
Big Data and Economics
Lecture 2b: Clean Code

Kyle Coombs (adapted from Tyler Ransom + Scott Cunningham)
Bates College | EC/DCS 368

https://github.com/ECON368-fall2023-big-data-and-economics

Table of contents
�. Prologue

�. Clean Code

Automation
Version Control
Organization of data and software �les
Abstraction
Documentation
Time / task management
Test-driven development (unit testing, pro�ling, refactoring)
Pair programming

�. Appendix: FAQ

2 / 62

https://raw.githack.com/big-data-and-economics/big-data-class-materials/main/lectures/02-git/02-Git.html#1

ProloguePrologue

Source: Source: xkcdxkcd

http://xkcd.com/1513/

Housekeeping
Presentations: Sign-up in the Presentations github repository

Problem Set 1: due on Sunday, January 29th at 11:59pm

Final Project Proposal: due on Sunday, January 25th at 11:59pm

Create a fork of the Final Project repository and add me as a collaborator
List the names of you and your partner in the README.md �le

4 / 62

https://classroom.github.com/a/jWcBRDZJ

Attribution
Today's material comes from these sources:

�. Clean Code by Tyler Ransom

�. Code and Data for the Social Sciences: A Practitioner's Guide, by Gentzkow and Shapiro

�. Causal Inference and Research Design by Scott Cunningham

�. Jenny Bryan's UseR 2018 keynote address

Also a small contribution from here and other sundry internet pages

5 / 62

https://raw.githack.com/OU-PhD-Econometrics/fall-2022/master/LectureNotes/01a-CleanCode/01aslides.html
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://github.com/scunning1975/mixtape
https://www.youtube.com/watch?v=7oyiPBjLAWY
https://garywoodfine.com/what-is-clean-code/

Jargon
There is a jargon in this class that won't make sense at �rst, I'll try to �ag it as it comes

If I don't �ag a term, look it up on ChatGPT
If it still doesn't make sense, ask me -- could be I'm using it idiosyncratically

Here's a few terms:

Local machine: Your personal (or any) computer that isn't a server accessed via the internet
Version Control: Keep track of different iterations of a project/code
Repository: The location on GitHub of all project �les and (commented) �le revision history
GUI: A Graphical User Interface -- what you're used to pointing and clicking to navigate a
computer and execute programs
Command line: Removes the "graphical" from GUI, instead you type all commands to navigate
a computer and execute programs

R operates via the Command line, RStudio is a GUI
On Mac, this is called Terminal
Windows has Powershell, but it Powershell uses quite user-unfriendly commands
If you installed Git for Windows, you got Git Bash, which uses Bash (Linux) commands
You can also install Windows Subsystem for Linux to run Linux on a Windows machine

6 / 62

Reducing empirical chaos

Sad story
Once upon a time there was a boy who was writing a job market paper on unemployment
insurance during the pandemic

This boy presented the �ndings a half dozen times, spoke to the media some, and generally
thought he had cool results

Several people suggested he look at a handful of other outcome series and try changing his
analysis unit frequency from monthly to weekly

He also knew that he needed to restrict his sample to reduce noise

7 / 62

The horror!
But then after making these changes and re-running his code that took two days, his new sample
dropped by 50 percent!
He was, understandably, terri�ed.
The young boy spent a week looking for the �x weeding through six different versions of the .do, .R,
.dta, .csv, .sh, .py �les with suf�xes like _v1 and _test and _test2 and _�nal_I_swear and
_okay_i_lied
Finally he discovered the phrase:

df %>% filter(insample_new��0)

instead of

df %>% filter(insample_new��1)

The boy was very frustrated and decided to work on these slides while re-running his code.

Today and next class are about minimizing these struggles through Clean Code and a reproducible
work�ow

8 / 62

Student Presentation

Hidden Researcher Decisions
Bottom line: empirical work is full of little arbitrary decisions

These add up quickly

It does not necessarily mean anything nefarious is going on or that the research is wrong

But it underscores why we should be skeptical of empirical work

And why we should work to clearly document any empirical work we do

And why replication efforts by University of Goettingen or datacolada are so important

Similarly why the American Economic Association's Data and Code Availability Policy matters so
much

9 / 62

https://replication.uni-goettingen.de/wiki/index.php/Main_Page
https://datacolada.org/
https://www.aeaweb.org/journals/data/data-code-policy

Clean CodeClean Code

What is Clean Code?
Clean Code: Code that is easy to understand, easy to modify, and hence easy to debug

