous hypothesis tests are not reproducible
previous methods and results are not transparent

Thus, for science that involves computer code, clean code is a must

Reduces "the in�uence of hidden researcher decisions" (Huntington-Klein et al. 2021)

Clean code increases personal/team sanity

You will always make a mistake while coding -- what makes good programmers great is their ability
to identify and correct mistakes

Clean code makes it easier to identify and correct mistakes

Saves you stress in the long-run and makes your collaborative relationships more pleasant
8 / 54



Why clean code is under-produced
If clean code is so bene�cial and important, why isn't there more of it?

�. Competitive pressure to produce research/products as quickly as possible

�. End user (journal editor, reviewer, reader, dean) doesn't care what the code looks like, just that
the product works

�. In the moment, clean code takes longer to produce while seemingly conferring no bene�t
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How does one produce clean code?
�. Organization of data and �les

�. Version Control1

�. Automation

�. Abstraction

�. Documentation

�. Time / task management

�. Test-driven development (unit testing, pro�ling, refactoring)

�. Pair programming

1 Handled in Git lecture notes. 10 / 54



1a. File organization
�. Separate directories by function

�. Separate �les into inputs and outputs

�. Make directories portable

To see how professionals do this, check out the source code for R's dplyr package

There are separate directories for source code ( /src ), documentation ( /man ), code tests
( /test ), data ( /data ), examples ( /vignettes ), and more

When you use version control, it forces you to make directories portable (otherwise a collaborator
will not be able to run your code)

Use relative �le paths, not absolute �le paths
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Don't be like this

Source: xkcd
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What is a working directory?
All the �les on your computer are organized in directories or folders

When you are running a script, you are working from a particular directory

This is not necessarily the directory where the script is located
Your computer looks for my_data.csv  in this directory when you execute
read.csv('my_data.csv')

If that �le is not in that directory, you will get a FileNotFound  error
In R, you can see what directory you are in using the getwd()  function
It is also above the console in RStudio
You can double click the .Rproj  �le to set the working directory to the root of the project
You can also change your working directory using the setwd()  function (avoid this within
scripts)

getwd()

�� [1] "C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/02-empirical�

setwd('lectures/02-empirical�workflow')
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What is a directory path?
A path de�nes the location of a �le or directory in a �le system tree. If I navigate to this �le in my
computer, it is:

C�\Users\kgcsp\OneDrive\Documents\Education\ECON368-DSE\big�data�class�materials\lectures\02-

empirical�workflow\02-empirical�workflow.Rmd 1

The name separates folders that chart the path from the root to the �le

root: the start of the �le system tree (above that is C�\ )
Each folder along the tree is separated by a \  or /

This is called an absolute path:

It is long, hard to remember, and not portable across computers

Relative paths solve a lot of this:

The path to a �le or directory starting from the current working directory
If my working directory is /big�data�class�materials , then I can write lectures/02-empirical-
workflow/02-empirical�workflow.Rmd

This is portable: if you have a copy of the big�data�class�materials  repository, this script will
work1 This is a Windows path, Mac and Linux paths use /  instead of \ . See appendix for slides on how to move between them
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How I organize research projects
Entire projects should ideally live within the same directory
I have a folder called ( my_project )

Within that folder I have subfolders:
�. data  for all data �les a. raw  for raw data �les b. clean  or work  for cleaned data �les c.

temp  for temporary data �les
�. code  for all code �les, and sometimes: a. code/analysis  for code �les that build/clean

code a. code/build  for code �les that do analysis
�. output  for all output �les a. output/figures  for code �les that make �gures b.

output/tables  for code �les that make tables
�. literature  or articles  for all relevant literature
�. writing  for all writing �les a. writing/notes  for notes b. writing/drafts  for drafts c.

writing/edits  for edits
�. presentations  for all presentations a. presentations/slides  for slides b.

presentations/notes  for notes
I'll further more or less as needed
See the my_project  folder on GitHub (in the same folder as this lecture) as an example
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What is the value of directories?
All of the �les in a directory are related to each other

Can reference a �le within the data/raw  folder, from the code/build  folder without writing out the
full path

If you use file.path()  or the here package, you can automate the slashes in your �le paths

file.path('data', 'raw', 'file.csv')  will work on Windows, Mac, and Linux
here��here('data', 'raw', 'file.csv')  will do the same thing (see appendix for more on it)

Then you do not need to worry about shifting around directories
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1b. Data organization
The key idea is to practice relational data base management

A relational database consists of many smaller data sets

Each data set is tabular and has a unique, non-missing key

Data sets "relate" to each other based on these keys

You can implement these practices in any modern statistical analysis software (R, Stata, SAS,
Python, Julia, SQL, ...)

