EC 320 Problem Set 4

Winter 2022

1. (Textbook Question 6.6) 10 points

In a Monte Carlo experiment, a variable Y is generated as a linear function of two variables X_{2} and X_{3};

$$
Y=10.0+10.0 X_{2}+0.5 X_{3}+u
$$

where X_{2} is the sequence of integers $1,2, \cdots, 30, X_{3}$ is generated from X_{2} by adding random numbers, and u is a disturbance term with a normal distribution with mean zero and variance 10,000 . The correlation between X_{2} and X_{3} is 0.95 . The table shows the result of fitting the following regressions for 10 samples:

$$
\begin{aligned}
& \text { Model A : } \hat{Y}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2}+\hat{\beta}_{3} X_{3} \\
& \text { Model B : } \hat{Y}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{2}
\end{aligned}
$$

The figure shows the distributions of $\widehat{\beta}_{2}$ for the two models for 10 million samples. In the case of Model A, the distribution of $\widehat{\beta}_{2}$ has mean 10.001 and standard deviation 6.910. For Model B, the mean is 10.500 and the standard deviation is 2.109 . Comment on all aspects of the regression results, giving full explanations of what you observe.

Sample	Model A					Model B		
	$\hat{\beta}_{2}$	s.e. $\left(\hat{\beta}_{2}\right)$	$\hat{\beta}_{3}$	s.e. $\left(\hat{\beta}_{3}\right)$	R^{2}	$\hat{\beta}_{2}$	s.e. $\left(\hat{\beta}_{2}\right)$	R^{2}
1	10.68	6.05	0.60	5.76	0.5800	11.28	1.82	0.5799
2	7.52	7.11	3.74	6.77	0.5018	11.26	2.14	0.4961
3	7.26	6.58	2.93	6.26	0.4907	10.20	1.98	0.4865
4	11.47	8.60	0.23	8.18	0.4239	11.70	2.58	0.4239
5	13.07	6.07	-3.04	5.78	0.5232	10.03	1.83	0.5183
6	16.74	6.63	-4.01	6.32	0.5966	12.73	2.00	0.5906
7	15.70	7.50	-4.80	7.14	0.4614	10.90	2.27	0.4523
8	8.01	8.10	1.50	7.71	0.3542	9.51	2.43	0.3533
9	1.08	6.78	9.52	6.45	0.5133	10.61	2.11	0.4740
10	13.09	7.58	-0.87	7.21	0.5084	12.22	2.27	0.5081

2. (Textbook Question 6.8) 10 points

Following is the results of regressing $L G E A R N$ on $S, E X P, A S V A B C, M A L E, E T H B L A C K$, ETHHISP. Now we repeat the regression adding $A G E$. (LGEARN denotes the logged hourly earnings, S represents years of schoolings, $E X P$ represents the total out-of-school work experience (years), $A S V A B C$ represents scaled score on a component of the $A S V A B$ test, $M A L E$ is a binary variable denoting male, $E T H B L A C K, E T H H I S P$ are binary variables denoting certain ethnicity.)

\#\# term	estimate	std.error	statistic	p.value
\#\# <chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1 (Intercept)	0.977	0.194	5.04	$6.62 \mathrm{e}-7$
\#\# 2 S	0.0954	0.0106	8.99	5.35e-18
\#\# 3 EXP	0.0431	0.00893	4.83	$1.81 \mathrm{e}^{-6}$
\#\# 4 ASVABC	0.0478	0.0283	1.69	$9.18 \mathrm{e}-2$
\#\# 5 MALE	0.195	0.0443	4.41	$1.28 \mathrm{e}-5$
\#\# 6 ETHBLACK	-0.0448	0.0747	-0.600	$5.49 \mathrm{e}-1$
\#\# 7 ETHHISP	0.123	0.0693	1.77	$7.72 \mathrm{e}-2$