Clean code advances scienti�c progress

Good science uses careful observations to iteratively test hypotheses/make predictions

Scienti�c progress is impeded if

mistaken previous results are erroneously given authority
previous hypothesis tests are not reproducible
previous methods and results are not transparent

Thus, for science that involves computer code, clean code is a must

Reduces "the in�uence of hidden researcher decisions" (Huntington-Klein et al. 2021)

Clean code increases personal/team sanity

You will always make a mistake while coding -- hat makes good programmers great is their ability
to quickly identify and correct mistakes

Clean code makes it easier to identify and correct mistakes

Saves you stress in the long-run and makes your collaborative relationships more pleasant
11 / 62

Why clean code is under-produced
If clean code is so bene�cial and important, why isn't there more of it?

�. Competitive pressure to produce research/products as quickly as possible

�. End user (journal editor, reviewer, reader, dean) doesn't care what the code looks like, just that
the product works

�. In the moment, clean code takes longer to produce while seemingly conferring no bene�t

12 / 62

How does one produce clean code?
�. Automation

�. Version Control1

�. Organization of data and software �les

�. Abstraction

�. Documentation

�. Time / task management

�. Test-driven development (unit testing, pro�ling, refactoring)

�. Pair programming

1 Skipped today cause we covered it last class. 13 / 62

1. Automation
Gentzkow & Shapiro's two rules for automation:

�. Automate everything that can be automated

�. Write a single script that executes all code from beginning to end

There are two reasons automation is so important

Reproducibility (helps with debugging and revisions)

Ef�ciency (having a code base saves you time in the future)

A single script that shows the sequence of steps taken is the equivalent to "showing your work"

14 / 62

How to write scripts

Keep them modular
Each script should do one thing and one thing only

e.g. It takes an input in, it returns an output

Taking in a raw �le and returning a cleaned version
Taking in two �les and merging them
Taking in a cleaned �le and returning a �gure

Have a main script that runs all scripts in order
This is the script that you run to reproduce your results
You will rarely run it all at once, but it will be a nice way to organize your thoughts
This is a further bene�t of a well-organized directory -- you can easily see what scripts you need to
run in what order

Use source('rscript.R') to run an external script

A main script could be a .Rmd , a .R , a .sh , a .py , a .do etc.

15 / 62

Main script
#File: main.Rmd or main.R
#By: Kyle Coombs
#What: Runs the project from start to finish in Python
#Date: 2023/09/12

#Install packages with housekeeping. Also put together paths.
source('housekeeping.R')
#User written functions can be sourced �� or you could write a package, your call
source(paste0(build,'clean_functions.R'))
source(paste0(analysis,'analysis_functions.R'))

#Import files
source(paste0(build,'import_census.R'))
source(paste0(build,'import_admin_data.R'))

#Clean files
source(paste0(build,'clean_census.R'))
source(paste0(build,'clean_admin_data.R'))

#Merge files 1 to 2
source(paste0(build,'merge_census_admin.R'))

#Analysis
source('analysis/summary_stats.R')
source('analysis/basic_regression.R')

#Tables will likely be made with a host of R packages
source('analysis/make_sum_figures.R')
source('analysis/make_reg_figures.R')
source('analysis/make_sum_tables.R')
source('analysis/make_reg_tables.R')

Main script with functions

16 / 62

http://127.0.0.1:7776/main-with-functions

Main script as .Rmd
In this class, your problem sets will be .Rmd �les that you knit to PDF/HTML

The .Rmd �le will serve as your main script

You can source() modular code �les in code chunks

PS1 will show you examples of doing this

This guarantees your code runs from start to �nish instead of only when you are working
interactively

17 / 62

What's a housekeeping �le?
A housekeeping �le automates several tasks and goes at the start of every �le in your project

Housekeeping.R
By: Your Name
Date: YYYY-MM-DD
What: This script loads the packages and data needed for the analysis.