Gentzkow & Shapiro recommend not merging data sets until as far into your code pipeline as
possible
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��   county state cnty_pop
�� 1  36037    NY  3817735
�� 2  36038    NY   422999
�� 3  36039    NY   324920
�� 4  36040    NY   143432
�� 5  37001    VA  3228290
�� 6  37002    VA   449499
�� 7  37003    VA   383888
�� 8  37004    VA   483829

��   state state_pop region
�� 1    NY  43320903      1
�� 2    VA   7173000      3

What problems would this create?
��    county state cnty_pop state_pop region_state region_county
�� 1   36037    NY  3817735  43320903            1             1
�� 2   36038    NY   422999  43320903            1             1
�� 3   36039    NY   324920        NA            1             1
�� 4   36040  <NA>   143432  43320903            1             1
�� 5      NA    NY       NA  43320903            1             1
�� 6   37001    VA  3228290   7173000            3             3
�� 7   37002    VA   449499   7173000            3             3
�� 8   37003    VA   383888   7173000            3             4
�� 9   37004    VA   483829   7173000            3             3
�� 10     NA    VA       NA   7173000            3             3

Why is RDBM better?

Source: Example from Code and Data for the Social Sciences (p. 19)
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3. Automation
Gentzkow & Shapiro's two rules for automation:

�. Automate everything that can be automated

�. Write a single script that executes all code from beginning to end

There are two reasons automation is so important

Reproducibility (helps with debugging and revisions)

Ef�ciency (having a code base saves you time in the future)
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How to write scripts
Keep them modular

Each script should do one thing and one thing only

e.g. It takes an input in, it returns an output

Taking in a raw �le and returning a cleaned version
Taking in two �les and merging them
Taking in a cleaned �le and returning a �gure

This is somewhat aligned with the structure of an essay

intro paragraph =/= body paragraph 1 =/= ... =/= conclusion

Much like essays revisions, modular code makes it easier to debug and revise

Have a main script that runs all scripts in order

A single script that shows the sequence of steps, i.e. "shows your work"

This script will run modular scripts in sequence to exactly reproduce your analysis

You will rarely run it all at once, but it will be a nice way to organize your thoughts

A bene�t of a well-organized directory: easily see what scripts you need to run in what order 20 / 54



#File: main.R.R
#By: Kyle Coombs
#What: Runs the project from start to finish in Python
#Date: 2024-09-0
# Instructions:
# Run this code from the root directory of your project

#Install packages with housekeeping. Also put together paths.
source('housekeeping.R')
#User written functions can be sourced �� or you could write a package, your call
source(paste0(build,'clean_functions.R'))
source(paste0(analysis,'analysis_functions.R'))

#Import files
source(paste0(build,'import_census.R'))
source(paste0(build,'import_admin_data.R'))

#Clean files
source(paste0(build,'clean_census.R'))
source(paste0(build,'clean_admin_data.R'))

#Merge files 1 to 2
source(paste0(build,'merge_census_admin.R'))

#Analysis
source(paste0(analysis,'/summary_stats.R'))
source(paste0(analysis,'/basic_regression.R'))

#Tables will likely be made with a host of R packages
source(paste0(analysis '/make sum figures R'))

Main script with functions

http://127.0.0.1:3030/main-with-functions


Main script as .Rmd
In this class, your problem sets will be .Rmd  �les that you knit

The .Rmd  �le will serve as your main script

You can source()  modular code �les in code chunks

It improves chances your code runs from start to �nish instead of only when working interactively

Means I can run (and grade) your code more easily!
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What's a housekeeping �le?
A housekeeping �le automates several tasks and goes at the start of every �le in your project

�. Load packages
�. Save strings of path directories to use later using the file.path()  function to reference

elsewhere1

If a folder name changes, you only need to change it in one place in your code
Use these strings to reference �les in other scripts
read.csv(file.path(data_raw,'my_data.csv'))

�. Create directories if they don't exist

1 Alternatives to file.path()  include paste  and here() . Check appendix example for more information. 23 / 54



# Housekeeping.R
# By: Your Name
# Date: YYYY-MM-DD
# What: This script loads the packages and data needed for the analysis.

