Interactive Relationships

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

1. Midterm grade posted
2. Problem Set 4 posted

- Due next Monday
- First question covered today

3. Lab

- Lab held today
- Lab material available on Github, Ex7 available on Canvas
- Ex7 due today

Last Time

We considered a model where schooling has the same effect for everyone (\mathbf{F} and \mathbf{M}):

Today

We will consider models that allow effects to differ by another variable (e.g., by gender: F and \mathbf{M}):

Interactive Relationships

Motivation

On average? For whom?

Regression coefficients describe average effects.

- Averages can mask heterogeneous effects that differ by group or by the level of another variable.

We can use interaction terms to model heterogeneous effects.

- Accommodate complexity and nuance by going beyond "the effect of X on Y is β_{1}."

Interaction Terms

Starting point: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+u_{i}$

- $X_{1 i}$ is the variable of interest
- $X_{2 i}$ is a control variable

A richer model: Add an interaction term to study whether $X_{2 i}$ moderates the effect of $X_{1 i}$:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} \cdot X_{2 i}+u_{i}
$$

Interpretation: The partial derivative of Y_{i} with respect to $X_{1 i}$ is the marginal effect of X_{1} on Y_{i} :

$$
\frac{\partial Y}{\partial X_{1}}=\beta_{1}+\beta_{3} X_{2 i}
$$

- Effect of X_{1} depends on the level of X_{2}

Differential Returns to Education

Differential Returns to Education

Research Question: Do the returns to education vary by race?
Consider the interactive regression model

$$
\text { Wage }_{i}=\beta_{0}+\beta_{1} \text { Education }_{i}+\beta_{2} \operatorname{Black}_{i}+\beta_{3} \text { Education }_{i} \times \text { Black }_{i}+u_{i}
$$

What is the marginal effect of an additional year of education?

$$
\frac{\partial \text { Wage }}{\partial \text { Education }}=\beta_{1}+\beta_{3} \text { Black }_{i}
$$

Differential Returns to Education

```
lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()
```

term	estimate	std.error	statistic	p.value
<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1 (Intercept)	196.	82.2	2.38	1.75e-2
> 2 educ	58.4	5.96	9.80	1.19e-21
> 3 black	321.	263.	1.22	$2.23 e-1$
> 4 educ:black	-40.7	20.7	-1.96	4.99e-

What is the return to education for black workers?

$$
\left.\left(\frac{\partial \widehat{\mathrm{Wag}}}{\partial \mathrm{Education}}\right)\right|_{\text {Black }=1}=\hat{\beta}_{1}+\hat{\beta}_{3}=17.65
$$

Differential Returns to Education

```
lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()
```

\#> term	estimate	std.error	statistic	p.value
\#> <chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1 (Intercept)	196.	82.2	2.38	1.75e-2
\#> 2 educ	58.4	5.96	9.80	$1.19 \mathrm{e}-21$
\#> 3 black	321.	263.	1.22	2.23e-1
\#> 4 educ:black	-40.7	20.7	-1.96	4.99e- 2

What is the return to education for non-black workers?

$$
\left.\left(\frac{\partial \widehat{\mathrm{Wage}}}{\partial \text { Education }}\right)\right|_{\text {Black }=0}=\hat{\beta}_{1}=58.38
$$

Differential Returns to Education

Q: Does the return to education differ by race?

- For answer, conduct a two-sided t test of the null hypothesis that the interaction coefficient equals 0 at the 5% level.

```
lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()
#> # A tibble: 4 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 196. 82.2 2.38 1.75e- 2
#> 2 educ 58.4 5.96 9.80 1.19e-21
\#> 3 black 321. 263. 1.22 2.23e-1
\#> 4 educ:black \(\quad-40.7 \quad 20.7 \quad-1.964 .99 e-2\)
```

p-value $=0.0499<0.05 \Rightarrow$ reject null hypothesis.
A: The return to education is significantly lower for black workers.

