Nonlinear Relationships

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

Final Exam

Review lecture this Wednesday.

- Come prepared with questions.

Exam: Friday, March 18 at 10:15am in TYKE 140

- If things change, will announce it immediately on Canvas

Lab

Some practice problems reviewed

Poll
Office hours on the finals week?

Nonlinear Relationships

Can We Do Better?

$(\text { Life Expectancy })_{i}=53.96+8 \times 10^{-4} \cdot \mathrm{GDP}_{i}$

Nonlinear Relationships

Many economic relationships are nonlinear.

- e.g., most production functions, profit, diminishing marginal utility, tax revenue as a function of the tax rate, etc.

The flexibility of OLS

OLS can accommodate many, but not all, nonlinear relationships.

- Underlying model must be linear-in-parameters.
- Nonlinear transformations of variables are okay.
- Modeling some nonlinear relationships requires advanced estimation techniques, such as maximum likelihood. ${ }^{\dagger}$
+ Beyond the scope of this class.

Linearity

Linear-in-parameters: Parameters enter model as a weighted sum, where the weights are functions of the variables.

- One of the assumptions required for the unbiasedness of OLS.

Linear-in-variables: Variables enter the model as a weighted sum, where the weights are functions of the parameters.

- Not required for the unbiasedness of OLS.

The standard linear regression model satisfies both properties:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+u_{i}
$$

Linearity

Which of the following is linear-in-parameters, linear-in-variables, or neither?

1. $Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+\cdots+\beta_{k} X_{i}^{k}+u_{i}$
2. $Y_{i}=\beta_{0} X_{i}^{\beta_{1}} v_{i}$
3. $Y_{i}=\beta_{0}+\beta_{1} \beta_{2} X_{i}+u_{i}$

Model 1 is linear-in-parameters, but not linear-in-variables.
Model 2 is neither.
Model 3 is linear-in-variables, but not linear-in-parameters.

We're Going to Take Logs

The natural log is the inverse function for the exponential function: $\log \left(e^{x}\right)=x$ for $x>0$.

(Natural) Log Rules

1. Product rule: $\log (A B)=\log (A)+\log (B)$.
2. Quotient rule: $\log (A / B)=\log (A)-\log (B)$.
3. Power rule: $\log \left(A^{B}\right)=B \cdot \log (A)$.
4. Derivative: $f(x)=\log (x) \Rightarrow f^{\prime}(x)=\frac{1}{x}$.
5. $\log (e)=1, \log (1)=0$, and $\log (x)$ is undefined for $x \leq 0$.

Log-Linear Model

Nonlinear Model

$$
Y_{i}=\alpha e^{\beta_{1} X_{i}} v_{i}
$$

- $Y>0, X$ is continuous, and v_{i} is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$
\log \left(Y_{i}\right)=\log (\alpha)+\beta_{1} X_{i}+\log \left(v_{i}\right)
$$

- Redefine $\log (\alpha) \equiv \beta_{0}$ and $\log \left(v_{i}\right) \equiv u_{i}$.

Transformed (Linear) Model

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

- Can estimate with OLS, but coefficient interpretation changes.

Log-Linear Model

Regression Model

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

Interpretation

- A one-unit increase in the explanatory variable increases the outcome variable by approximately $\beta_{1} \times 100$ percent, on average.
- Example: If $\log \left(\operatorname{Pay}_{i}\right)=2.9+0.03 \cdot$ School $_{i}$, then an additional year of schooling increases pay by approximately 3 percent, on average.

Log-Linear Model

Derivation

Consider the log-linear model

$$
\log (Y)=\beta_{0}+\beta_{1} X+u
$$

and differentiate

$$
\frac{d Y}{Y}=\beta_{1} d X
$$

A marginal (small) change in X (i.e., $d X$) leads to a $\beta_{1} d X$ proportionate change in Y.

- Multiply by 100 to get the percentage change in Y.

Log-Linear Example

$$
\log \left(\hat{Y}_{i}\right)=10.02+0.73 \cdot \mathbf{X}_{i}
$$

Log-Linear Model

Note: If you have a log-linear model with a binary indicator variable, the interpretation of the coefficient on that variable changes.

Consider

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

for binary variable X.
Interpretation of β_{1} :

- When X changes from 0 to $1, Y$ will increase by $100 \times\left(e^{\beta_{1}}-1\right)$ percent.
- When X changes from 1 to $0, Y$ will decrease by $100 \times\left(e^{-\beta_{1}}-1\right)$ percent.