�� Package installation �� uncomment if running for the first time
#install.packages(c('here','tidyverse'))
library(here)
library(tidyverse)
library(haven)

�� Directory creation

here��i_am('housekeeping.R')

data_dir �� here��here('data')
raw_dir �� here��here(data_dir,'raw')
clean_dir �� here��here(data_dir,'clean')
output_dir �� here��here('output')
code_dir �� here��here('code')
processing_dir �� here��here(code_dir,'processing')
analysis_dir �� here��here(code_dir,'analysis')
documentation_dir �� here��here('documentation')

suppressWarnings({
 dir.create(data_dir)
 dir.create(raw_dir)
 dir.create(clean_dir)
 dir.create(documentation_dir)
 dir.create(code_dir)
 dir.create(processing_dir)
 dir.create(analysis_dir)
 dir.create(output_dir)
}) 18 / 62

3a. File organization
�. Separate directories by function

�. Separate �les into inputs and outputs

�. Make directories portable

To see how professionals do this, check out the source code for R's dplyr package

There are separate directories for source code (/src), documentation (/man), code tests
(/test), data (/data), examples (/vignettes), and more

When you use version control, it forces you to make directories portable (otherwise a collaborator
will not be able to run your code)

use relative �le paths, not absolute �le paths

19 / 62

https://github.com/tidyverse/dplyr

Don't be like this

Source: xkcd

20 / 62

http://xkcd.com/1459/

What is a directory?
All the �les on your computer are organized in directories or folders

When you are running a script, you are running it from a particular directory

This is not necessarily the directory where the script is located
It is the directory that your console is in
That means if you say read.csv('my_data.csv') , your computer looks for my_data.csv in that
particular directory
If that �le is not in that directory, you will get a FileNotFound error
In R, you can see what directory you are in using the getwd() function
It is also above the console in RStudio
You can change your working directory using the setwd() function

getwd()
�� [1] "C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/02-empirical�workflow"
#setwd('lectures/02-empirical�workflow')

21 / 62

What is a directory path?
A path de�nes the location of a �le or directory in a �le system tree.

If I navigate to this �le in my computer, the path is C�\Users\kgcsp\OneDrive\Documents\Education\Big
Data\big�data�class�materials\lectures\02-empirical�workflow\02-empirical�workflow.Rmd

The name separates folders that chart the path from the root to the �le

root: the start of the �le system tree (above that is C�\)
Each folder along the tree is separated by a \ or /

This is called an absolute path:

It is long
It is hard to remember
It is not portable -- if I send this �le to you, it won't work on your computer

Relative paths solve a lot of this:

The path to a �le or directory starting from the current working directory
If my current working directory is /big�data�class�materials , then I can use lectures/02-
empirical�workflow/02-empirical�workflow.Rmd

This is portable -- if I send this �le to you and you have a copy of the big�data�class�materials
repository on your computer, it will work on your computer 22 / 62

How I organize research projects
Entire projects should ideally live within the same directory
I have a folder called (my_project)

Within that folder I have subfolders:
�. data for all data �les a. raw for raw data �les b. clean or work for cleaned data �les c.

temp for temporary data �les
�. code for all code �les, and sometimes: a. code/analysis for code �les that build/clean

code a. code/build for code �les that do analysis
�. output for all output �les a. output/figures for code �les that make �gures b.

output/tables for code �les that make tables
�. literature or articles for all relevant literature
�. writing for all writing �les a. writing/notes for notes b. writing/drafts for drafts c.

writing/edits for edits
�. presentations for all presentations a. presentations/slides for slides b.

presentations/notes for notes
I'll further more or less as needed
See GitHub folder for this lecture as an example

I also include a script make_directory.sh that automates this process

23 / 62

How I organize research projects

Source: My computer

24 / 62

What is the value of directories?
All of the �les in a directory are related to each other
Can reference a �le within the data/raw folder, from the code/build folder without writing out the
full path C�/Users/kylec/Documents/my_project/data/raw/my_data.csv
Can save objects of strings of path directories to use later using the paste() function

my_project �� 'my_project'
data �� paste(my_project,'data',sep='/')
data_raw �� paste(data,'raw',sep='/')
data_clean �� paste(data,'clean',sep='/')
data_temp �� paste(data,'temp',sep='/')
code �� paste(my_project,'code',sep='/')
code_analysis �� paste(code,'analysis',sep='/')
code_build �� paste(code,'build',sep='/')

print(paste(data_raw,'my_data.csv',sep='/'))

�� [1] "my_project/data/raw/my_data.csv"

read.csv(paste(data_raw,'my_data.csv',sep='/'))

�� this is my data
�� 1 1 1 1 1
�� 2 2 2 2 2

This is a good way to make sure that your code is portable
If you move your project to a different computer, you can just change the my_project variable and
all the other paths will update automatically

25 / 62

Alternative to all the pastes is here()
Better yet is the here

here() will �nd the root directory of your project and then you can navigate from there

