Interactive Relationships EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

- 1. Midterm grade posted
- 2. Problem Set 4 posted
 - Due next Monday
 - First question covered today

3. **Lab**

- Lab held today
- Lab material available on Github, Ex7 available on Canvas
- **Ex7** due today

Last Time

We considered a model where schooling has the same effect for everyone (**F** and **M**):

Today

We will consider models that allow effects to differ by another variable (*e.g.,* by gender: **F** and **M**):

Schooling

Interactive Relationships

Motivation

On average? For whom?

Regression coefficients describe average effects.

• Averages can mask heterogeneous effects that differ by group or by the level of another variable.

We can use **interaction terms** to model heterogeneous effects.

- Accommodate complexity and nuance by going beyond "the effect of X on Y is β_1 ."

Interaction Terms

Starting point: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$

- X_{1i} is the variable of interest
- X_{2i} is a control variable

A richer model: Add an interaction term to study whether X_{2i} moderates the effect of X_{1i} :

$$Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + eta_3 X_{1i} \cdot X_{2i} + u_i$$

Interpretation: The partial derivative of Y_i with respect to X_{1i} is the **marginal effect** of X_1 on Y_i :

$$rac{\partial Y}{\partial X_1}=eta_1+eta_3X_{2i}$$

- Effect of X_1 depends on the level of X_2 😻

Research Question: Do the returns to education vary by race?

Consider the interactive regression model

 $\operatorname{Wage}_i = \beta_0 + \beta_1 \operatorname{Education}_i + \beta_2 \operatorname{Black}_i + \beta_3 \operatorname{Education}_i \times \operatorname{Black}_i + u_i$

What is the marginal effect of an additional year of education?

$$rac{\partial \mathrm{Wage}}{\partial \mathrm{Education}} = eta_1 + eta_3 \mathrm{Black}_i$$

lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()

#>	#	A tibble: 4	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	196.	82.2	2.38	1.75e- 2
#>	2	educ	58.4	5.96	9.80	1.19e-21
#>	3	black	321.	263.	1.22	2.23e- 1
#>	4	educ:black	-40.7	20.7	-1.96	4.99e- 2

What is the return to education for black workers?

$$\left. \left(\frac{\partial \widetilde{\text{Wage}}}{\partial \text{Education}} \right) \right|_{\text{Black}=1} = \hat{\beta}_1 + \hat{\beta}_3 = 17.65$$

lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()

#>	#	A tibble: 4	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	196.	82.2	2.38	1.75e- 2
#>	2	educ	58.4	5.96	9.80	1.19e-21
#>	3	black	321.	263.	1.22	2.23e- 1
#>	4	educ:black	-40.7	20.7	-1.96	4.99e- 2

What is the **return to education** for **non-black** workers?

$$\left(rac{\partial \widetilde{\mathrm{Wage}}}{\partial \mathrm{Education}}
ight) \Big|_{\mathrm{Black}=0} = \hat{eta}_1 = 58.38$$

Q: Does the return to education differ by race?

• For answer, conduct a two-sided *t* test of the null hypothesis that the interaction coefficient equals 0 at the 5% level.

lm(wage ~ educ + black + educ:black, data = wage2) %>% tidy()

#>	#	A tibble: 4	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	196.	82.2	2.38	1.75e- 2
#>	2	educ	58.4	5.96	9.80	1.19e-21
#>	3	black	321.	263.	1.22	2.23e- 1
#>	4	educ:black	-40.7	20.7	-1.96	4.99e- 2

p-value = 0.0499 < 0.05 \Rightarrow reject null hypothesis.

A: The return to education is significantly lower for black workers.

We can also test hypotheses about specific marginal effects.

• e.g.,
$$H_0$$
: $\left(\frac{\partial Wage}{\partial Education}\right)\Big|_{Black=1} = 0.$

• Conduct a *t* test or construct confidence intervals.

Problem 1: Im() output does not include standard errors for the marginal effects.

Problem 2: The formula for marginal effect standard errors includes covariances between coefficient estimates. The math is messy.[†]

Solution: Construct confidence intervals using the margins package.

