Nonlinear Relationships EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

Final Exam

Review lecture this Wednesday.

• Come prepared with questions.

Exam: Friday, March 18 at 10:15am in TYKE 140

• If things change, will announce it immediately on Canvas

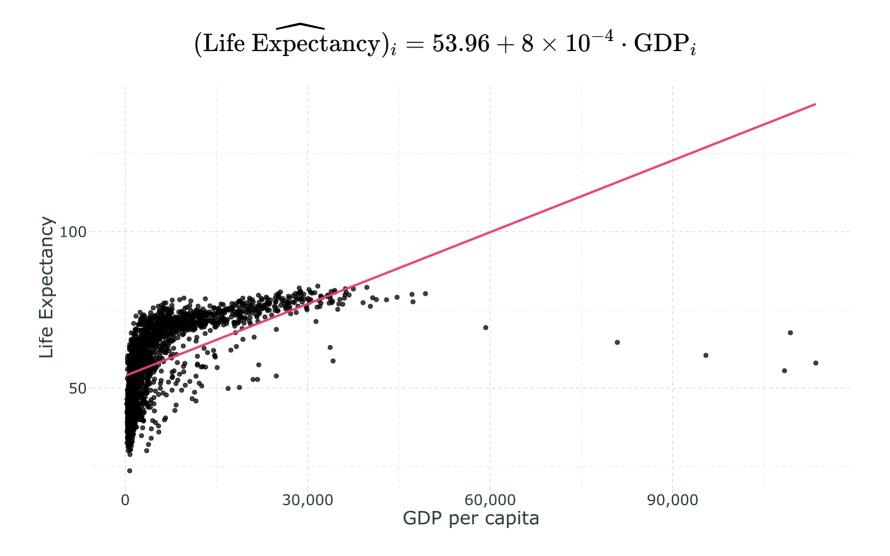
Lab

Some practice problems reviewed

Poll

Office hours on the finals week?

Nonlinear Relationships



Nonlinear Relationships

Many economic relationships are **nonlinear**.

• *e.g.*, most production functions, profit, diminishing marginal utility, tax revenue as a function of the tax rate, *etc.*

The flexibility of OLS

OLS can accommodate many, but not all, nonlinear relationships.

- Underlying model must be linear-in-parameters.
- Nonlinear transformations of variables are okay.
- Modeling some nonlinear relationships requires advanced estimation techniques, such as *maximum likelihood*.[†]

† Beyond the scope of this class.

Linearity

Linear-in-parameters: Parameters enter model as a weighted sum, where the weights are functions of the variables.

• One of the assumptions required for the unbiasedness of OLS.

Linear-in-variables: Variables enter the model as a weighted sum, where the weights are functions of the parameters.

• Not required for the unbiasedness of OLS.

The standard linear regression model satisfies both properties:

$$Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\dots+eta_kX_{ki}+u_i$$

Linearity

Which of the following is **linear-in-parameters**, **linear-in-variables**, or **neither**?

- 1. $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k + u_i$
- 2. $Y_i=eta_0 X_i^{eta_1} v_i$
- 3. $Y_i = \beta_0 + \beta_1 \beta_2 X_i + u_i$

Model 1 is linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 is linear-in-variables, but not linear-in-parameters.

We're Going to Take Logs

The natural log is the inverse function for the exponential function: $log(e^x) = x$ for x > 0.

(Natural) Log Rules

- 1. Product rule: $\log(AB) = \log(A) + \log(B)$.
- 2. Quotient rule: $\log(A/B) = \log(A) \log(B)$.
- 3. Power rule: $\log(A^B) = B \cdot \log(A)$.
- 4. Derivative: $f(x) = \log(x) \Rightarrow f'(x) = \frac{1}{x}$.

5. $\log(e) = 1$, $\log(1) = 0$, and $\log(x)$ is undefined for $x \leq 0$.

Nonlinear Model

$$Y_i = lpha e^{eta_1 X_i} v_i$$

- Y > 0, X is continuous, and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$\log(Y_i) = \log(lpha) + eta_1 X_i + \log(v_i)$$

• Redefine $\log(\alpha)\equiv eta_0$ and $\log(v_i)\equiv u_i$.

