Categorical Variables EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

- 1. Problem Set 3 grade posted
- 2. Midterm grade to be posted by Wednesday
- 3. Problem Set 4 to be posted by tomorrow, stay tuned
 - Due next Monday
- 4. **Lab**
 - Lab held on Wednesday
 - Lab material available on Github, Ex7 available on Canvas
 - **Ex7** due Wednesday

Goal: Make quantitative statements about qualitative information.

• *e.g.,* race, gender, being employed, living in Oregon, *etc.*

Approach: Construct binary variables.

- *a.k.a.* dummy variables or indicator variables.
- Value equals 1 if observation is in the category or 0 if otherwise.

Regression implications

- 1. Binary variables change the interpretation of the intercept.
- 2. Coefficients on binary variables have different interpretations than those on continuous variables.

Consider the relationship

$$\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + u_i$$

where

- \mathbf{Pay}_i is a continuous variable measuring an individual's pay
- School_i is a continuous variable that measures years of education

Interpretation

- β_0 : *y*-intercept, *i.e.*, Pay when School = 0
- β_1 : expected increase in Pay for a one-unit increase in School

Consider the relationship

$$\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + u_i$$

Derive the slope's interpretation:

$$egin{aligned} \mathbb{E}[ext{Pay}| ext{School} &= \ell+1] - \mathbb{E}[ext{Pay}| ext{School} &= \ell] \ &= \mathbb{E}[eta_0 + eta_1(\ell+1) + u] - \mathbb{E}[eta_0 + eta_1\ell + u] \ &= [eta_0 + eta_1(\ell+1)] - [eta_0 + eta_1\ell] \ &= eta_0 - eta_0 + eta_1\ell - eta_1\ell + eta_1 \ &= eta_1. \end{aligned}$$

The slope gives the expected increase in pay for an additional year of schooling.

Consider the relationship

$$\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + u_i$$

Alternative derivation

Differentiate the model with respect to schooling:

$$rac{d\mathrm{Pay}}{d\mathrm{School}} = eta_1$$

The slope gives the expected increase in pay for an additional year of schooling.

If we have multiple explanatory variables, e.g.,

$$\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + \beta_2 \operatorname{Ability}_i + u_i$$

then the interpretation changes slightly.

$$egin{aligned} \mathbb{E}[ext{Pay}| ext{School} &= \ell + 1 \wedge ext{Ability} = lpha] - \mathbb{E}[ext{Pay}| ext{School} &= \ell \wedge ext{Ability} = lpha] \ &= \mathbb{E}[eta_0 + eta_1(\ell+1) + eta_2lpha + u] - \mathbb{E}[eta_0 + eta_1\ell + eta_2lpha + u] \ &= [eta_0 + eta_1(\ell+1) + eta_2lpha] - [eta_0 + eta_1\ell + eta_2lpha] \ &= eta_0 - eta_0 + eta_1\ell - eta_1\ell + eta_1 + eta_2lpha - eta_2lpha \ &= eta_1 \end{aligned}$$

The slope gives the expected increase in pay for an additional year of schooling, **holding ability constant**.

If we have multiple explanatory variables, e.g.,

$$\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{School}_i + \beta_2 \operatorname{Ability}_i + u_i$$

then the interpretation changes slightly.

Alternative derivation

Differentiate the model with respect to schooling:

$$rac{\partial \mathrm{Pay}}{\partial \mathrm{School}} = eta_1$$

The slope gives the expected increase in pay for an additional year of schooling, **holding ability constant**.

Consider the relationship

 $\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{Female}_i + u_i$

where Pay_i is a continuous variable measuring an individual's pay and $Female_i$ is a binary variable equal to 1 when *i* is female.

Interpretation

 β_0 is the expected Pay for males (*i.e.*, when Female = 0):

 $egin{aligned} \mathbb{E}[extsf{Pay}| extsf{Male}] \ &= \mathbb{E}[eta_0 + eta_1 imes 0 + u_i] \ &= \mathbb{E}[eta_0 + 0 + u_i] \ &= eta_0 \end{aligned}$

Consider the relationship

 $\operatorname{Pay}_i = \beta_0 + \beta_1 \operatorname{Female}_i + u_i$

where Pay_i is a continuous variable measuring an individual's pay and $Female_i$ is a binary variable equal to 1 when *i* is female.

Interpretation

 β_1 is the expected difference in Pay between females and males:

 $egin{aligned} \mathbb{E}[ext{Pay}| ext{Female}] &- \mathbb{E}[ext{Pay}| ext{Male}] \ &= \mathbb{E}[eta_0 + eta_1 imes 1 + u_i] - \mathbb{E}[eta_0 + eta_1 imes 0 + u_i] \ &= \mathbb{E}[eta_0 + eta_1 + u_i] - \mathbb{E}[eta_0 + 0 + u_i] \ &= eta_0 + eta_1 - eta_0 \ &= eta_1 \end{aligned}$

Consider the relationship

 $\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{Female}_i + u_i$

where Pay_i is a continuous variable measuring an individual's pay and $Female_i$ is a binary variable equal to 1 when *i* is female.