�� Package installation �� uncomment if running for the first time
#install.packages(c('tidyverse'))
library(tidyverse)
library(haven) # installed by tidyverse

�� Directory objects
data_dir �� file.path('data')
raw_dir �� file.path(data_dir,'raw')
clean_dir �� file.path(data_dir,'clean')
output_dir �� file.path('output')
code_dir �� file.path('code')
processing_dir �� file.path(code_dir,'processing')
analysis_dir �� file.path(code_dir,'analysis')
documentation_dir �� file.path('documentation')

# Create directories
suppressWarnings({
    dir.create(data_dir)
    dir.create(raw_dir)
    dir.create(clean_dir)
    dir.create(documentation_dir)
    dir.create(code_dir)
    dir.create(processing_dir)
    dir.create(analysis_dir)
    dir.create(output_dir)
})



4. Abstraction
Abstraction: "reducing the complexity of something by hiding unnecessary details from the user"

e.g. A dishwasher. I mainly need to know how to load it, put in soap, and press start. I don't need to
understand the electrical wiring or plumbing.

In programming, abstraction is usually handled with functions

Abstraction is usually a good thing

But it you can go too far: overly abstract code can be "impenetrable" and dif�cult to modify or
debug

Gentzkow & Shapiro give three rules for abstraction:

�. Abstract to eliminate redundancy

�. Abstract to improve clarity

�. Otherwise, don't abstract

In the context of R, abstraction means:
Write functions
Name your objects sensibly
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Abstract to eliminate redundancy
Sometimes you might �nd yourself repeating lines of code to accomplish a task

# Downloading a sequence of files from 2004 to 2020 gets tedious
download.file('https:��data.nber.org/tax�stats/zipcode/2020/zipcode2020.zip',destfile=paste0(data_dir,
download.file('https:��data.nber.org/tax�stats/zipcode/2019/zipcode2019.zip',destfile=paste0(data_dir,
download.file('https:��data.nber.org/tax�stats/zipcode/2019/zipcode2019.zip',destfile=paste0(data_dir,
# etc.

Notice any problems?

# Downloading a sequence of files from 20 wih a loop
lapply(2004�2020,function(y) {
    download.file(paste0('https:��data.nber.org/tax�stats/zipcode/',y,'/zipcode',y,'.zip'),destfile=pas
})

We'll learn more about iteration/for loops/appy statements later

There are many forms of redundancy that can be eliminated with abstraction beyond iteration
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Abstract to improve clarity
Say you want to round a number to the nearest of different integers:

�. Divide the number by there base integer
�. Round the result to the nearest whole number
�. Multiply by the base integer

I start coding and copy and paste the code for each integer:

rounded_157_nearest_5 �� round(157/5)*5
rounded_157_nearest_7 �� round(157/5)*7

Notice a problem?

Why not abstract with a function?

round_to_nearest �� function(x,base=5) {
    return(round(x/base)�base)
}

rounded_157_nearest_5 �� round_to_nearest(157,base=5)
rounded_157_nearest_7 �� round_to_nearest(157,base=7)

The second approach is easier to read and understand what the code is doing!
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Otherwise, don't abstract
�. Write/use functions for tasks that are repeated
�. Write thoughtful variable names (e.g. x100, x101  versus household_income , household_size )

If we're only doing it once in our script, then it may not make sense to use the function version

This discussion points out that it can be dif�cult to know if one has reached the optimal level of
abstraction

As you're starting out programming, I would advise doing almost everything inside of a function
(i.e. err on the side of over-abstraction when starting out)

And look for opportunities to loop (or use apply functions)
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5. Documentation
Documentation gives suf�cient information to replicate work, but not so much that it is overwhelming1

Rules for documentation
�. Don't write documentation you will not maintain

�. Code should be self-documenting

Generally speaking, commented code is helpful

However, sometimes it can be harmful if, e.g. code comments contain dynamic information