Transformed (Linear) Model

$$\log(Y_i) = eta_0 + eta_1 X_i + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Regression Model

$$\log(Y_i)=eta_0+eta_1X_i+u_i$$

Interpretation

- A one-unit increase in the explanatory variable increases the outcome variable by approximately $\beta_1 \times 100$ percent, on average.
- Example: If $log(Pay_i) = 2.9 + 0.03 \cdot School_i$, then an additional year of schooling increases pay by approximately 3 percent, on average.

Derivation

Consider the log-linear model

$$\log(Y) = eta_0 + eta_1 \, X + u$$

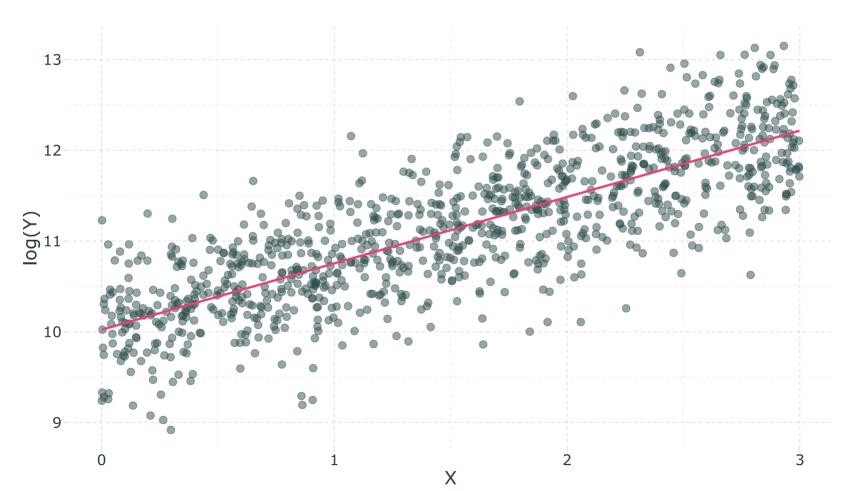
and differentiate

$$rac{dY}{Y}=eta_1 dX$$

A marginal (small) change in X (*i.e.*, dX) leads to a $\beta_1 dX$ proportionate change in Y.

• Multiply by 100 to get the **percentage change** in Y.

Log-Linear Example



 $\log(\hat{Y_i}) = 10.02 + 0.73 \cdot \mathrm{X}_i$

Note: If you have a log-linear model with a binary indicator variable, the interpretation of the coefficient on that variable changes.

Consider

$$\log(Y_i) = eta_0 + eta_1 X_i + u_i$$

for binary variable X.

Interpretation of β_1 :

- When X changes from 0 to 1, Y will increase by $100 imes (e^{eta_1}-1)$ percent.
- When X changes from 1 to 0, Y will decrease by $100 imes \left(e^{-eta_1} 1
 ight)$ percent.

Log-Linear Example

Binary explanatory variable: trained

- trained = 1 if employee received training.
- trained = 0 if employee did not receive training.

lm(log(productivity) ~ trained, data = df2) %>% tidy()

#>	#	A tibble: 2	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	9.94	0.0446	223.	0
#>	2	trained	0.557	0.0631	8.83	4.72e-18

Q: How do we interpret the coefficient on trained?

A₁: Trained workers 74.52 percent more productive than untrained workers.

A₂: Untrained workers -42.7 percent less productive than trained workers.

Log-Log Model

Nonlinear Model

$$Y_i = lpha X_i^{eta_1} v_i$$

- Y > 0, X > 0, and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$\log(Y_i) = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine $\log(\alpha) \equiv \beta_0$ and $\log(v_i) \equiv u_i$.

Transformed (Linear) Model

$$\log(Y_i) = eta_0 + eta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Log-Log Model

Regression Model

$$\log(Y_i) = eta_0 + eta_1 \log(X_i) + u_i$$

Interpretation

- A one-percent increase in the explanatory variable leads to a β₁percent change in the outcome variable, on average.
- Often interpreted as an elasticity.
- Example: If $\log(\text{Quantity Demanded}_i) = 0.45 0.31 \cdot \log(\text{Income}_i)$, then each one-percent increase in income decreases quantity demanded by 0.31 percent.