Interpretation

 $\beta_0 + \beta_1$: is the expected **Pay** for females:

 $egin{aligned} \mathbb{E}[extsf{Pay}| extsf{Female}] \ &= \mathbb{E}[eta_0 + eta_1 imes 1 + u_i] \ &= \mathbb{E}[eta_0 + eta_1 + u_i] \ &= eta_0 + eta_1 \end{aligned}$

Consider the relationship

 $\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{Female}_i + u_i$

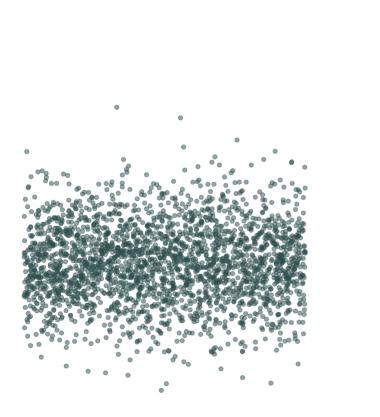
Interpretation

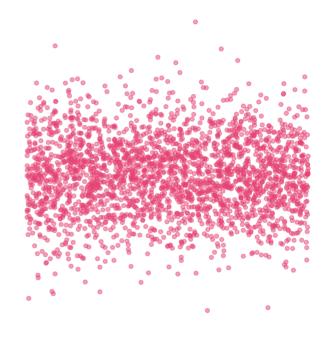
- β_0 : expected Pay for males (*i.e.*, when Female = 0)
- β_1 : expected difference in Pay between females and males
- $\beta_0 + \beta_1$: expected **Pay** for females
- Males are the **reference group**

Note: If there are no other variables to condition on, then $\hat{\beta}_1$ equals the difference in group means, *e.g.*, $\bar{X}_{\text{Female}} - \bar{X}_{\text{Male}}$.

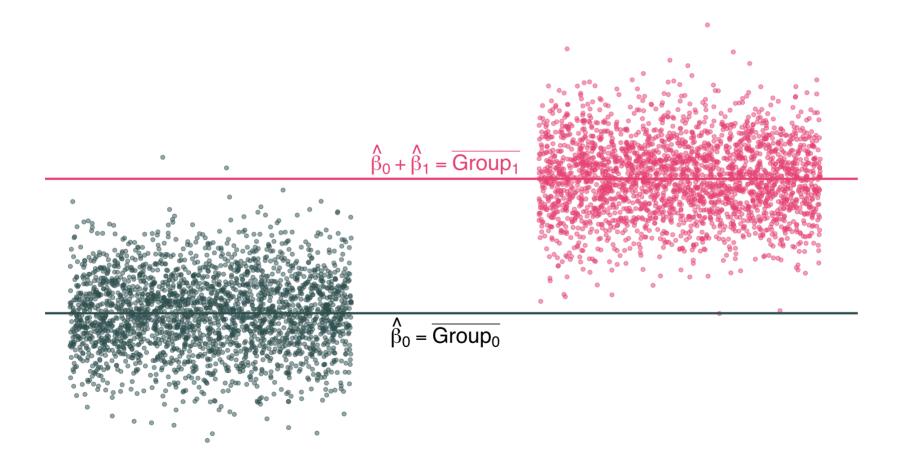
Note₂: The *holding all other variables constant* interpretation also applies for categorical variables in multiple regression settings.

$Y_i = \beta_0 + \beta_1 X_i + u_i$ for binary variable $X_i = \{0, 1\}$



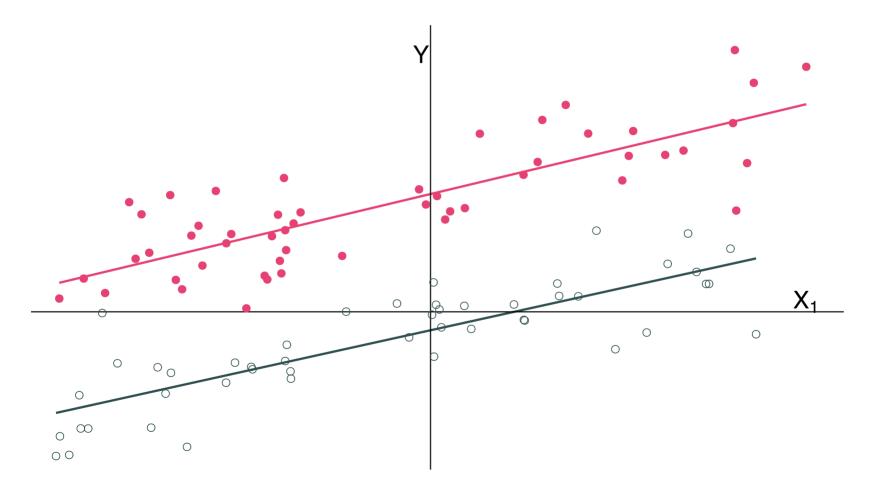


 $Y_i = \beta_0 + \beta_1 X_i + u_i$ for binary variable $X_i = \{0, 1\}$



Multiple Regression

Another way to think about it:



Question: Why not estimate $Pay_i = \beta_0 + \beta_1 Female_i + \beta_2 Male_i + u_i$?