Differential Returns to Education

We can also test hypotheses about specific marginal effects.

- e.g., $H_{0}:\left.\left(\frac{\partial \text { Wage }}{\partial \text { Education }}\right)\right|_{\text {Black }=1}=0$.
- Conduct a t test or construct confidence intervals.

Problem 1: lm() output does not include standard errors for the marginal effects.

Problem 2: The formula for marginal effect standard errors includes covariances between coefficient estimates. The math is messy. ${ }^{\dagger}$

Solution: Construct confidence intervals using the margins package.

Differential Returns to Education

The margins function provides standard errors and 95% confidence intervals for each marginal effect.

```
    p_load(margins)
    reg \leftarrow lm(wage ~ educ + black + educ:black, data = wage2)
    margins(reg, at = list(black = 0:1)) %>% summary() %>% filter(factor = "educ")
#> factor black AME SE z p lower upper
#> educ 0.0000 58.3773 5.9541 9.8045 0.0000 46.7074 70.0472
#> educ 1.0000 17.6544 19.8723 0.8884 0.3743 -21.2946 56.6035
```

Marginal effect of education on wages for black workers.

Differential Returns to Education

We can use the geom_pointrange() option in ggplot2 to plot the marginal effects with 95% confidence intervals.

Differential Returns to Education

We can use the geom_pointrange() option in ggplot2 to plot the marginal effects with 95% confidence intervals.

```
margs \leftarrow margins(reg, at = list(black = 0:1)) %>%
    summary() %>%
    filter(factor = "educ") %>%
    mutate(Term = case_when(black = 1 ~ "Black Workers",
    black = 0 ~ "Non-black Workers"))
margs %>%
    ggplot(aes(x = Term, y = AME, ymin = lower, ymax = upper)) +
    geom_hline(yintercept = 0, linetype = "dashed") +
    geom_pointrange() +
    coord_flip() +
    xlab("") +
    ylab("Marginal Effect of Education on Wages")
```

Differential Effects of School Funding?

Differential Effects of School Funding?

Research Question: Does the effect of school spending on student achievement vary by the share of students experiencing poverty?

- Does the marginal dollar go further in a school with a relatively affluent student body?

Regression Model

$$
\operatorname{Read}_{i}=\beta_{0}+\beta_{1} \operatorname{Spend}_{i}+\beta_{2} \operatorname{Lunch}_{i}+\beta_{3} \operatorname{Spend}_{i} \times \operatorname{Lunch}_{i}+u_{i}
$$

- Read_{i} is the average fourth grade standardized reading test score in school i (100-point scale).
- Spend $_{i}$ measured as thousands of dollars per student.
- Lunch $_{i}$ is the percentage of students on free or reduced-price lunch.

Differential Effects of School Funding?

Regression Model

$$
\operatorname{Read}_{i}=\beta_{0}+\beta_{1} \operatorname{Spend}_{i}+\beta_{2} \operatorname{Lunch}_{i}+\beta_{3} \operatorname{Spend}_{i} \times \operatorname{Lunch}_{i}+u_{i}
$$

Results

```
lm(read4 ~ spend + lunch + spend:lunch, data = meap01) \%>\% tidy()
```

\#> \# A tibble: 4×5					
\#>	term	estimate	std.error	statistic	p.value
\#>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1	(Intercept)	61.1	3.14	19.4	$1.39 e-76$
\#> 2	spend	3.29	0.601	5.47	$5.13 e-8$
\#> 3	lunch	-0.304	0.0667	-4.56	$5.53 e-6$
\#> 4	spend:lunch	-0.0293	0.0120	-2.44	$1.49 e-2$

Differential Effects of School Funding?