Log-Linear Example

Binary explanatory variable: trained

- $\operatorname{trained}=1$ if employee received training.
- trained $=0$ if employee did not receive training.
$\operatorname{lm}(\log ($ productivity $) \sim$ trained, data $=d f 2) \%>\%$ tidy ()

\#> \# A tibble: 2×5					
\#>	term	estimate	std.error	statistic	p.value
\#>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1	(Intercept)	9.94	0.0446	223.	0
\#> 2	trained	0.557	0.0631	8.83	$4.72 e-18$

Q: How do we interpret the coefficient on trained?
$\mathbf{A}_{\mathbf{1}}$: Trained workers 74.52 percent more productive than untrained workers.
\mathbf{A}_{2} : Untrained workers -42.7 percent less productive than trained workers.

Log-Log Model

Nonlinear Model

$$
Y_{i}=\alpha X_{i}^{\beta_{1}} v_{i}
$$

- $Y>0, X>0$, and v_{i} is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$
\log \left(Y_{i}\right)=\log (\alpha)+\beta_{1} \log \left(X_{i}\right)+\log \left(v_{i}\right)
$$

- Redefine $\log (\alpha) \equiv \beta_{0}$ and $\log \left(v_{i}\right) \equiv u_{i}$.

Transformed (Linear) Model

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}
$$

- Can estimate with OLS, but coefficient interpretation changes.

Log-Log Model

Regression Model

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}
$$

Interpretation

- A one-percent increase in the explanatory variable leads to a β_{1} percent change in the outcome variable, on average.
- Often interpreted as an elasticity.
- Example: If $\log \left(\right.$ Quantity Demanded $\left._{i}\right)=0.45-0.31 \cdot \log \left(\right.$ Income $\left._{i}\right)$, then each one-percent increase in income decreases quantity demanded by 0.31 percent.

Log-Log Model

Derivation

Consider the log-log model

$$
\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u
$$

and differentiate

$$
\frac{d Y}{Y}=\beta_{1} \frac{d X}{X}
$$

A one-percent increase in X leads to a β_{1}-percent increase in Y.

- Rearrange to show elasticity interpretation:

$$
\frac{d Y}{d X} \frac{X}{Y}=\beta_{1}
$$

Log-Log Example

$$
\log \left(\hat{Y}_{i}\right)=0.01+2.99 \cdot \log \left(\mathrm{X}_{i}\right)
$$

Linear-Log Model

Nonlinear Model

$$
e^{Y_{i}}=\alpha X_{i}^{\beta_{1}} v_{i}
$$

- $X>0$ and v_{i} is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$
Y_{i}=\log (\alpha)+\beta_{1} \log \left(X_{i}\right)+\log \left(v_{i}\right)
$$

- Redefine $\log (\alpha) \equiv \beta_{0}$ and $\log \left(v_{i}\right) \equiv u_{i}$.

Transformed (Linear) Model

$$
Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}
$$

- Can estimate with OLS, but coefficient interpretation changes.

Linear-Log Model

Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}
$$

Interpretation

- A one-percent increase in the explanatory variable increases the outcome variable by approximately $\beta_{1} \div 100$, on average.
- Example: If $(\text { Blood Pressure })_{i}=150-9.1 \log \left(\right.$ Income $\left._{i}\right)$, then a onepercent increase in income decrease blood pressure by 0.091 points.

Linear-Log Model

Derivation

Consider the log-linear model

$$
Y=\beta_{0}+\beta_{1} \log (X)+u
$$

and differentiate

$$
d Y=\beta_{1} \frac{d X}{X}
$$

A one-percent increase in X leads to a $\beta_{1} \div 100$ change in Y.

Linear-Log Example

$$
\hat{Y}_{i}=0+0.99 \cdot \log \left(\mathrm{X}_{i}\right)
$$

(Approximate) Coefficient Interpretation

Model	β_{1} Interpretation
Level-level $Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}$	$\Delta Y=\beta_{1} \cdot \Delta X$ A one-unit increase in X leads to a β_{1}-unit increase in Y
Log-level $\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}+u_{i}$	$\% \Delta Y=100 \cdot \beta_{1} \cdot \Delta X$ A one-unit increase in X leads to a $\beta_{1} \cdot 100$-percent increase in Y
Log-log $\log \left(Y_{i}\right)=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}$	$\% \Delta Y=\beta_{1} \cdot \% \Delta X$ A one-percent increase in X leads to a β_{1}-percent increase in Y
Level-log $Y_{i}=\beta_{0}+\beta_{1} \log \left(X_{i}\right)+u_{i}$	$\Delta Y=\left(\beta_{1} \div 100\right) \cdot \% \Delta X$ A one-percent increase in X leads to a $\beta_{1} \div 100$-unit increase in Y

Can We Do Better?