#install.packages('here')
library(here)

�� here() starts at C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials

here��i_am('my_project/code/build/.placeholder')

�� here() starts at C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/02-empirical�workflow

here('data/raw','my_data.csv')

�� [1] "C�/Users/kgcsp/OneDrive/Documents/Education/Big Data/big�data�class�materials/lectures/02-empirical�workflow/data/raw/my_data.csv"

Can be less clunky than paste() and sep="/"

Get lost in your directories? Use here��here() to identify your root directory

Alternatively, double-click the .Rproj �le to be redirected to the root directory of your project
folder

26 / 62

https://cran.r-project.org/web/packages/here/vignettes/here.html

Help! I am in code/, but I need
data/raw/�le.csv!

You can use relative paths to navigate between directories
�� means "go up one directory"

��/data/raw means "go up one directory, then down into data/raw "
. means "stay in the current directory"

./code/build means "stay in the current directory, then down into code/build "
��/�� means "go up two directories"

��/��/data/raw means "go up two directories, then down into data/raw

Play around with them yourself!

27 / 62

3b. Data organization
The key idea is to practice relational data base management

A relational database consists of many smaller data sets

Each data set is tabular and has a unique, non-missing key

Data sets "relate" to each other based on these keys

You can implement these practices in any modern statistical analysis software (R, Stata, SAS,
Python, Julia, SQL, ...)

Gentzkow & Shapiro recommend not merging data sets until as far into your code pipeline as
possible

28 / 62

What problems would this create?

Source: Code and Data for the Social Sciences (p. 19)

29 / 62

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

What's RDBM look like?

Source: Code and Data for the Social Sciences (p. 19)

30 / 62

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

4. Abstraction
What is abstraction? It means "reducing the complexity of something by hiding unnecessary details
from the user"

e.g. A dishwasher. All I need to know is how to put dirty dishes into the machine, and which button
to press. I don't need to understand how the electrical wiring or plumbing work.

In programming, abstraction is usually handled with functions

Abstraction is usually a good thing

But it can be taken to a harmful extreme: overly abstract code can be "impenetrable" which makes
it dif�cult to modify or debug

31 / 62

Rules for Abstraction
Gentzkow & Shapiro give three rules for abstraction:

�. Abstract to eliminate redundancy

�. Abstract to improve clarity

�. Otherwise, don't abstract

In the context of R, abstraction means:
Write functions
Name your objects sensibly

32 / 62

Abstract to eliminate redundancy
Sometimes you might �nd yourself repeating lines of code to accomplish a task

Downloading a sequence of files from 2004 to 2020 gets tedious
download.file('https:��data.nber.org/tax�stats/zipcode/2020/zipcode2020.zip',destfile=paste0(data_dir,'zipcode2020.zip',sep='/'))
download.file('https:��data.nber.org/tax�stats/zipcode/2019/zipcode2019.zip',destfile=paste0(data_dir,'zipcode2019.zip',sep='/'))
download.file('https:��data.nber.org/tax�stats/zipcode/2019/zipcode2019.zip',destfile=paste0(data_dir,'zipcode2018.zip',sep='/'))
etc.

Notice any problems?

Downloading a sequence of files from 20 wih a loop
for (y in 2004�2020) {
 download.file(paste0('https:��data.nber.org/tax�stats/zipcode/',y,'/zipcode',y,'.zip'),destfile=paste0(data_dir,'zipcode',y,'.zip
}

We'll learn more about iteration later with the apply family in R

There are many other forms of redundancy that can be eliminated with abstraction beyond
iteration

This is just the simplest to understand

33 / 62

Abstract to improve clarity
Consider the example of obtaining OLS estimates from a vector y and covariate matrix X that
already exist on our workspace

We could code this in two ways:

Bhat = (t(X)%*%X)^(-1)%*%t(X)%*%y
Bhat2 = (t(X)%*%X2)^(-1)%*%t(X2)%*%y

or

estimate_ols �� function(yvar, Xmat) {
 Bhat = (t(Xmat)%*%Xmat)^(-1)%*%t(Xmat)%*%yvar
 return(Bhat)
}
Bhat = estimate_ols(y,X)
Bhat2 = estimate_ols(y,X2)

The second approach is easier to read and understand what the code is doing

34 / 62

Otherwise, don't abstract
One could argue that the examples on the previous slides are overly abstract

If we're only doing it once in our script, then it may not make sense to use the function version