Results

```
lm(read4 ~ spend + lunch + spend:lunch, data = meap01) %>% tidy()
```

\# \# A tibble: 4×5
\#> term estimate std.error statistic p.value
\#> <chr> <dbl> <dbl> <dbl> <dbl>
\#> 1 (Intercept) $61.1 \quad 3.14 \quad 19.4 \quad 1.39 \mathrm{e}-76$
\#> 2 spend $\quad 3.29 \quad 0.601 \quad 5.47$ 5.13e- 8
\#> 3 lunch -0.304 $0.0667 \quad-4.56$ 5.53e- 6
\#> 4 spend:lunch -0.0293 $0.0120 \quad-2.441 .49 \mathrm{e}-2$
What is the estimated marginal effect of an additional 1000 dollars per student?

$$
\frac{\partial \widehat{\mathrm{Read}}}{\partial \mathrm{Spend}}=\hat{\beta}_{1}+\hat{\beta}_{3} \operatorname{Lunch}_{i}
$$

Differential Effects of School Funding?

Q: Does the effect of school spending on student achievement vary by the share of students experiencing poverty?

If the marginal effects do not vary by poverty levels, then

$$
\begin{aligned}
\frac{\partial \operatorname{Read}}{\partial \text { Spend }} & =\beta_{1}+\beta_{3} \operatorname{Lunch}_{i} \\
& =\beta_{1}
\end{aligned}
$$

$\mathrm{H}_{0}: \beta_{3}=0$ vs. $\mathrm{H}_{\mathrm{a}}: \beta_{3} \neq 0$

- Can evaluate using a t test or an F test.

Differential Effects of School Funding?

Conduct a two-sided \boldsymbol{t} test at the $\mathbf{1 0 \%}$ level

```
lm(read4 ~ spend + lunch + spend:lunch, data = meap01) %>% tidy()
```

\#> \# A tibble: 4×5
\#> term estimate std.error statistic p.value
\#> <chr> <dbl> <dbl> <dbl> <dbl>
\#> 1 (Intercept) $61.1 \quad 3.14 \quad 19.4 \quad 1.39 \mathrm{e}-76$
\#> 2 spend $\quad 3.29 \quad 0.601 \quad 5.475 .13 \mathrm{e}-8$

\#> 3	lunch	-0.304	0.0667	-4.56
\#> 4	spend $:$ lunch	-0.0293	0.0120	-2.44
$1.49 e-2$				

$\mathbf{H}_{\mathbf{0}}: \beta_{3}=0$ vs. $\mathbf{H}_{\mathbf{a}}: \beta_{3} \neq 0$
$t=-2.44$ and $t_{0.95,1823-4}=1.65$
Reject $\mathbf{H}_{\mathbf{0}}$ if $|t|=|-2.44|>t_{0.95,1823-4}=1.65$.
Statement is true \Rightarrow reject H_{0} at the 10% level.

Differential Effects of School Funding?

Conduct an F test at the 10% level

```
reg_unrestrict \leftarrow lm(read4 ~ spend + lunch + spend:lunch, data = meap01)
reg_restrict \leftarrow lm(read4 ~ spend + lunch, data = meap01)
anova(reg_unrestrict, reg_restrict)
#> Analysis of Variance Table
#>
#> Model 1: read4 ~ spend + lunch + spend:lunch
#> Model 2: read4 ~ spend + lunch
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 1819 408262
#> 2 1820 409596 -1 -1334 5.9434 0.01487 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\(\mathbf{H}_{\mathbf{0}}: \beta_{3}=0\) vs. \(\mathbf{H}_{\mathbf{a}}: \beta_{3} \neq 0\)
\(p\)-value \(=0.01487<0.1 \Rightarrow\) reject \(H_{0}\) at the \(10 \%\) level.
```


Differential Effects of School Funding?

Q: Is there a statistically significant effect of spending on student achievement for every level of poverty?

One way to answer this question is to construct confidence intervals for the marginal effects.

- Requires standard errors.
- Standard errors will depend on the poverty level (our proxy: Lunch $_{i}$).