The margins function provides standard errors and 95% confidence intervals for each marginal effect.

```
p_load(margins)
reg ← lm(wage ~ educ + black + educ:black, data = wage2)
margins(reg, at = list(black = 0:1)) %>% summary() %>% filter(factor = "educ")
```

#>	factor	black	AME	SE	Z	р	lower	upper	
#>	educ	0.0000	58.3773	5.9541	9.8045	0.0000	46.7074	70.0472	
#>	educ	1.0000	17.6544	19.8723	0.8884	0.3743	-21.2946	56.6035	

Marginal effect of education on wages for black workers.

We can use the geom_pointrange() option in ggplot2 to plot the marginal effects with 95% confidence intervals.

We can use the geom_pointrange() option in ggplot2 to plot the marginal effects with 95% confidence intervals.

Research Question: Does the effect of school spending on student achievement vary by the share of students experiencing poverty?

• Does the marginal dollar go further in a school with a relatively affluent student body?

Regression Model

 $ext{Read}_i = eta_0 + eta_1 ext{Spend}_i + eta_2 ext{Lunch}_i + eta_3 ext{Spend}_i imes ext{Lunch}_i + u_i$

- Read_i is the average fourth grade standardized reading test score in school *i* (100-point scale).
- \mathbf{Spend}_i measured as thousands of dollars per student.
- $Lunch_i$ is the percentage of students on free or reduced-price lunch.

Regression Model

 $ext{Read}_i = eta_0 + eta_1 ext{Spend}_i + eta_2 ext{Lunch}_i + eta_3 ext{Spend}_i imes ext{Lunch}_i + u_i$

Results

lm(read4 ~ spend + lunch + spend:lunch, data = meap01) %>% tidy()

Results

lm(read4 ~ spend + lunch + spend:lunch, data = meap01) %>% tidy()

#>	#	A tibble: 4	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	61.1	3.14	19.4	1.39e-76
#>	2	spend	3.29	0.601	5.47	5.13e- 8
#>	3	lunch	-0.304	0.0667	-4.56	5.53e- 6
#>	4	spend:lunch	-0.0293	0.0120	-2.44	1.49e- 2

What is the estimated marginal effect of an additional 1000 dollars per student?

$$rac{\partial \widehat{ ext{Read}}}{\partial ext{Spend}} = \hat{eta}_1 + \hat{eta}_3 ext{Lunch}_i$$

Q: Does the effect of school spending on student achievement vary by the share of students experiencing poverty?

If the marginal effects do not vary by poverty levels, then

$$egin{aligned} rac{\partial ext{Read}}{\partial ext{Spend}} &= eta_1 + eta_3 ext{Lunch}_i \ &= eta_1 \end{aligned}$$

 $\mathsf{H}_{\mathsf{0}}: eta_3 = 0$ vs. $\mathsf{H}_{\mathsf{a}}: eta_3
eq 0$

• Can evaluate using a *t* test or an *F* test.

Conduct a two-sided t test at the 10% level

lm(read4 ~ spend + lunch + spend:lunch, data = meap01) %>% tidy()

#>	#	A tibble: 4	× 5				
#>		term	estimate	std.error	statistic	p.value	
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
#>	1	(Intercept)	61.1	3.14	19.4	1.39e-76	
#>	2	spend	3.29	0.601	5.47	5.13e- 8	
#>	3	lunch	-0.304	0.0667	-4.56	5.53e- 6	
#>	4	spend:lunch	-0.0293	0.0120	-2.44	1.49e- 2	

 $\mathbf{H_0:}\ eta_3=0$ vs. $\mathbf{H_a:}\ eta_3
eq 0$

t = -2.44 and $t_{0.95, 1823-4} = 1.65$

Reject H_0 if $|t| = |-2.44| > t_{0.95, 1823-4} = 1.65$.

Statement is true \Rightarrow **reject** H₀ at the 10% level.

Conduct an F test at the 10% level

```
reg_unrestrict ← lm(read4 ~ spend + lunch + spend:lunch, data = meap01)
reg_restrict ← lm(read4 ~ spend + lunch, data = meap01)
anova(reg_unrestrict, reg_restrict)
```

```
#> Analysis of Variance Table
#>
#> Model 1: read4 ~ spend + lunch + spend:lunch
#> Model 2: read4 ~ spend + lunch
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 1819 408262
#> 2 1820 409596 -1 -1334 5.9434 0.01487 *
#> ----
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
H<sub>0</sub>: \beta_3 = 0 vs. H<sub>a</sub>: \beta_3 \neq 0
```

p-value = 0.01487 < 0.1 \Rightarrow **reject H**₀ at the 10% level.

