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Housekeeping

Final Exam

Review lecture this Wednesday.

Come prepared with questions.

Exam: Friday, March 18 at 10:15am in TYKE 140

If things change, will announce it immediately on Canvas

Lab

Some practice problems reviewed

Poll

Of�ce hours on the �nals week?
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Can We Do Better?

( ˆLife Expectancy)i = 53.96 + 8 × 10−4 ⋅ GDPi
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Nonlinear Relationships
Many economic relationships are nonlinear.

e.g., most production functions, pro�t, diminishing marginal utility, tax
revenue as a function of the tax rate, etc.

The �exibility of OLS
OLS can accommodate many, but not all, nonlinear relationships.

Underlying model must be linear-in-parameters.

Nonlinear transformations of variables are okay.

Modeling some nonlinear relationships requires advanced estimation
techniques, such as maximum likelihood.†

† Beyond the scope of this class.
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Linearity
Linear-in-parameters: Parameters enter model as a weighted sum, where
the weights are functions of the variables.

One of the assumptions required for the unbiasedness of OLS.

Linear-in-variables: Variables enter the model as a weighted sum, where
the weights are functions of the parameters.

Not required for the unbiasedness of OLS.

The standard linear regression model satis�es both properties:

Yi = β0 + β1X1i + β2X2i + ⋯ + βkXki + ui
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Linearity
Which of the following is linear-in-parameters, linear-in-variables, or
neither?

�. 

�. 

�. 

Model 1 is linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 is linear-in-variables, but not linear-in-parameters.

Yi = β0 + β1Xi + β2X
2
i + ⋯ + βkX

k
i + ui

Yi = β0X
β1

i vi

Yi = β0 + β1β2Xi + ui
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We're Going to Take Logs
The natural log is the inverse function for the exponential function:  

 for .

(Natural) Log Rules
�. Product rule: .

�. Quotient rule: .

�. Power rule: .

�. Derivative:  �� .

�. , , and  is unde�ned for .

log(ex) = x x > 0

log(AB) = log(A) + log(B)

log(A/B) = log(A) − log(B)

log(AB) = B ⋅ log(A)

f(x) = log(x) f ′(x) =
1

x

log(e) = 1 log(1) = 0 log(x) x ≤ 0
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Log-Linear Model
Nonlinear Model

,  is continuous, and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Logarithmic Transformation

Rede�ne  and .

Transformed (Linear) Model

Can estimate with OLS, but coef�cient interpretation changes.

Yi = αeβ1Xivi

Y > 0 X vi

log(Yi) = log(α) + β1Xi + log(vi)

log(α) ≡ β0 log(vi) ≡ ui

log(Yi) = β0 + β1Xi + ui
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Log-Linear Model
Regression Model

Interpretation

A one-unit increase in the explanatory variable increases the outcome
variable by approximately  percent, on average.

Example: If , then an additional year of
schooling increases pay by approximately 3 percent, on average.

log(Yi) = β0 + β1Xi + ui

β1 × 100

log( ^Payi) = 2.9 + 0.03 ⋅ Schooli
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Log-Linear Model
Derivation

Consider the log-linear model

and differentiate

A marginal (small) change in  (i.e., ) leads to a  proportionate
change in .

Multiply by 100 to get the percentage change in .

log(Y ) = β0 + β1 X + u

= β1dX
dY

Y

X dX β1dX

Y

Y
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Log-Linear Example
log(Ŷi) = 10.02 + 0.73 ⋅ Xi
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Log-Linear Model
Note: If you have a log-linear model with a binary indicator variable, the
interpretation of the coef�cient on that variable changes.

Consider

for binary variable .

Interpretation of :

When  changes from 0 to 1,  will increase by  percent.
When  changes from 1 to 0,  will decrease by 
percent.

log(Yi) = β0 + β1Xi + ui

X

β1

X Y 100 × (eβ1 − 1)

X Y 100 × (e−β1 − 1)
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Log-Linear Example
Binary explanatory variable: trained

trained �� 1  if employee received training.
trained �� 0  if employee did not receive training.

lm(log(productivity) ~ trained, data = df2) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    9.94     0.0446    223.   0       
#> 2 trained        0.557    0.0631      8.83 4.72e-18

Q: How do we interpret the coef�cient on trained ?

A1: Trained workers 74.52 percent more productive than untrained workers.

A2: Untrained workers -42.7 percent less productive than trained workers.
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Log-Log Model
Nonlinear Model

, , and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Logarithmic Transformation

Rede�ne  and .

Transformed (Linear) Model

Can estimate with OLS, but coef�cient interpretation changes.

Yi = αX
β1

i vi

Y > 0 X > 0 vi

log(Yi) = log(α) + β1 log(Xi) + log(vi)

log(α) ≡ β0 log(vi) ≡ ui

log(Yi) = β0 + β1 log(Xi) + ui
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Log-Log Model
Regression Model

Interpretation

A one-percent increase in the explanatory variable leads to a -
percent change in the outcome variable, on average.

Often interpreted as an elasticity.

Example: If , then
each one-percent increase in income decreases quantity demanded by
0.31 percent.

log(Yi) = β0 + β1 log(Xi) + ui

β1

log( ˆQuantity Demandedi) = 0.45 − 0.31 ⋅ log(Incomei)
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Log-Log Model
Derivation

Consider the log-log model

and differentiate

A one-percent increase in  leads to a -percent increase in .