Time for math!

Step 1: Derive the estimated marginal effects.

$$
\frac{\partial \widehat{\text { Read }}}{\partial \text { Spend }}=\hat{\beta}_{1}+\hat{\beta}_{3} \operatorname{Lunch}_{i}
$$

Step 2: Derive the variances of the estimated marginal effects.

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{\partial \widehat{\operatorname{Read}}}{\partial \operatorname{Spend}}\right) \\
& \quad=\operatorname{Var}\left(\hat{\beta}_{1}+\hat{\beta}_{3} \operatorname{Lunch}_{i}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Var}\left(\hat{\beta}_{3} \operatorname{Lunch}_{i}\right)+2 \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3} \operatorname{Lunch}_{i}\right) \\
& =\operatorname{Var}\left(\hat{\beta}_{1}\right)+\operatorname{Lunch}_{i}^{2} \cdot \operatorname{Var}\left(\hat{\beta}_{3}\right)+2 \cdot \operatorname{Lunch}_{i} \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right) \\
& =\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}+\operatorname{Lunch}_{i}^{2} \cdot \operatorname{SE}\left(\hat{\beta}_{3}\right)^{2}+2 \cdot \operatorname{Lunch}_{i} \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)
\end{aligned}
$$

Step 3: Derive the standard errors of the estimated marginal effects.
$\operatorname{SE}\left(\frac{\widehat{\text { Read }}}{\partial \text { Spend }}\right)$

$$
\begin{aligned}
& =\operatorname{Var}\left(\frac{\partial \widehat{\text { Read }}}{\partial \text { Spend }}\right)^{1 / 2} \\
& =\sqrt{\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}+\operatorname{Lunch}_{i}^{2} \cdot \operatorname{SE}\left(\hat{\beta}_{3}\right)^{2}+2 \cdot \operatorname{Lunch}_{i} \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)}
\end{aligned}
$$

Step 4: Calculate the bounds of the confidence interval.

$$
\hat{\beta}_{1}+\hat{\beta}_{3} \cdot \operatorname{Lunch}_{i}
$$

$$
\pm t_{\text {crit }} \cdot \sqrt{\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}+\operatorname{Lunch}_{i}^{2} \cdot \operatorname{SE}\left(\hat{\beta}_{3}\right)^{2}+2 \cdot \operatorname{Lunch}_{i} \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)}
$$

Differential Effects of School Funding?

Confidence Interval

$\hat{\beta}_{1}+\hat{\beta}_{3} \cdot$ Lunch $_{i}$

$$
\pm t_{\text {crit }} \cdot \sqrt{\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}+\operatorname{Lunch}_{i}^{2} \cdot \operatorname{SE}\left(\hat{\beta}_{3}\right)^{2}+2 \cdot \operatorname{Lunch}_{i} \cdot \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)}
$$

Notice that $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)$ is not reported in a regression table

- Located in the variance-covariance matrix inside lm () object (beyond the scope of this class).
- Can't calculate by hand without about $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)$.
- Special case: $\hat{\beta}_{1}$ and $\hat{\beta}_{3}$ are statistically independent \Rightarrow $\operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{3}\right)=0$.

Differential Effects of School Funding?

We can use the cplot function from margins with ggplot2 to plot the marginal effects with 95% confidence intervals.

Differential Effects of School Funding?

We can use the cplot function from margins with ggplot2 to plot the marginal effects with 95% confidence intervals.

```
# run regression
reg \leftarrow lm(read4 ~ spend + lunch + spend:lunch, data = meap01)
# retrieve marginal effects with 95% CI
margs \leftarrow cplot(reg, x = "lunch", dx = "spend",
    what = "effect", draw = FALSE)
# plot the marginal effects
margs %>%
    ggplot(aes(x = xvals)) +
    geom_line(aes(y = yvals)) +
    geom_line(aes(y = upper), linetype = 2) +
    geom_line(aes(y = lower), linetype = 2) +
    geom_hline(yintercept = 0, linetype = 3) +
    xlab("Percentage on Free or Reduced-Price Lunch") +
    ylab("Marginal Effect of Spending on Reading Scores")
```

Moving to Opportunity

Moving to Opportunity

Background

Policy Question: How can we lift people out of poverty?
Research Agenda: What kinds of social assistance programs have lasting effects on upward mobility?