\#\# \# A tibble: 8	x 5				
\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	1.29	0.475	2.71	$6.94 \mathrm{e}-3$
\#\# 2	S	0.0985	0.0115	8.57	$1.30 \mathrm{e}-16$
\#\# 3	EXP	0.0473	0.0107	4.44	$1.12 \mathrm{e}-5$
\#\# 4	ASVABC	0.0450	0.0286	1.57	$1.16 \mathrm{e}-1$
\#\# 5	MALE	0.194	0.0444	4.36	$1.57 \mathrm{e}-5$
\#\# 6 ETHBLACK	-0.0398	0.0751	-0.530	$5.96 \mathrm{e}-1$	
\#\# 7	ETHHISP	0.122	0.0693	1.76	$7.91 \mathrm{e}-2$
\#\# 8	AGE	-0.0132	0.0185	-0.715	$4.75 \mathrm{e}-1$

Correlations between $A G E$ and other explanatory variables are given as follows:

\#\#	S	EXP	ASVABC	MALE	ETHBLACK ETHHISP	AGE	
\#\# S	1.0000	-0.5003	0.5338	-0.1852	-0.0891	-0.1215	0.0748
\#\# EXP	-0.5003	1.0000	-0.2119	0.0990	-0.0804	0.0607	0.4165
\#\# ASVABC	0.5338	-0.2119	1.0000	-0.0902	-0.3162	-0.1328	-0.0511
\#\# MALE	-0.1852	0.0990	-0.0902	1.0000	-0.0381	-0.0558	-0.0581
\#\# ETHBLACK	-0.0891	-0.0804	-0.3162	-0.0381	1.0000	-0.1299	0.0417
\#\# ETHHISP	-0.1215	0.0607	-0.1328	-0.0558	-0.1299	1.0000	-0.0196
\#\# AGE	0.0748	0.4165	-0.0511	-0.0581	0.0417	-0.0196	1.0000

Compare the results of the two regressions.

3. (Textbook Question 5.10) 10 points

The regression model looks as follows:

$$
\log (\text { EARNINGS })_{i}=\beta_{0}+\beta_{1} S_{i}+\beta_{2} E X P_{i}+\beta_{3} M A L E+\beta_{4} C O L L B A R G+u_{i} .
$$

Following is the results of regressing logged hourly earnings, denoted by \log (EARNINGS), on S, EXP , MALE, and COLLBARG. (log(EARNINGS) denotes the logged hourly earnings, S represents years of schoolings, EXP represents the total out-of-school work experience (years), MALE is a binary variable denoting male.)

Does belonging to a union have an impact on earnings? In the output below, COLLBARG is a dummy variable defined to be 1 for workers whose wages are determined by collective bargaining and 0 for the others. Provide an interpretation of the regression coefficients and perform appropriate statistical tests.

```
## # A tibble: 5 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 1.04 0.197 5.29 1.87e- 7
## 2 S 0.0932 0.0101 9.19 1.11e-18
## 3 EXP 0.0423 0.00940 4.50 8.61e- 6
## 4 MALE 0.172 0.0452 3.79 1.67e- 4
## 5 COLLBARG 0.258 0.0631 4.08 5.19e- 5
```


4. (Textbook Question 5.19) 10 points

Is the effect of education on earnings different for members of a union? In the output below, $C O L L B A R G$ is a dummy variable defined to be 1 for workers whose wages are determined by collective bargaining and 0 for the others. $S B A R G$ is a slope dummy variable defined as the product of S and $C O L L B A R G$. Provide an interpretation of the regression coefficients, comparing them with those in question 3 , and perform appropriate statistical tests.

\#\# \# A tibble: 6	x 5				
\#\#	term	estimate	std.error	statistic	p.value
\#\#	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#\# 1	(Intercept)	1.03	0.205	5.05	$6.24 \mathrm{e}-7$
\#\# 2	S	0.0937	0.0108	8.66	$6.65 \mathrm{e}-17$
\#\# 3 EXP	0.0423	0.00941	4.49	$8.75 \mathrm{e}-6$	
\#\# 4	MALE	0.171	0.0454	3.78	$1.78 \mathrm{e}-4$
\#\# 5	COLLBARG	0.298	0.357	0.835	$4.04 \mathrm{e}-1$
\#\# 6 SBARG	-0.00261	0.0227	-0.115	$9.08 \mathrm{e}-1$	