Log-Log Model

Derivation

Consider the log-log model

$$\log(Y_i) = eta_0 + eta_1 \log(X_i) + u$$

and differentiate

$$rac{dY}{Y}=eta_1rac{dX}{X}$$

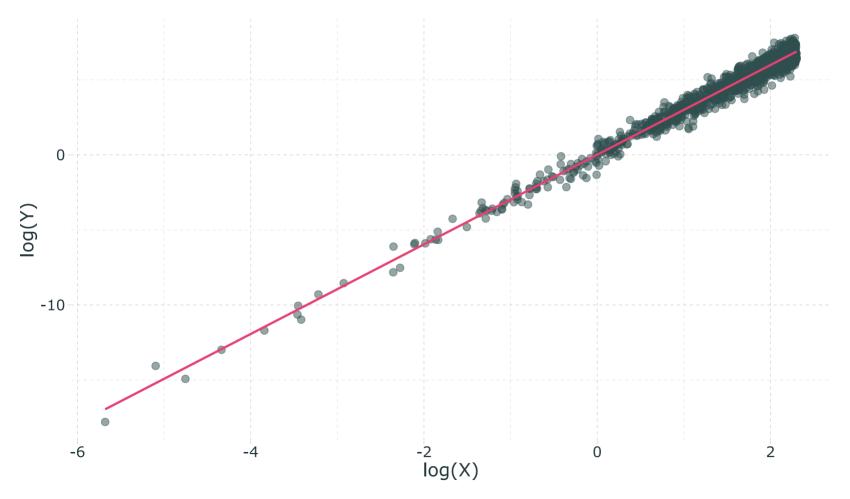
A one-percent increase in X leads to a β_1 -percent increase in Y.

• Rearrange to show elasticity interpretation:

$$rac{dY}{dX}rac{X}{Y}=eta_1$$

Log-Log Example

 $\log(\hat{Y_i}) = 0.01 + 2.99 \cdot \log(\mathrm{X}_i)$



Linear-Log Model

Nonlinear Model

$$e^{Y_i}=lpha X_i^{eta_1}v_i$$

- X > 0 and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$Y_i = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine $\log(\alpha) \equiv \beta_0$ and $\log(v_i) \equiv u_i$.

Transformed (Linear) Model

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Linear-Log Model

Regression Model

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

Interpretation

- A one-percent increase in the explanatory variable increases the outcome variable by approximately $\beta_1 \div 100$, on average.
- Example: If $(Blood Pressure)_i = 150 9.1 \log(Income_i)$, then a one-percent increase in income decrease blood pressure by 0.091 points.

Linear-Log Model

Derivation

Consider the log-linear model

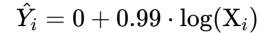
 $Y = eta_0 + eta_1 \log(X) + u$

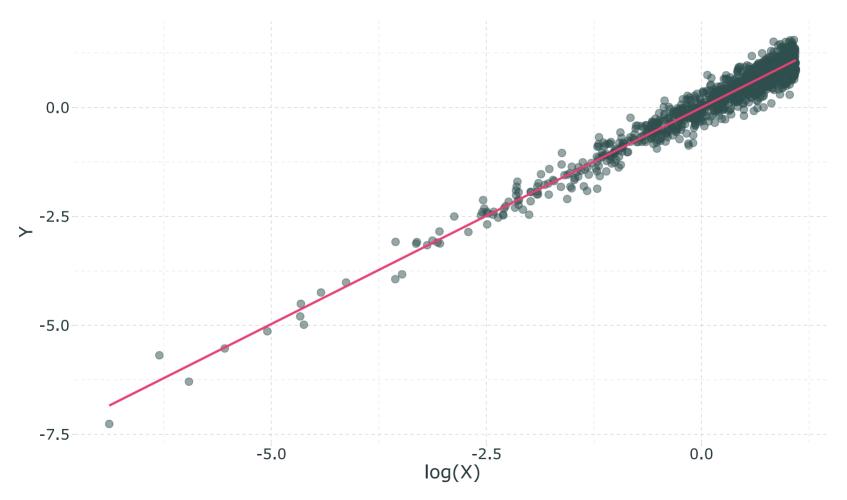
and differentiate

$$dY = \beta_1 \frac{dX}{X}$$

A one-percent increase in X leads to a $\beta_1 \div 100$ change in Y.