This discussion points out that it can be dif�cult to know if one has reached the optimal level of
abstraction

As you're starting out programming, I would advise doing almost everything inside of a function
(i.e. err on the side of over-abstraction when starting out)

And look for opportunities to loop (or use apply functions)

35 / 62

5. Documentation
�. Don't write documentation you will not maintain

�. Code should be self-documenting

Generally speaking, commented code is helpful

However, sometimes it can be harmful if, e.g. code comments contain dynamic information

It may not be helpful to have to rewrite comments every time you change the code

Code can be "self-documenting" by leveraging abstraction: function arguments make it easier to
understand what is a variable and what is a constant

36 / 62

A README is documentation
A README gives high-level information about the repository or data �le:

This repository contains code that does X task
Simple use case: use this repository to replicate paper X in journal Y

Onboarding instructions:
Add your name to this �le in repository folder the/folder/file.md
Fork the repository and pull request changes
Con�gure your computer settings in this way to run this project
Guidelines/rules for contributing to the project

Licensing information:
You can just take this code!
This is proprietary and we will sue you if you haven't paid us

Dependencies:
To use this code or package or data, download packages X , Y , Z

Changelog (short narrative commit history):
9/23/2023 - KGC - added function X to do Y

37 / 62

Documentation in R
R Help System: access using ?function_name

Package vignettes: access using vignette("vignette_name")

Cheatsheets: access at Posit Cheatsheets

38 / 62

https://posit.co/resources/cheatsheets/

6a. Time management
Time management is key to writing clean code2

It is foolish to think that one can write clean code in a strained mental state

Code written when you are groggy, overly anxious, or distracted will come back to bite you

Schedule long blocks of time (1.5 hours - 3 hours) to work on coding where you eliminate
distractions (email, social media, etc.)

Stop coding when you feel that your focus or energy is dissipating

2 Your professor needs this lecture too 39 / 62

6b. Task management
When collaborating on code, it is essential to not use email or Slack threads to discuss coding
tasks

Rather, use a task management system that has dedicated messages for a particular point of
discussion (bug in the code, feature to develop, etc.)

I use GitHub issues for all of my coding projects

For my personal task management, I use Trello to take all tasks out of my email inbox and put
them in Trello's task management system

GitHub and Trello also have Kanban-style boards where you can easily visually track progress on
tasks

40 / 62

7. Test-driven development
The only way to know that your code works is to test it!

Test-driven development (TDD) consists of a suite of tools for writing code that can be
automatically tested

Simplest test is to check if the code gives you the output you expected

More complicated is to write a unit test

Unit testing is nearly universally used in professional software development

Unit testing is to software developers what washing hands is to surgeons

41 / 62

Unit testing
Unit tests are scripts that check that a piece of code does everything it is supposed to do

When professionals write code, they also write unit tests for that code at the same time

If code doesn't pass tests, then bugs are caught immediately

R's dplyr package shows that all unit tests are passing and that tests cover 88% of the code base

testthat is a nice step-by-step guide for doing this in R

Assertions
Assert statements are extremely useful for basic unit tests
They exist in every langage
In R it is called stopifnot()

x �� TRUE
stopifnot(x)

y �� FALSE
stopifnot(y)

�� Error: y is not TRUE

42 / 62

https://github.com/tidyverse/dplyr
https://testthat.r-lib.org/

Troubleshooting tips
Sometimes you've made several changes to your code and suddenly it stops running

Was it the new if statement?
That sick new vectorized function to replace the for loop?
A stray typo?

How do you �nd the bug in hundreds of lines of code?

Read your code to see if there is an obvious mistake

Binary search: Comment1 half your code, run the script, and see if the bug persists

If it does, the bug is in the other half
If it doesn't, the bug is in the commented half
Use # to comment out lines of code in R, or highlight and press Ctrl+Shift+C

Repeat on each half until you narrow to set of lines

If you can solve the bug from that line, great!

If not, make a Minimal reproducible example!