It may not be helpful to have to rewrite comments every time you change the code

Code can be "self-documenting" by naming functions and variables thoughtfully

Documentation in R

R Help System: access using ?function_name

Package vignettes: access using vignette("vignette_name")

Cheatsheets: access at Posit Cheatsheets
1 Anyone who has ever built IKEA furniture knows this all too well 29 / 54

https://posit.co/resources/cheatsheets/


A README is documentation
A README gives high-level information about the repository or data �le:

This repository contains code that does X task
Simple use case: use this repository to replicate paper X in journal Y

Onboarding instructions:

Add your name to this �le in repository folder the/folder/file.md
Fork the repository and pull request changes
Con�gure your computer settings in this way to run this project
Guidelines/rules for contributing to the project

Licensing information:

You can just take this code!
This is proprietary and we will sue you if you haven't paid us

Dependencies:

To use this code or package or data_dir download packages X , Y , Z

Changelog (short narrative commit history):

9/23/2023 - KGC - added function X  to do Y 30 / 54



Documentation and problem sets
Documentation inevitably creates a host of issues on assignments.

It is challenging to give narrative technical instructions:

On a blank problem set:

The reader (you) still needs to engage thoughtfully with the task
The writer (me) needs to account for many misinterpretations!

On a completed problem set:

The reader (me) is trying to guess what you were thinking
The writer (you) may have made a mistake and not realized it

This challenge is a feature, not a bug.

My assignments are a learning experience of the robustness principle/Postel's law1 (for people):

"Be conservative in what you send, be liberal in what you accept." - Jon Postel

He was talking about internet protocols, but I see it as a general principle for communication:

Conservative: Make instructions instructions as clear s
Liberal: Give the bene�t of the doubt and try to engage thoughtfully with documentation1 This quote was originally in reference to how to design programs that send and receive data. 31 / 54

https://en.wikipedia.org/wiki/Robustness_principle


6. Time and task management

Time management
Time management is key to writing clean code1

It is foolish to think that one can write clean code in a strained mental state

Code written when you are groggy, overly anxious, or distracted will come back to bite you

Schedule long blocks of time (1.5 hours - 3 hours) to work on coding where you eliminate
distractions (email, social media, etc.)

Stop coding when you feel that your focus or energy is dissipating

Task management
When collaborating on code, avoid email or Slack threads to discuss coding tasks

Rather, use a task management system that has dedicated messages for a particular point of
discussion (bug in the code, feature to develop, etc.)

I use GitHub issues and milestones for all of my coding projects including developing this class

1 Your professor needs this lecture too 32 / 54
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7. Test-driven development
The only way to know that your code works is to test it!

Test-driven development (TDD) consists of a suite of tools for writing code that can be
automatically tested

Simplest test is to check if the code gives you the output you expected

Whenever you make a change, check it against the output you expect
Ideally, check against a small example so it runs fast and is easy to con�rm

What if the code takes too long to check completely? Meet unit tests

Unit testing is nearly universally used in professional software development
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Unit testing
Unit tests are scripts that check that a piece of code does everything it is supposed to do

When professionals write code, they also write unit tests for that code at the same time

If code doesn't pass tests, then bugs are caught immediately

R's dplyr package shows that all unit tests are passing and that tests cover 91% of the code base

testthat is a nice step-by-step guide for doing this in R (I use it to autograde exercises)

Assertions
Assert statements are extremely useful for basic unit tests
They exist in every langage
In R it is called stopifnot()

x �� TRUE
stopifnot(x)

y �� FALSE
stopifnot(y)

�� Error: y is not TRUE
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8. Pair programming - work with a buddy
An essential part of clean code is reviewing code

An excellent way to review code is to do so at the time of writing

Pair programming involves sitting two programmers at one computer

One programmer does the writing while the other reviews

This is a great way to spot silly typos and other issues that would extend development time

It's also a great way to quickly refactor code at the start

I strongly encourage you to do pair programming on problem sets in this course!

(Sometimes I will require it)
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Minimal reproducible example1

Related to unit testing are minimal reproducible examples (aka MRE, reprex, minreps,...)