Q: Is there a statistically significant effect of spending on student achievement for every level of poverty?

One way to answer this question is to construct confidence intervals for the marginal effects.

- Requires standard errors.
- Standard errors will depend on the poverty level (our proxy: $Lunch_i$).

Time for math! 🎉

Step 1: Derive the estimated marginal effects.

$$\frac{\widehat{\partial \text{Read}}}{\partial \text{Spend}} = \hat{\beta}_1 + \hat{\beta}_3 \text{Lunch}_i$$

Step 2: Derive the variances of the estimated marginal effects.

$$egin{aligned} & \operatorname{Var}\left(\widehat{rac{\partial \operatorname{Read}}{\partial \operatorname{Spend}}}
ight) \ &= \operatorname{Var}\left(\hat{eta}_1 + \hat{eta}_3 \operatorname{Lunch}_i
ight) \ &= \operatorname{Var}\left(\hat{eta}_1
ight) + \operatorname{Var}\left(\hat{eta}_3 \operatorname{Lunch}_i
ight) + 2 \cdot \operatorname{Cov}\left(\hat{eta}_1, \ \hat{eta}_3 \operatorname{Lunch}_i
ight) \ &= \operatorname{Var}\left(\hat{eta}_1
ight) + \operatorname{Lunch}_i^2 \cdot \operatorname{Var}\left(\hat{eta}_3
ight) + 2 \cdot \operatorname{Lunch}_i \cdot \operatorname{Cov}\left(\hat{eta}_1, \ \hat{eta}_3
ight) \ &= \operatorname{SE}\left(\hat{eta}_1
ight)^2 + \operatorname{Lunch}_i^2 \cdot \operatorname{SE}\left(\hat{eta}_3
ight)^2 + 2 \cdot \operatorname{Lunch}_i \cdot \operatorname{Cov}\left(\hat{eta}_1, \ \hat{eta}_3
ight) \ \end{aligned}$$

Step 3: Derive the standard errors of the estimated marginal effects.

$$egin{aligned} \operatorname{SE}&\left(\widehat{rac{\partial \widehat{\operatorname{Read}}}{\partial \operatorname{Spend}}}
ight) \ &= \operatorname{Var}\left(\widehat{rac{\partial \widehat{\operatorname{Read}}}{\partial \operatorname{Spend}}}
ight)^{1/2} \ &= \sqrt{\operatorname{SE}\left(\widehat{eta}_1
ight)^2 + \operatorname{Lunch}_i^2 \cdot \operatorname{SE}\left(\widehat{eta}_3
ight)^2 + 2 \cdot \operatorname{Lunch}_i \cdot \operatorname{Cov}\left(\widehat{eta}_1, \ \widehat{eta}_3
ight)} \end{aligned}$$

Step 4: Calculate the bounds of the confidence interval.

$$egin{aligned} &\hat{eta}_1 + \hat{eta}_3 \cdot \mathrm{Lunch}_i \ &\pm t_{\mathrm{crit}} \cdot \sqrt{\mathrm{SE}\left(\hat{eta}_1
ight)^2 + \mathrm{Lunch}_i^2 \cdot \mathrm{SE}\left(\hat{eta}_3
ight)^2 + 2 \cdot \mathrm{Lunch}_i \cdot \mathrm{Cov}\!\left(\hat{eta}_1, \ \hat{eta}_3
ight)} \end{aligned}$$

Confidence Interval

$$egin{aligned} &\hat{eta}_1 + \hat{eta}_3 \cdot \mathrm{Lunch}_i \ &\pm t_{\mathrm{crit}} \cdot \sqrt{\mathrm{SE}\left(\hat{eta}_1
ight)^2 + \mathrm{Lunch}_i^2 \cdot \mathrm{SE}\left(\hat{eta}_3
ight)^2 + 2 \cdot \mathrm{Lunch}_i \cdot \mathrm{Cov}\!\left(\hat{eta}_1, \ \hat{eta}_3
ight)} \end{aligned}$$

Notice that $\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_3)$ is not reported in a regression table

- Located in the variance-covariance matrix inside lm() object (beyond the scope of this class).
- Can't calculate by hand without about $\operatorname{Cov}(\hat{\beta}_1, \, \hat{\beta}_3)$.
- Special case: $\hat{\beta}_1$ and $\hat{\beta}_3$ are statistically independent \Rightarrow $\operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_3) = 0.$

We can use the cplot function from margins with ggplot2 to plot the marginal effects with 95% confidence intervals.