1 Comment in R with # . Comment in RMarkdown with ���� code ��� . Or highlight and press Ctrl+Shift+C in RStudio. 43 / 62

Minimal reproducible example (MRE)
There's likely a ton of super�uous stuff in your code that is not relevant to the error

Minimal reproducible examples (reprex) are a great way to isolate the error

Minimal: Use as little code as possible that still produces the same problem
Complete: Provide all parts needed to reproduce your problem in the question itself
Reproducible: Test the code you'll provide to make sure it reproduces the problem

That means you should be able to copy and paste the code into R and run it yourself

Name all packages and data needed to reproduce error
Cut out irrelevant packages, steps, and data that are not relevant to the error

Sometimes writing one will help you �nd the bug, sometimes it'll help a stranger �nd the bug in
your code faster, and sometimes it'll identify a very real bug in the package itself

MREs also help you refactor and pro�le your code

44 / 62

https://stackoverflow.com/help/minimal-reproducible-example

Min Reprex from RStudio community
If someone does not have hrbrthemes installed, they will not be able to run your code.

You can remove this package from your code and still reproduce the error.

library(ggplot2) #For ggplot
library(datasets) #To load irs
library(hrbrthemes) #For the theme
data(iris)
df �� iris %>%
 mutate(Sepal.Length = Sepal.Length * 1000,
 Sepal.Width = Sepal.Width * 1000)

ggplot(data = df,x = Sepal.Length, y = Sepal.Width) +
 theme_modern_rc() +
 geom_point() +
 scale_x_log10() +
 labs(title = "Iris Sepal Width vs. Sepal Length",
 subtitle = "Log10 Scaled X Axis")

�� Error in `geom_point()`:
�� ! Problem while setting up geom.
�� ℹ Error occurred in the 1st layer.
�� Caused by error in `compute_geom_1()`:
�� ! `geom_point()` requires the following missing aesthetics: x and y

45 / 62

https://community.rstudio.com/t/faq-how-to-do-a-minimal-reproducible-example-reprex-for-beginners/23061

How to write MREs
Cut out the unnecessary steps

library(ggplot2)

df �� data.frame(stringsAsFactors = FALSE,
 Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5),
 Sepal.Width = c(3.5, 3, 3.2, 3.1, 3.6)
)
ggplot(data = df, x = Sepal.Length, y = Sepal.Width) +
 geom_point()

�� Error in `geom_point()`:
�� ! Problem while setting up geom.
�� ℹ Error occurred in the 1st layer.
�� Caused by error in `compute_geom_1()`:
�� ! `geom_point()` requires the following missing aesthetics: x and y

#> Error: geom_point requires the following missing aesthetics: x, y

You can use reprex to make sure that your code is reproducible by others.

You can use dput to make sure that your data is reproducible by others.

46 / 62

https://reprex.tidyverse.org/
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/dput

Troubleshooting tips (cont.)
Step back and ask if you're solving the right problem

e.g. I'm trying to make a plot, but I'm getting an error about a missing variable. Maybe I should
check if I'm loading the right data
e.g. I have to create a long data set and I have annual �les, but my code is merging instead of
appending...

Check for super�uous things you can remove

e.g. Wait, I don't need to include absolute �le paths, I can use relative paths
Bonus: I'll make fewer typos!

Try small �xes, then apply broadly

e.g. I think the problem is with how I wrote my �le paths, let me try to get just one �le path to
work

Change one thing at a time

e.g. The problem is either with my paste0() statement or the ggsave function, let me try to
get the paste0() statement to work �rst

47 / 62

Troubleshooting tips (cont.)
Embrace GitHub committing

When you have code that works, stage, commit and push it -- even if it is only a small piece of
the puzzle
If it breaks, revert
This minimizes how much you need to re-do/keep track of

Sometimes it is easier to change things on yourside than it is to force a programming language to
work a certain way

e.g. Rmarkdown doesn't like the character # in �lepaths, but I can change the �lepaths rather
than trying to force Rmarkdown to accept it

There's more than one way to skin a cat

e.g. If I can't get read.csv() to work, I'll try read.table()
e.g. This googlesheets4 package doesn't seem to work -- what about gsheet or googledrive ?

With ChatGPT or Google, make very speci�c asks

e.g. "How do I get a �le named /my/path/name/my_file.pdf into
other/folder/name/file.Rmd ?"

48 / 62

https://docs.github.com/en/desktop/managing-commits/reverting-a-commit-in-github-desktop

8. Pair programming - work with a buddy
An essential part of clean code is reviewing code

An excellent way to review code is to do so at the time of writing

Pair programming involves sitting two programmers at one computer

One programmer does the writing while the other reviews

This is a great way to spot silly typos and other issues that would extend development time

It's also a great way to quickly refactor code at the start

I strongly encourage you to do pair programming on problem sets in this course!