The best way to isolate bugs is a minimal reproducible example

If code throws an error, there's likely super�uous lines of code that are irrelevant to the error

The super�uous stuff makes it harder to read and replicate the error

Minimal reproducible examples (reprex) are a great way to isolate the error

Minimal Use as little code as possible that still produces the same problem
Complete Provide all parts needed to reproduce your problem in the question itself
Reproducible Test the code you'll provide to make sure it reproduces the problem

That means you should be able to copy and paste the code and run it yourself

Name all packages and data needed to reproduce error
Cut out irrelevant packages, steps, and data that are not relevant to the error

Sometimes writing one will help you �nd the bug, sometimes it'll help a stranger �nd the bug in
your code faster, and sometimes it'll identify a very real bug in the package itself

1 Postel's Law in action. 36 / 54
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Min Reprex from RStudio community
If someone does not have hrbrthemes  installed, they will not be able to run the code below

You can remove this package from your code and still reproduce the error.

library(ggplot2) #For ggplot
library(datasets) #To load irs
library(hrbrthemes) #For the theme
data(iris)
df �� iris %>%
    mutate(Sepal.Length = Sepal.Length * 1000,
           Sepal.Width = Sepal.Width * 1000)

ggplot(data = df,x = Sepal.Length, y = Sepal.Width) +
    theme_modern_rc() +
    geom_point() +
    scale_x_log10() +
    labs(title = "Iris Sepal Width vs. Sepal Length",
         subtitle = "Log10 Scaled X Axis")

�� Error in `geom_point()`:
�� ! Problem while setting up geom.
�� ℹ Error occurred in the 1st layer.
�� Caused by error in `compute_geom_1()`:
�� ! `geom_point()` requires the following missing aesthetics: x and y
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How to write MREs
Cut out the unnecessary steps

library(ggplot2)
dat �� iris[1�4,]
ggplot(data = dat, x = Sepal.Length, y = Sepal.Width) +
    geom_point()

�� Error in `geom_point()`:
�� ! Problem while setting up geom.
�� ℹ Error occurred in the 1st layer.
�� Caused by error in `compute_geom_1()`:
�� ! `geom_point()` requires the following missing aesthetics: x and y.

You can use reprex to make sure that your code is reproducible by others and dput to make sure
that your data is reproducible by others.

dput(iris[1�4,]) # copy/paste output of dput into your MRE

�� structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6), Sepal.Width = c(3.5, 
�� 3, 3.2, 3.1), Petal.Length = c(1.4, 1.4, 1.3, 1.5), Petal.Width = c(0.2, 
�� 0.2, 0.2, 0.2), Species = structure(c(1L, 1L, 1L, 1L), levels = c("setosa", 
�� "versicolor", "virginica"), class = "factor")), row.names = c(NA, 
�� 4L), class = "data.frame")
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A complete MRE1

Summary

When I try to make a scatterplot with ggplot, I am told that geom_point()  requires missing aesthetics x
and y . But I speci�ed x  and y  in the ggplot()  function. Can you help resolve?

Expected behavior

I expected the code to produce a scatterplot of Sepal.Length  and Sepal.Width  from the iris dataset.

Data

I used a subset of the iris dataset.

dat �� iris[1�4,]

Code and error message

ggplot(data = dat, x = Sepal.Length, y = Sepal.Width) +
    geom_point()

�� Error in `geom_point()`:
�� ! Problem while setting up geom.

1 Every forum has its own approach to MREs. Sometimes session info is not initially needed! 39 / 54



Try to write an MRE!
Sync your fork of the exercise repository and open the folder for mre-exercise
The �le mre�opatlas.Rmd  has a bug in it that has led to a host of problems when you look at the
knit output, mre�opatlas.md
Try to write an MRE
I have already raised this as a poorly-written issue on GitHub. You can see the issue here
Tips: https://aosmith16.github.io/spring-r-topics/slides/week09_reprex.html#1
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Shifting directories

Help! I need to run code from code , but need a �le in
data/raw/file.csv !