$(\text { Life Expectancy })_{i}=53.96+8 \times 10^{-4} \cdot \mathrm{GDP}_{i} \quad R^{2}=0.34$

Can We Do Better?

$$
\log \left(\text { Life Expectancy }{ }_{i}\right)=3.97+1.3 \times 10^{-5} \cdot \mathrm{GDP}_{i} \quad R^{2}=0.3
$$

Can We Do Better?

$\log \left(\right.$ Life Expectancy $\left.{ }_{i}\right)=2.86+0.15 \cdot \log \left(\mathrm{GDP}_{i}\right) \quad R^{2}=0.61$

Can We Do Better?

$$
(\text { Life Expectancy })_{i}=-9.1+8.41 \cdot \log \left(\mathrm{GDP}_{i}\right) \quad R^{2}=0.65
$$

Practical Considerations

Consideration 1: Do your data take negative numbers or zeros as values?
$\log (0)$
\#> [1] -Inf

Consideration 2: What coefficient interpretation do you want? Unit change? Unit-free percent change?

Consideration 3: Are your data skewed?

Quadratic Regression

Quadratic Data

Quadratic Regression

Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2}+u_{i}
$$

Interpretation

Sign of β_{2} indicates whether the relationship is convex (+) or concave (-)
Sign of β_{1} ?
Partial derivative of Y with respect to X is the marginal effect of X on Y :

$$
\frac{\partial Y}{\partial X}=\beta_{1}+2 \beta_{2} X
$$

- Effect of X depends on the level of X

Quadratic Regression

```
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()
```

\#> \# A tibble: 3×5					
\#>	term	estimate	std.error	statistic	p.value
\#>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#>	(Intercept)	13.2	2.26	5.81	$8.30 e-9$
\#> 2	x	15.7	1.03	15.3	$1.99 e-47$
\#> 3	I($\left.x^{\wedge} 2\right)$	-2.50	0.0982	-25.4	$2.46 e-110$

What is the marginal effect of X on Y ?
$\frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}=\hat{\beta}_{1}+2 \hat{\beta}_{2} X=15.69+-4.99 X$

Quadratic Regression

```
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()
```

\#> \# A tibble: 3×5
\#> term estimate std.error statistic p.value
\#> <chr> <dbl> <dbl> <dbl> <dbl>
\#> 1 (Intercept) $13.2 \quad 2.26 \quad 5.818 .30 \mathrm{e}-9$

\#> $2 \times$	15.7	1.03	15.3	$1.99 e-47$

\#> 3				
I	$(x \wedge 2)$	-2.50	0.0982	-25.4
$2.46 e-110$				

What is the marginal effect of X on Y when $X=0$?

$$
\left.\frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}\right|_{\mathrm{X}=0}=\hat{\beta}_{1}=15.69
$$

Quadratic Regression

```
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()
```

term	estimate	std.error	statistic	p.value
> <chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1 (Intercept)	13.2	2.26	5.81	8.30e- 9
\#> 2 x	15.7	1.03	15.3	1.99e-47
\#> $3 \mathrm{I}\left(\mathrm{x}^{\wedge} 2\right)$	-2.50	0.0982	-25.4	2.46e-110

What is the marginal effect of X on Y when $X=2$?
$\left.\frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}\right|_{\mathrm{X}=2}=\hat{\beta}_{1}+2 \hat{\beta}_{2} \cdot(2)=15.69-9.99=5.71$

Quadratic Regression

```
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()
```

\#> \# A tibble: 3×5
\#> term estimate std.error statistic p.value
\#> <chr> <dbl> <dbl> <dbl> <dbl>
\#> 1 (Intercept) $13.2 \quad 2.26 \quad 5.818 .30 \mathrm{e}-9$
\#> $2 \times 15.7 \quad 1.03 \quad 15.31 .99 e-47$
$\begin{array}{lllll}\text { \#> } 3 & I(x \wedge 2) & -2.50 & 0.0982 & -25.4 \\ 2.46 e-110\end{array}$

What is the marginal effect of X on Y when $X=7$?

$$
\left.\frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}\right|_{\mathrm{X}=7}=\hat{\beta}_{1}+2 \hat{\beta}_{2} \cdot(7)=15.69-34.96=-19.27
$$

Fitted Regression Line

Marginal Effect of \mathbf{X} on \mathbf{Y}

Quadratic Regression

Where does the regression $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}+\hat{\beta}_{2} X_{i}^{2}$ turn?

- In other words, where is the peak (valley) of the fitted relationship?

Step 1: Take the derivative and set equal to zero.

$$
\frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}=\hat{\beta}_{1}+2 \hat{\beta}_{2} X=0
$$

Step 2: Solve for X.

$$
X=-\frac{\hat{\beta}_{1}}{2 \hat{\beta}_{2}}
$$

Example: Peak of previous regression occurs at $X=3.14$.