(Sometimes I will require it)

49 / 62

Next lecture: R basics, data wrangling,Next lecture: R basics, data wrangling,
tidyverse and data.tabletidyverse and data.table

AppendixAppendix

Main script with functions
name: main-with-functions

#File: main.Rmd or main.R
#By: Kyle Coombs
#What: Runs the project from start to finish in Python
#Date: 2023/09/12

#Install packages with housekeeping. Also put together paths.
source('housekeeping.R')
#User written functions can be sourced �� or you could write a package, your call
source(paste0(build,'clean_functions.R'))
source(paste0(analysis,'analysis_functions.R'))

#Import files
df1 �� read_csv(paste0(raw,'file1.csv'))
df2 �� read_parquet(paste0(raw,'file2.parquet'))
df3 �� read_dta(paste0(raw,'file3.dta'))

#Clean files
cleaned_df1 �� clean_df1(df1)
cleaned_df2 �� clean_df2(df2)
cleaned_df3 �� cf.clean_df3(df3)

#Merge files 1 to 2
merged_df1_df2 = merge(cleaned_df1, cleaned_df2, on=c('merge','vars'))

#Append file 1 to
append_df1_df2_df3 = rbind(merged_df1_df2, cleaned_df2)

#Analysis
sum_stats=summary_stats(append_df1_df2_df3,stats=c('mean','median','max'))
reg_results=basic_regression(append_df1_df2_df3)

#Tables will likely be made with a host of R packages
make_sum_figures(sum_stats)
make_figures(reg_results)
make_sum_tables(sum_stats)
make_tables(reg_results)

52 / 62

Textbooks: Smarter people than me
Cunningham (2021) Causal Inference: The Mixtape (Also, free version on his website)
Huntington-Klein (2022) The Effect
Angrist and Pischke (2009) Mostly Harmless Econometrics (MHE)
Morgan and Winship (2014) Counterfactuals and Causal Inference (MW)
Sweigart (2019) Automate The Boring Stuff With Python
Wickham (2023) Advanced R
Wickham and Grolemund (2023) R for Data Science
Peng (2022) R Programming for Data Science

53 / 62

https://www.amazon.com/Causal-Inference-Mixtape-Scott-Cunningham/dp/0300251688
https://mixtape.scunning.com/
https://theeffectbook.net/introduction.html
http://www.amazon.com/Mostly-Harmless-Econometrics-Empiricists-Companion/dp/0691120358/
http://www.amazon.com/Counterfactuals-Causal-Inference-Principles-Analytical/dp/1107694167/
https://automatetheboringstuff.com/
http://adv-r.had.co.nz/
https://r4ds.had.co.nz/
https://bookdown.org/rdpeng/rprogdatascience/

Non-textbook readings
The help documentation associated with your language (no really)
Jesse Shapiro's "How to Present an Applied Micro Paper"
Gentzkow and Shapiro's coding practices manual
Ljubica "LJ" Ristovska's language agnostic guide to programming for economists
Grant McDermott on Version Control using Github Link

54 / 62

https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html#1

Helpful for troubleshooting
The help documentation associated with your language (no really)
All languages: Stack Over�ow, Stack Exchange
Stata-speci�c (all hail Nick Cox): Statalist
Cheatsheets: Stata, RStudio, Python
Me: Sign up for of�ce hours

55 / 62

https://stackoverflow.com/
https://stackexchange.com/
https://www.statalist.org/forums/forum/general-stata-discussion/general
https://www.stata.com/bookstore/statacheatsheets.pdf
https://www.rstudio.com/resources/cheatsheets/
https://betterprogramming.pub/10-must-have-python-cheatsheets-2b74e8097bc3?gi=cfdb14820caa
https://calendar.google.com/calendar/u/1/selfsched?sstoken=UUF5d0hzbmlvemxVfGRlZmF1bHR8NDRjMWFiMjA5OTNkNzMwNTVkYzBkYWYyYzc2NmQ5Yjc/

Learn by Immersion
Just like learning a real language, no amount of talking today will teach you how to use any
program.

You have to need to use it (immersion) to learn it.
Google is your dictionary.
Help �les are your grammar books.
ChatGPT is your phrasebook.
A great way to start coding is to see lots of other people's code and copy what you read.

You must learn how to ask the “right” question:

Never: "Importing csv �le into R not working."
Better: "read_csv R [speci�c error message]."
Better still: "read_csv tidyverse [speci�c error message]."