You can use relative paths to navigate between directories
��  means "go up one directory"

��/data/raw  means "go up one directory, then down into data/raw "
.  means "stay in the current directory"

./code/build  means "stay in the current directory, then down into code/build "
��/��  means "go up two directories"

��/��/data/raw  means "go up two directories, then down into data/raw

Play around with them yourself!
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Main script with functions
name: main-with-functions

#File: main.Rmd or main.R
#By: Kyle Coombs
#What: Runs the project from start to finish in Python
#Date: 2023/09/12

#Install packages with housekeeping. Also put together paths.
source('housekeeping.R')
#User written functions can be sourced �� or you could write a package, your call
source(paste0(build,'clean_functions.R'))
source(paste0(analysis,'analysis_functions.R'))

#Import files
df1 �� read_csv(paste0(raw,'file1.csv'))
df2 �� read_parquet(paste0(raw,'file2.parquet'))
df3 �� read_dta(paste0(raw,'file3.dta'))

#Clean files
cleaned_df1  �� clean_df1(df1)
cleaned_df2  �� clean_df2(df2)
cleaned_df3  �� cf.clean_df3(df3)

#Merge files 1 to 2
merged_df1_df2 = merge(cleaned_df1, cleaned_df2, on=c('merge','vars'))

#Append file 1 to
append_df1_df2_df3 = rbind(merged_df1_df2, cleaned_df2)

#Analysis
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Textbooks: Smarter people than me
Cunningham (2021) Causal Inference: The Mixtape (Also, free version on his website)
Huntington-Klein (2022) The Effect
Angrist and Pischke (2009) Mostly Harmless Econometrics (MHE)
Morgan and Winship (2014) Counterfactuals and Causal Inference (MW)
Sweigart (2019) Automate The Boring Stuff With Python
Wickham (2023) Advanced R
Wickham and Grolemund (2023) R for Data Science
Peng (2022) R Programming for Data Science
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https://www.amazon.com/Causal-Inference-Mixtape-Scott-Cunningham/dp/0300251688
https://mixtape.scunning.com/
https://theeffectbook.net/introduction.html
http://www.amazon.com/Mostly-Harmless-Econometrics-Empiricists-Companion/dp/0691120358/
http://www.amazon.com/Counterfactuals-Causal-Inference-Principles-Analytical/dp/1107694167/
https://automatetheboringstuff.com/
http://adv-r.had.co.nz/
https://r4ds.had.co.nz/
https://bookdown.org/rdpeng/rprogdatascience/


Non-textbook readings
The help documentation associated with your language (no really)
Jesse Shapiro's "How to Present an Applied Micro Paper"
Gentzkow and Shapiro's coding practices manual
Ljubica "LJ" Ristovska's language agnostic guide to programming for economists
Grant McDermott on Version Control using Github Link
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https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html#1


Helpful for troubleshooting
The help documentation associated with your language (no really)
All languages: Stack Over�ow, Stack Exchange
Stata-speci�c (all hail Nick Cox): Statalist
Cheatsheets: Stata, RStudio, Python
Me: Sign up for of�ce hours
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https://stackoverflow.com/
https://stackexchange.com/
https://www.statalist.org/forums/forum/general-stata-discussion/general
https://www.stata.com/bookstore/statacheatsheets.pdf
https://www.rstudio.com/resources/cheatsheets/
https://betterprogramming.pub/10-must-have-python-cheatsheets-2b74e8097bc3?gi=cfdb14820caa
https://calendar.google.com/calendar/u/1/selfsched?sstoken=UUF5d0hzbmlvemxVfGRlZmF1bHR8NDRjMWFiMjA5OTNkNzMwNTVkYzBkYWYyYzc2NmQ5Yjc/


Learn by Immersion
Just like learning a real language, no amount of talking today will teach you how to use any
program.

You have to need to use it (immersion) to learn it.
Google is your dictionary.
Help �les are your grammar books.
ChatGPT is your phrasebook.
A great way to start coding is to see lots of other people's code and copy what you read.

You must learn how to ask the “right” question:

Never: "Importing csv �le into R not working."
Better: "read_csv R [speci�c error message]."
Better still: "read_csv tidyverse [speci�c error message]."
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Abstract to eliminate redundancy (cont.)
What if you can't �nd an R function? Write your own!