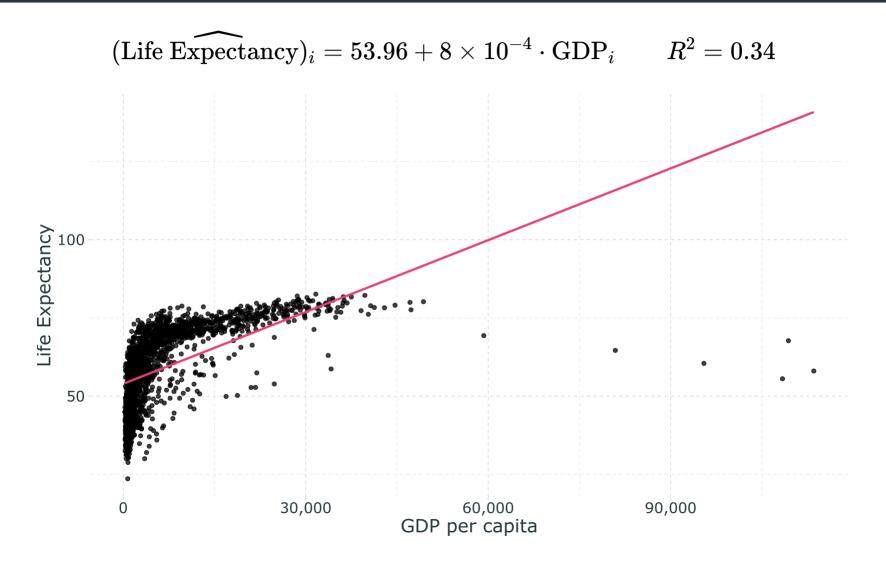
Linear-Log Example

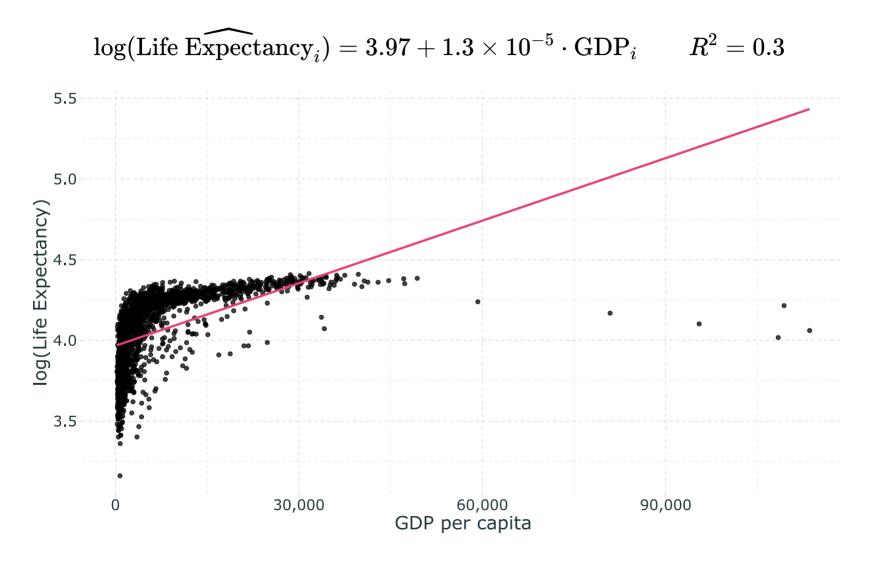


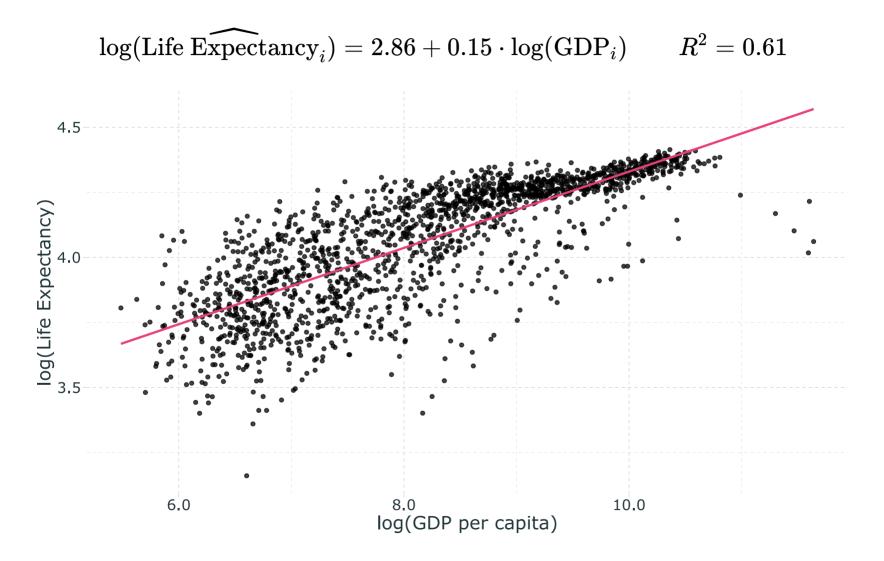


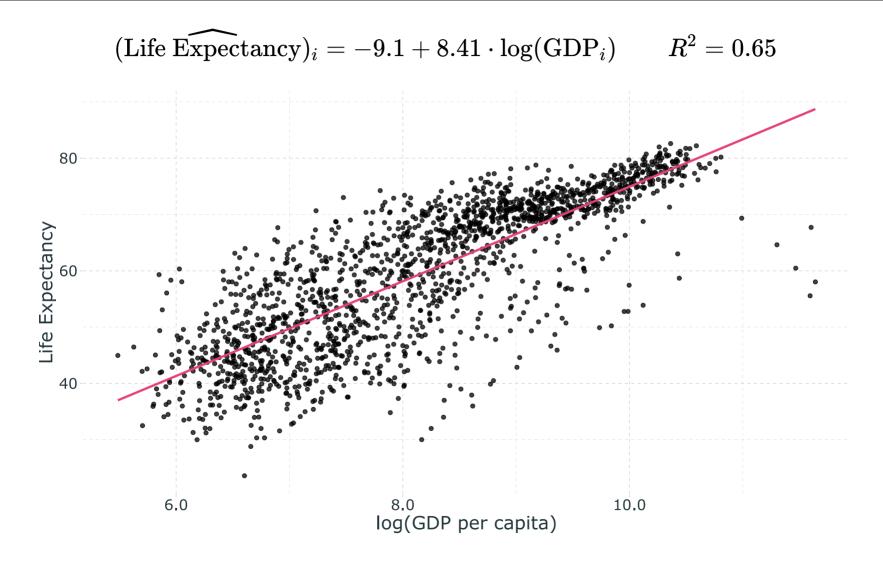
(Approximate) Coefficient Interpretation

Model	eta_1 Interpretation	
Level-level $Y_i = eta_0 + eta_1 X_i + u_i$	$\Delta Y=eta_1\cdot\Delta X$ A one-unit increase in X leads to a eta_1 -unit increase in Y	
Log-level $\log(Y_i) = eta_0 + eta_1 X_i + u_i$	$\%\Delta Y = 100\cdoteta_1\cdot\Delta X$ A one-unit increase in X leads to a $eta_1\cdot 100$ -percent increase in Y	
Log-log $\log(Y_i) = eta_0 + eta_1\log(X_i) + u_i$	$\% \Delta Y = \beta_1 \cdot \% \Delta X$ A one-percent increase in X leads to a β_1 -percent increase in Y	
Level-log $Y_i = eta_0 + eta_1 \log(X_i) + u_i$	$\Delta Y = (eta_1 \div 100) \cdot \% \Delta X$ A one-percent increase in X leads to a $eta_1 \div 100$ -unit increase in Y	









Practical Considerations

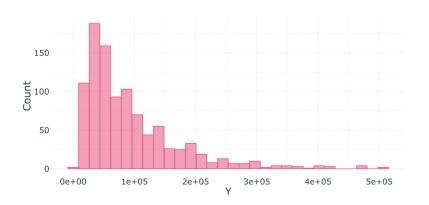
Consideration 1: Do your data take negative numbers or zeros as values?