Economists study a variety of state and federal social assistance programs.

- Medicaid, SNAP (food stamps), TANF (cash welfare), WIC (benefits for mothers), National School Lunch Program, public housing, Section 8 (housing vouchers), etc.
- Considerable variation in benefits and incentive structures.
- Today: Section 8 v.s. public housing.

Moving to Opportunity

Experiment

Research Question: Does moving from a public housing project to highopportunity neighborhood improve well-being?

Social Experiment: Moving to Opportunity (MTO)

4600 low-income families living in federal housing projects.

- Recruited by the Department of Housing and Urban Development during the mid-1990s.
- Housing projects in Baltimore, Boston, Chicago, Los Angeles, and New York.
- Randomly assigned various forms of housing assistance.

Moving to Opportunity

Experiment

Experimental Design

Participants randomly assigned into one of three treatments:

- Experimental group: Housing voucher for low-poverty neighborhoods only + counseling
- Section 8 group: Housing voucher for any neighborhood + no counseling
- Control group: No housing voucher + no counseling (i.e., regular public housing)

Moving to Opportunity

Experiment

Initial Results

1. Most families in the treatment groups actually used vouchers to move to better neighborhoods.
2. Improvements in physical and mental health.
3. No significant improvements in earnings or employment rates for parents.

Moving to Opportunity

Experiment

What about children?

Chetty, Hendren, and Katz (American Economic Review, 2016) study the longrun impact of MTO on children.

- Individual tax data linked to children from original MTO sample.
- Adulthood outcomes: income, marriage, poverty rate in neighborhood of residence, taxes paid, etc.
- Test how effects vary by age of child when family received voucher.

Long-Run Effects of MTO Experiment

	Household Income (\$)	Married (\%)	Neighborhood Poverty (\%)	Taxes Paid (\$)
Experimental	9441.1	8.309	-4.371	831.2
	(3035.8)	(3.445)	(1.770)	(279.4)
Section 8	4447.7	7.193	-1.237	521.7
	(3111.3)	(3.779)	(2.021)	(287.5)
Experimental \times Age at Randomization	-723.7	-0.582	0.261	-65.81
	(255.5)	(0.290)	(0.139)	(23.88)
Section $8 \times$ Age at Randomization	-338	-0.433	0.0109	-42.48
	(266.4)	(0.316)	(0.156)	(24.85)
Control Group Mean	16259.9	6.6	23.7	627.8
Observations	20043	20043	15798	20043

Effect of MTO on Household Income in Adulthood

Long-Run Effects of MTO Experiment

	Household Income (\$)	Married (\%)	Neighborhood Poverty (\%)	Taxes Paid (\$)
Experimental	9447.1	$\mathbf{8 . 3 0 9}$	-4.371	831.2
Section 8	$4035.8)$	(3.445)	(1.770)	(279.4)
	(3111.3)	$(3.193$	-1.237	521.7
Experimental \times Age at Randomization	-723.7	$\mathbf{- 0 . 5 8 2}$	(2.021)	(287.5)
	(255.5)	(0.290)	(0.139)	-65.81
Section 8 \& Age at Randomization	-338	$\mathbf{- 0 . 4 3 3}$	0.0109	-42.48
Control Group Mean	16259.9	$\mathbf{6 . 6}$	23.7	627.8
Observations	20043	$\mathbf{2 0 0 4 3}$	15798	20043

Effect of MTO on Marriage Rates