Rearrange to show elasticity interpretation:

log(Yi) = β0 + β1 log(Xi) + u

= β1
dY

Y

dX

X

X β1 Y

= β1
dY

dX

X

Y
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Log-Log Example
log(Ŷi) = 0.01 + 2.99 ⋅ log(Xi)
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Linear-Log Model
Nonlinear Model

 and  is a multiplicative error term.
Cannot estimate parameters with OLS directly.

Logarithmic Transformation

Rede�ne  and .

Transformed (Linear) Model

Can estimate with OLS, but coef�cient interpretation changes.

eYi = αX
β1

i vi

X > 0 vi

Yi = log(α) + β1 log(Xi) + log(vi)

log(α) ≡ β0 log(vi) ≡ ui

Yi = β0 + β1 log(Xi) + ui
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Linear-Log Model
Regression Model

Interpretation

A one-percent increase in the explanatory variable increases the
outcome variable by approximately , on average.

Example: If , then a one-
percent increase in income decrease blood pressure by 0.091 points.

Yi = β0 + β1 log(Xi) + ui

β1 ÷ 100

^(Blood Pressure)i = 150 − 9.1 log(Incomei)
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Linear-Log Model
Derivation

Consider the log-linear model

and differentiate

A one-percent increase in  leads to a  change in .

Y = β0 + β1 log(X) + u

dY = β1
dX

X

X β1 ÷ 100 Y
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Linear-Log Example
Ŷi = 0 + 0.99 ⋅ log(Xi)
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(Approximate) Coef�cient Interpretation

Model  Interpretation

Level-level    
A one-unit increase in  leads to a  

-unit increase in 

Log-level    
A one-unit increase in  leads to a  

-percent increase in 

Log-log    
A one-percent increase in  leads to a  

-percent increase in 

Level-log    
A one-percent increase in  leads to a  

-unit increase in 

β1

Yi = β0 + β1Xi + ui

ΔY = β1 ⋅ ΔX

X

β1 Y

log(Yi) = β0 + β1Xi + ui

%ΔY = 100 ⋅ β1 ⋅ ΔX

X

β1 ⋅ 100 Y

log(Yi) = β0 + β1 log(Xi) + ui

%ΔY = β1 ⋅ %ΔX

X

β1 Y

Yi = β0 + β1 log(Xi) + ui

ΔY = (β1 ÷ 100) ⋅ %ΔX

X

β1 ÷ 100 Y



Can We Do Better?

( ˆLife Expectancy)i = 53.96 + 8 × 10−4 ⋅ GDPi R2 = 0.34
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Can We Do Better?

log( ˆLife Expectancyi) = 3.97 + 1.3 × 10−5 ⋅ GDPi R2 = 0.3
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Can We Do Better?

log( ˆLife Expectancyi) = 2.86 + 0.15 ⋅ log(GDPi) R2 = 0.61
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Can We Do Better?

( ˆLife Expectancy)i = −9.1 + 8.41 ⋅ log(GDPi) R2 = 0.65
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Practical Considerations
Consideration 1: Do your data take negative numbers or zeros as values?

log(0)

#> [1] -Inf

Consideration 2: What coef�cient interpretation do you want? Unit change?
Unit-free percent change?

Consideration 3: Are your data skewed?
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Quadratic RegressionQuadratic Regression
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Quadratic Data
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Quadratic Regression
Regression Model

Interpretation

Sign of  indicates whether the relationship is convex (+) or concave (-)

Sign of ?🤷

Partial derivative of  with respect to  is the marginal effect of  on :

Effect of  depends on the level of 

Yi = β0 + β1Xi + β2X
2
i + ui

β2

β1

Y X X Y

= β1 + 2β2X
∂Y

∂X

X X
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Quadratic Regression
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e�  9
#> 2 x              15.7     1.03       15.3  1.99e� 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on ? X Y

ˆ
= β̂1 + 2β̂2X = 15.69 + −4.99X

∂Y

∂X
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Quadratic Regression
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e�  9
#> 2 x              15.7     1.03       15.3  1.99e� 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ? X Y X = 0

ˆ ∣
∣
∣
X=0

= β̂1 = 15.69
∂Y

∂X
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Quadratic Regression
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e�  9
#> 2 x              15.7     1.03       15.3  1.99e� 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ? X Y X = 2

ˆ ∣
∣
∣
X=2

= β̂1 + 2β̂2 ⋅ (2) = 15.69 − 9.99 = 5.71
∂Y

∂X
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Quadratic Regression
lm(y ~ x + I(x^2), data = quad_df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)    13.2     2.26        5.81 8.30e�  9
#> 2 x              15.7     1.03       15.3  1.99e� 47
#> 3 I(x^2)         -2.50    0.0982    -25.4  2.46e-110

What is the marginal effect of  on  when ? X Y X = 7

ˆ ∣
∣
∣
X=7

= β̂1 + 2β̂2 ⋅ (7) = 15.69 − 34.96 = −19.27
∂Y

∂X
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Fitted Regression Line



Marginal Effect of X on Y



Quadratic Regression
Where does the regression  turn?

In other words, where is the peak (valley) of the �tted relationship?

Step 1: Take the derivative and set equal to zero.

Step 2: Solve for .

Example: Peak of previous regression occurs at .

Ŷi = β̂0 + β̂1Xi + β̂2X
2
i

ˆ
= β̂1 + 2β̂2X = 0

∂Y

∂X

X

X = −
β̂1

2β̂2

X = 3.14
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