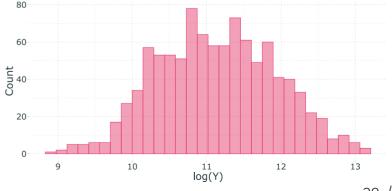
log(₀)

#> [1] -Inf

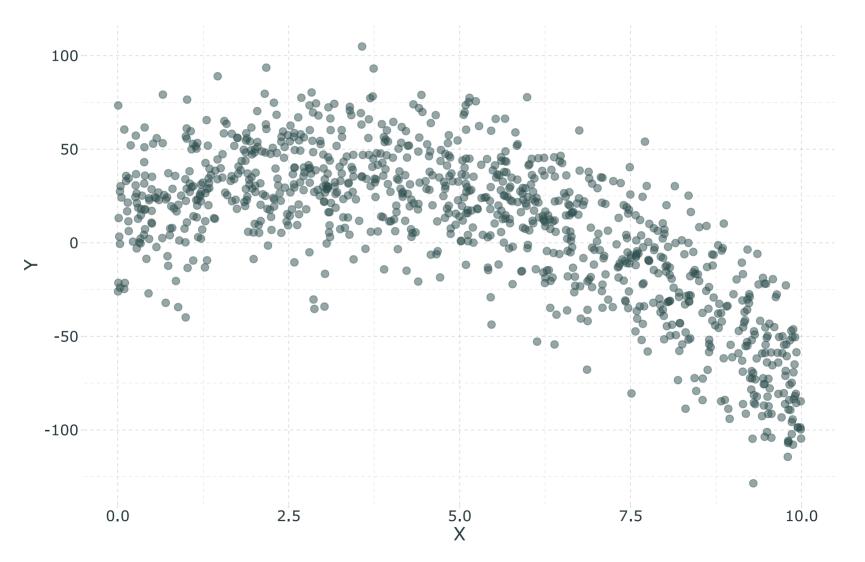
Consideration 2: What coefficient interpretation do you want? Unit change? Unit-free percent change?

Consideration 3: Are your data skewed?





Quadratic Data



Regression Model

$$Y_i=eta_0+eta_1X_i+eta_2X_i^2+u_i$$

Interpretation

Sign of β_2 indicates whether the relationship is convex (+) or concave (-)

Sign of β_1 ?

Partial derivative of Y with respect to X is the **marginal effect** of X on Y:

$$rac{\partial Y}{\partial X}=eta_1+2eta_2 X$$

- Effect of X depends on the level of X

 $lm(y \sim x + I(x^2), data = quad_df) \%\%$ tidy()

#> 7	# A tibble: 3	× 5			
#>	term	estimate	std.error	statistic	p.value
#>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	l (Intercept)	13.2	2.26	5.81	8.30e- 9
#> 2	2 x	15.7	1.03	15.3	1.99e- 47
#> 3	3 I(x^2)	-2.50	0.0982	-25.4	2.46e-110

What is the marginal effect of X on Y?

 $\frac{\widehat{\partial \mathbf{Y}}}{\partial \mathbf{X}} = \widehat{\boldsymbol{\beta}}_1 + 2\widehat{\boldsymbol{\beta}}_2 X = 15.69 + -4.99 X$

 $lm(y \sim x + I(x^2), data = quad_df) \%\%$ tidy()

#> #	A tibble: 3	× 5			
#>	term	estimate	std.error	statistic	p.value
#>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
# > 1	(Intercept)	13.2	2.26	5.81	8.30e- 9
#> 2	х	15.7	1.03	15.3	1.99e- 47
# > 3	I(x^2)	-2.50	0.0982	-25.4	2.46e-110

What is the marginal effect of X on Y when X = 0?

$$\left.\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}\right|_{\mathbf{X}=\mathbf{0}} = \hat{\boldsymbol{\beta}}_1 = 15.69$$

 $lm(y \sim x + I(x^2), data = quad_df) \%\%$ tidy()

#>	#	A tibble: 3	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	13.2	2.26	5.81	8.30e- 9
#>	2	Х	15.7	1.03	15.3	1.99e- 47
#>	3	I(x^2)	-2.50	0.0982	-25.4	2.46e-110

What is the marginal effect of X on Y when X = 2?