Answer: The intercept is a perfect linear combination of $Male_i$ and $Female_i$.

- Violates no perfect collinearity assumption.
- OLS can't estimate all three parameters simultaneously.
- Known as **dummy variable trap**.

Practical solution: Select a reference category and drop its indicator.

Dummy Variable *Trap*?

Don't worry, R will bail you out if you include perfectly collinear indicators.

Example

lm(wage ~ black + nonblack, data = wage_data) %>% tidy()

#>	#	A tibble: 3	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	617.	5.27	117.	Θ
#>	2	black	-168.	10.9	-15.4	7.78e-52
#>	3	nonblack	NA	NA	NA	NA

Thanks, R.

Omitted variable bias (OVB) arises when we omit a variable that

- 1. Affects the outcome variable \boldsymbol{Y}
- 2. Correlates with an explanatory variable X_j

Biases OLS estimator of β_j .

Example

Let's imagine a simple population model for the amount individual i gets paid

$$\operatorname{Pay}_i = eta_0 + eta_1 \operatorname{School}_i + eta_2 \operatorname{Male}_i + u_i$$

where $School_i$ gives *i*'s years of schooling and $Male_i$ denotes an indicator variable for whether individual *i* is male.

Interpretation

- β_1 : returns to an additional year of schooling (*ceteris paribus*)
- β_2 : premium for being male (*ceteris paribus*) If $\beta_2 > 0$, then there is discrimination against women.

Example, continued

From the population model

$$\mathrm{Pay}_i = eta_0 + eta_1 \mathrm{School}_i + eta_2 \mathrm{Male}_i + u_i$$

An analyst focuses on the relationship between pay and schooling, i.e.,

where $\varepsilon_i = \beta_2 \operatorname{Male}_i + u_i$.

We assumed exogeneity to show that OLS is unbiasedness. But even if $\mathbb{E}[u|X] = 0$, it is not necessarily true that $\mathbb{E}[\varepsilon|X] = 0$ (false if $\beta_2 \neq 0$).

Specifically, $\mathbb{E}[\varepsilon|\mathrm{Male}=1]=eta_2+\mathbb{E}[u|\mathrm{Male}=1]
eq 0$. Now OLS is biased.

Let's try to see this result graphically.

The true population model:

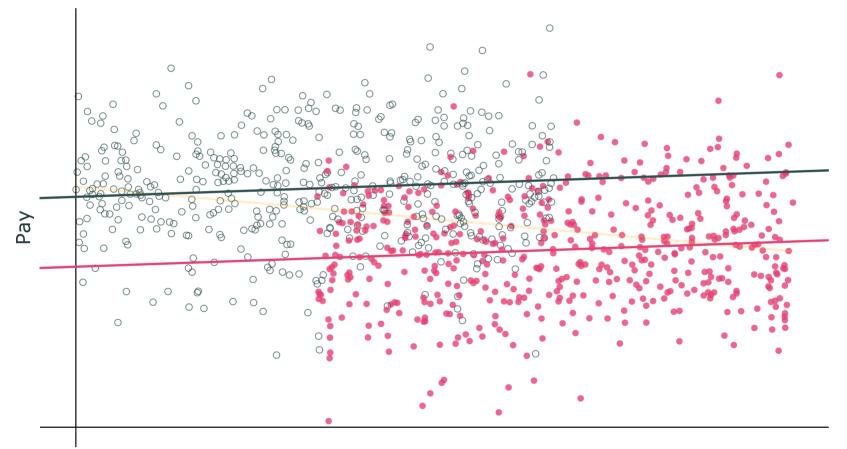
 $\mathrm{Pay}_i = 20 + 0.5 imes \mathrm{School}_i + 10 imes \mathrm{Male}_i + u_i$

The regression model that suffers from omitted-variable bias:

$$ext{Pay}_i = \hat{eta}_0 + \hat{eta}_1 imes ext{School}_i + e_i$$

Finally, imagine that women, on average, receive more schooling than men.

Unbiased regression: $\widehat{Pay}_i = 20.9 + 0.4 \times School_i + 9.1 \times Male_i$



Schooling

Example: Weekly Wages

lm(wage ~ south, data = wage_data) %>% tidy()

Q₁: What is the reference category?

Q₂: Interpret the coefficients.

Q₃: Suppose you ran lm(wage ~ nonsouth, data = wage_data) instead. What is the coefficient estimate on nonsouth? What is the intercept estimate?

Example: Weekly Wages

lm(wage ~ south + black, data = wage_data) %>% tidy()

Q₁: What is the reference category?

Q₂: Interpret the coefficients.

Q₃: Suppose you ran lm(wage ~ south + nonblack, data = wage_data) instead. What is the coefficient estimate on nonblack? What is the coefficient estimate on south? What is the intercept estimate?

Example: Weekly Wages

Answer to Q₃:

lm(wage ~ south + nonblack, data = wage_data) %>% tidy()

#>	#	A tibble: 3	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	518.	11.7	44.3	0
#>	2	south	-98.6	9.84	-10.0	2.89e-23
#>	3	nonblack	129.	11.4	11.3	3.43e-29