56 / 62

Abstract to eliminate redundancy (cont.)
What if you can't �nd an R function? Write your own!

set.seed(16)
prod1 = rnorm(1, 0, 1)�rnorm(1,4,6)
prod2 = rnorm(2, 0, 1)�rnorm(2,0,1)
prod3 = rnorm(3, 0, 1)�rnorm(3,15,78)
print(prod1)
�� [1] 1.547257
print(prod2)
�� [1] 1.2582691 0.6764943
print(prod3)
�� [1] -60.06036 10.11156 24.32342

set.seed(16)
multiply_normals = function(count,mean1=0,sd1=1,mean2=0,sd2=1) {
 prod = rnorm(count,mean1,sd1)�rnorm(count,mean2,sd2)
 return(prod)
}
prod1=multiply_normals(1,mean2=4,sd2=6)
prod2=multiply_normals(2,mean2=0,sd2=1)
prod3=multiply_normals(3,mean2=15,sd2=78)

print(prod1)
�� [1] 1.547257
print(prod2)
�� [1] 1.2582691 0.6764943
print(prod3)
�� [1] -60.06036 10.11156 24.32342

57 / 62

Note on seeds
When randomizing in any language, you aren't really randomizing

You're producing pseudo-random numbers that return in a deterministic ordered list

If you set the seed, you can reproduce the same "random" numbers

This is useful for debugging and sharing code

Use set.seed in R

set.seed(0)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 17.26652
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 15.14712
New seed
set.seed(1)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 13.72156
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 16.10432
Reset seed
set.seed(0)
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 17.26652
print(rnorm(1)�rnorm(1,5)�rnorm(1,10))
�� [1] 15.14712

58 / 62

Make your own documentation
R has excellent built-in documentation called Roxygen2

These make great documents above functions to increase readability

Here's an example:

library(roxygen2)
#' This is a sample function
#'
#' This function does something amazing.
#'
#' @param x A numeric input.
#' @return The result of the amazing operation.
#' @examples
#' amazing_function(5)
amazing_function �� function(x) {
 # function implementation
}

Use roxygen��roxygenise() to generate documentation for all functions in a �le
Read more here

59 / 62

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

Refactoring
Refactoring refers to the action of restructuring code without changing its external behavior or
functionality. Think of it as "reorganizing"

get_some_data �� function(config, outfile) {
 if (config_ok(config)) {
 if (can_write(outfile)) {
 if (can_open_network_connection(config)) {
 data �� parse_something_from_network()
 if(makes_sense(data)) {
 data �� beautify(data)
 write it(data, outfile)

after refactoring becomes

get_some_data �� function(config, outfile) {
 if (config_bad(config)) {
 stop("Bad config")
 }

 if (!can_write(outfile)) {

 stop("Can't write outfile")
}

Nothing changed in the code except the number of characters in the function

The new version may run faster, is more readable. The output is unchanged.

Refactoring could also mean reducing the number of input arguments

Jenny Bryan gave a great talk on refactoring 60 / 62

https://www.youtube.com/watch?v=7oyiPBjLAWY

Pro�ling
Pro�ling refers to checking the resource demands of your code

How much processing time does your script take? How much memory?

Clean code should be highly performant: it uses minimal computational resources

Pro�ling and refactoring go hand in hand, along with unit testing, to ensure that code is maximally
optimized

Here are two intro guides to pro�ling in R:
Using system.time and Rprofs from R Programming for Data
Science[https://bookdown.org/rdpeng/rprogdatascience/pro�ling-r-code.html]
Using lineprof from Advanced R[http://adv-r.had.co.nz/Pro�ling.html]

Back to MREs

61 / 62

https://bookdown.org/rdpeng/rprogdatascience/profiling-r-code.html
http://adv-r.had.co.nz/Profiling.html

Neat R functions to help reduce
redundancy
set.seed(16)
list1 = list() # Make an empty list to save output in
for (i in 1�3) { # Indicate number of iterations with "i"
 list1[[i]] = multiply(i) # Save output in list for each iteration
}
list1

�� [[1]]
�� [1] 1.547257
��
�� [[2]]
�� [1] 11.934479 -1.717951
��
�� [[3]]
�� [1] -7.4831177 0.9587218 4.7882622

A better way to eliminate this redundancy is to use the map function:

set.seed(16)
map(1�3, multiply)

�� [[1]]
�� [1] 1.547257
��
�� [[2]]
�� [1] 11.934479 -1.717951
��
�� [[3]]
�� [1] -7.4831177 0.9587218 4.7882622 62 / 62