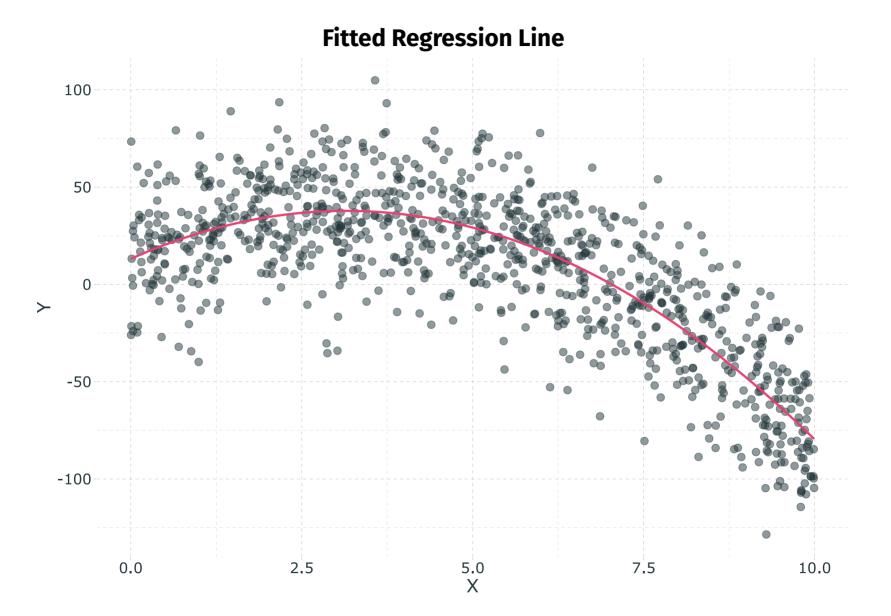
$$\left. rac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}}
ight|_{\mathrm{X=2}} = {\hat eta}_1 + 2 {\hat eta}_2 \cdot (2) = 15.69 - 9.99 = 5.71$$

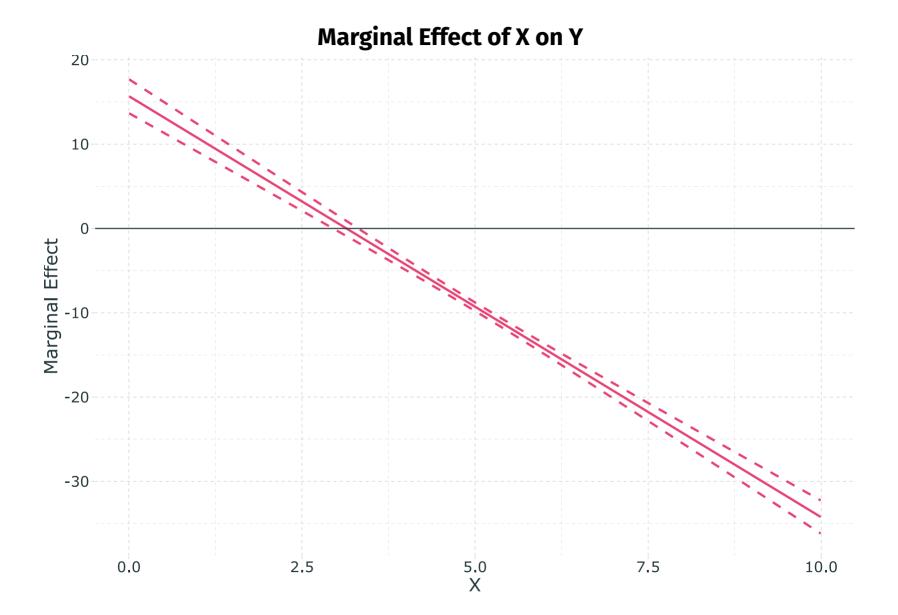
 $lm(y \sim x + I(x^2), data = quad_df) \%\%$ tidy()

#>	#	A tibble: 3	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	13.2	2.26	5.81	8.30e- 9
#>	2	Х	15.7	1.03	15.3	1.99e- 47
#>	3	I(x^2)	-2.50	0.0982	-25.4	2.46e-110

What is the marginal effect of X on Y when X = 7?

$$\left. \frac{\partial Y}{\partial X} \right|_{X=7} = \hat{\beta}_1 + 2\hat{\beta}_2 \cdot (7) = 15.69 - 34.96 = -19.27$$





Where does the regression $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i + \hat{eta}_2 X_i^2$ turn?

• In other words, where is the peak (valley) of the fitted relationship?

Step 1: Take the derivative and set equal to zero.

$$rac{\widehat{\partial \mathbf{Y}}}{\partial \mathbf{X}} = \hat{\boldsymbol{\beta}}_1 + 2 \hat{\boldsymbol{\beta}}_2 X = 0$$

Step 2: Solve for X.

$$X=-rac{{\hateta}_1}{2{\hateta}_2}$$

Example: Peak of previous regression occurs at X = 3.14.