set.seed(16)
prod1  = rnorm(1, 0, 1)�rnorm(1,4,6)
prod2  = rnorm(2, 0, 1)�rnorm(2,0,1)
prod3  = rnorm(3, 0, 1)�rnorm(3,15,78)
print(prod1)
�� [1] 1.547257
print(prod2)
�� [1] 1.2582691 0.6764943
print(prod3)
�� [1] -60.06036  10.11156  24.32342

set.seed(16)
multiply_normals = function(count,mean1=0,sd1=1,mean2=0,sd2=1) {
    prod = rnorm(count,mean1,sd1)�rnorm(count,mean2,sd2)
    return(prod)
}
prod1=multiply_normals(1,mean2=4,sd2=6)
prod2=multiply_normals(2,mean2=0,sd2=1)
prod3=multiply_normals(3,mean2=15,sd2=78)

print(prod1)
�� [1] 1.547257
print(prod2)
�� [1] 1.2582691 0.6764943
print(prod3)
�� [1] -60.06036  10.11156  24.32342
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Note on seeds
When randomizing in any language, you aren't really randomizing

You're producing pseudo-random numbers that return in a deterministic ordered list

If you set the seed, you can reproduce the same "random" numbers

This is useful for debugging and sharing code

Use set.seed  in R

set.seed(0)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 17.26652
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 15.14712
# New seed
set.seed(1)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 13.72156
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 16.10432
# Reset seed
set.seed(0)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 17.26652
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 15.14712 49 / 54



Make your own documentation
R has excellent built-in documentation called Roxygen2

These make great documents above functions to increase readability

Here's an example:

library(roxygen2)
#' This is a sample function
#'
#' This function does something amazing.
#'
#' @param x A numeric input.
#' @return The result of the amazing operation.
#' @examples
#' amazing_function(5)
amazing_function �� function(x) {
  # function implementation
}

Use roxygen��roxygenise()  to generate documentation for all functions in a �le
Read more here
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https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html


Refactoring
Refactoring refers to the action of restructuring code without changing its external behavior or
functionality. Think of it as "reorganizing"

get_some_data �� function(config, outfile) {
  if (config_ok(config)) {
    if (can_write(outfile)) {
      if (can_open_network_connection(config)) {
        data �� parse_something_from_network()
        if(makes_sense(data)) {

after refactoring becomes

get_some_data �� function(config, outfile) {
  if (config_bad(config)) {
    stop("Bad config")
  }

  if (!can_write(outfile)) {

Nothing changed in the code except the number of characters in the function

The new version may run faster, is more readable. The output is unchanged.

Refactoring could also mean reducing the number of input arguments

Jenny Bryan gave a great talk on refactoring 51 / 54

https://www.youtube.com/watch?v=7oyiPBjLAWY


Pro�ling
Pro�ling refers to checking the resource demands of your code

How much processing time does your script take? How much memory?

Clean code should be highly performant: it uses minimal computational resources

Pro�ling and refactoring go hand in hand, along with unit testing, to ensure that code is maximally
optimized

Here are two intro guides to pro�ling in R:
Using system.time  and Rprofs  from R Programming for Data
Science[https://bookdown.org/rdpeng/rprogdatascience/pro�ling-r-code.html]
Using lineprof  from Advanced R[http://adv-r.had.co.nz/Pro�ling.html]

Back to MREs
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https://bookdown.org/rdpeng/rprogdatascience/profiling-r-code.html
http://adv-r.had.co.nz/Profiling.html


Neat R functions to help reduce
redundancy
set.seed(16)
list1 = list() # Make an empty list to save output in
for (i in 1�3) { # Indicate number of iterations with "i"
    list1[[i]] = multiply(i) # Save output in list for each iteration
}
list1

�� [[1]]
�� [1] 1.547257
�� 
�� [[2]]
�� [1] 11.934479 -1.717951
�� 
�� [[3]]
�� [1] -7.4831177  0.9587218  4.7882622

A better way to eliminate this redundancy is to use the map  function:

set.seed(16)
map(1�3, multiply)

�� [[1]]
�� [1] 1.547257
�� 
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Alternative to �le.path is here()
Better yet is the here

here()  will �nd the root directory of your project and then you can navigate from there

#install.packages('here')
library(here)

�� here() starts at C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials

here��i_am('my_project/code/build/.placeholder')

�� here() starts at C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/0

here('data/raw','my_data.csv')

�� [1] "C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/02-empirical�

Can be less clunky than paste()  and sep="/"

Get lost in your directories? Use file.path()  to identify your root directory
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https://cran.r-project.org/web/packages/here/vignettes/here.html