We can use the cplot function from margins with ggplot2 to plot the marginal effects with 95% confidence intervals.

```
# run regression
reg \leftarrow lm(read4 \sim spend + lunch + spend:lunch, data = meap01)
# retrieve marginal effects with 95% CI
margs \leftarrow cplot(reg, x = "lunch", dx = "spend",
               what = "effect", draw = FALSE)
# plot the marginal effects
margs %>%
  ggplot(aes(x = xvals)) +
  geom_line(aes(y = yvals)) +
  geom_line(aes(y = upper), linetype = 2) +
  geom_line(aes(y = lower), linetype = 2) +
  geom_hline(yintercept = 0, linetype = 3) +
  xlab("Percentage on Free or Reduced-Price Lunch") +
  ylab("Marginal Effect of Spending on Reading Scores")
```

Background

Policy Question: How can we lift people out of poverty?

Research Agenda: What kinds of social assistance programs have lasting effects on upward mobility?

Economists study a variety of state and federal social assistance programs.

- Medicaid, SNAP (food stamps), TANF (cash welfare), WIC (benefits for mothers), National School Lunch Program, public housing, Section 8 (housing vouchers), *etc.*
- Considerable variation in benefits and incentive structures.
- Today: Section 8 v.s. public housing.

Experiment

Research Question: Does moving from a public housing project to highopportunity neighborhood improve well-being?

Social Experiment: Moving to Opportunity (MTO)

4600 low-income families living in federal housing projects.

- Recruited by the Department of Housing and Urban Development during the mid-1990s.
- Housing projects in Baltimore, Boston, Chicago, Los Angeles, and New York.
- Randomly assigned various forms of housing assistance.

Experiment

Experimental Design

Participants randomly assigned into one of three treatments:

- **Experimental group:** Housing voucher for low-poverty neighborhoods only + counseling
- Section 8 group: Housing voucher for any neighborhood + no counseling
- **Control group:** No housing voucher + no counseling (*i.e.,* regular public housing)

Experiment

Initial Results

- 1. Most families in the treatment groups actually used vouchers to move to better neighborhoods.
- 2. Improvements in physical and mental health.
- 3. No significant improvements in earnings or employment rates for parents.

Experiment

What about children?

Chetty, Hendren, and Katz (*American Economic Review*, 2016) study the longrun impact of MTO on children.

- Individual tax data linked to children from original MTO sample.
- Adulthood outcomes: income, marriage, poverty rate in neighborhood of residence, taxes paid, *etc*.
- Test how effects vary by age of child when family received voucher.

Long-Run Effects of MTO Experiment

	Household Income (\$)	Married (%)	Neighborhood Poverty (%)	Taxes Paid (\$)
Experimental	9441.1	8.309	-4.371	831.2
	(3035.8)	(3.445)	(1.770)	(279.4)
Section 8	4447.7	7.193	-1.237	521.7
	(3111.3)	(3.779)	(2.021)	(287.5)
Experimental × Age at Randomization	-723.7	-0.582	0.261	-65.81
	(255.5)	(0.290)	(0.139)	(23.88)
Section 8 × Age at Randomization	-338	-0.433	0.0109	-42.48
	(266.4)	(0.316)	(0.156)	(24.85)
Control Group Mean	16259.9	6.6	23.7	627.8
Observations	20043	20043	15798	20043

Effect of MTO on Household Income in Adulthood

Long-Run Effects of MTO Experiment

	Household Income (\$)	Married (%)	Neighborhood Poverty (%)	Taxes Paid (\$)
Experimental	9441.1	8.309	-4.371	831.2
	(3035.8)	(3.445)	(1.770)	(279.4)
Section 8	4447.7	7.193	-1.237	521.7
	(3111.3)	(3.779)	(2.021)	(287.5)
Experimental × Age at Randomization	-723.7	-0.582	0.261	-65.81
	(255.5)	(0.290)	(0.139)	(23.88)
Section 8 × Age at Randomization	-338	-0.433	0.0109	-42.48
	(266.4)	(0.316)	(0.156)	(24.85)
Control Group Mean	16259.9	6.6	23.7	627.8
Observations	20043	20043	15798	20043

Effect of MTO on Marriage Rates