
Multiple Linear Regression: Inference
EC 320: Introduction to Econometrics

Winter 2022



ProloguePrologue

2 / 362 / 36



Housekeeping
Problem Set 03 out - Due next Monday 11:59 p.m.
Lab today & Ex 06 due today
Midterm next Wednesday
Update on lecture09, Classical Assumption slides
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Review
Suppose that an economist studies the effect of years of schooling on
hourly earnings by estimating

�. What do we have to assume to interpret  as the true effect of
schooling on earnings?

�. What omitted variables would bias the estimator of ?

�. For each omitted variable, how would you sign the bias?

Earningsi = β0 + β1Schoolingi + ui,

β1

β1
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OLS Variances
Multiple regression model: .

The variance of a slope estimator  on an independent variable  is

where ,  is the  from a regression of  on the other
independent variables and an intercept, and  denotes  observation of
explanatory variable .

Yi = β0 + β1X1i + β2X2i + ⋯ + βmXmi + ui

β̂j Xj

Var(β̂j) = ,
σ2

(1 − R2
j)∑

n
i=1 (Xji − X̄j)

2

j ∈ {1, 2, … , m} R2
j R2 Xj

Xji ith

Xj
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OLS Variances

Moving parts
�. Error variance: As  increases,  increases.

�. Total variation in : As  increases, 

decreases.

�. Relationships between independent variables: As  increases, 

 increases.

Var(β̂j) =
σ2

(1 − R2
j)∑

n
i=1 (Xji − X̄j)

2

σ2 Var(β̂j)

Xj ∑n
i=1 (Xji − X̄j)

2
Var(β̂j)

R2
j

Var(β̂j)
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Multicollinearity
Suppose that we want to understand the relationship between crime rates
and poverty rates in US cities. We could estimate the model

where  controls for median income in city .

Before obtaining standard errors and conducting hypothesis tests, we need:

 is the  from a regression of poverty on median income:

Crimei = β0 + β1Povertyi + β2Incomei + ui,

Incomei i

Var(β̂1) = .
σ2

(1 − R2
1)∑

n

i=1 (Povertyi −
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Poverty)

2

R2
1 R2

Povertyi = γ0 + γ1Incomei + vi.
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Multicollinearity
Scenario 1: If  explains most of the variation in , then 
will approach one.

If  is one, then  and  are perfectly collinear (violates
the no perfect collinearity assumption).

Scenario 2: If  explains none of the variation in , then  is
zero.

Question: In which scenario is the variance of the poverty coef�cient
smaller?

Answer: Scenario 2.

Incomei Povertyi R2
1

R2
1 Povertyi Incomei

Incomei Povertyi R2
1

Var(β̂1) =
σ2

(1 − R2
1)∑

n

i=1 (Povertyi −
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Poverty)

2
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Multicollinearity
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Multicollinearity
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Multicollinearity
As the relationships between the variables increase,  increases.

For high ,  is large:

This phenomenon is known as multicollinearity.

Some view multicollinearity as a "problem" to be solved.

Can increase  or drop independent variables that are highly related to
the others.

Warning: Dropping variables can generate omitted variable bias.

R2
j

R2
j Var(β̂j)

Var(β̂j) = .
σ2

(1 − R2
j)∑

n

i=1 (Xji − X̄j)
2

n
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Multicollinearity
Example: Effect of different types of school spending on high school
graduation rates.

Schools that spend more on teachers also tend to spend more on
athletic programs, textbooks, and building maintenance.

While total spending likely has a statistically signi�cant effect on
graduation rates, might not be able to detect statistically signi�cant
effects for individual line items.

Potential solutions: Re-de�ne research question to consider the effect of
total spending on graduation rates or gather more data to decrease OLS
variances (i.e., increase ).

Graduationi = β0 + β1Salariesi + β2Athleticsi

+ β3Textbooksi + β4Facilitiesi + ui

n
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Irrelevant Variables
Suppose that the true relationship between birth weight and in utero
exposure to toxic air pollution is

Suppose that, instead of estimating the "true model," an analyst estimates

where  is the record of the nearest NBA team during the season
before birth.

One can show that  (i.e.,  is unbiased).

However, the variances of  and  differ.

(Birth Weight)i = β0 + β1Pollutioni + ui.

(Birth Weight)i =
~
β0 +

~
β1Pollutioni +

~
β2NBAi + ui,

NBAi

E(
~̂
β1) = β1

~̂
β1

~̂
β1 β̂1
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Irrelevant Variables
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Irrelevant Variables
The variance of  from estimating the "true model" is

The variance of  from estimating the model with the irrelevant variable is

Notice that .

Including irrelevant control variables can increase OLS variances!

β̂1

Var(β̂1) = .
σ2

∑n

i=1 (Pollutioni −
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Pollution)

2

~̂
β1

Var(
~̂
β1) = .

σ2

(1 − R2
1)∑

n

i=1 (Pollutioni −
¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄
Pollution)

2

Var(β̂1) ≤ Var(
~̂
β1)
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Estimating Error Variance
We cannot observe , so we must estimate it using the residuals from an
estimated regression:

 is the number of parameters (one "slope" for each  variable and an
intercept). When we have  number of explanatory variables, then 

, as we also have an intercept parameter.

 = degrees of freedom.

Using the �rst 5 OLS assumptions, one can prove that  is an unbiased
estimator of .

σ2

s2
u =

∑n
i=1 û

2
i

n − k

k X

m

k = m + 1

n − k

s2
u

σ2
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Standard Errors

The formula for the standard error is the square root of :Var(β̂j)

SE(β̂j) = √ .
s2

u

(1 − R2
j )∑n

i=1(Xji − X̄j)2

18 / 36



InferenceInference
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OLS Classical Assumptions
A1. Linearity: The population relationship is linear in parameters with
an additive error term.
A2. No perfect collinearity: No  variable is a perfect linear
combination of the others.
A3. Exogeneity: The  variable is exogenous (i.e., ).
A4. Homoskedasticity: The error term has the same variance for each
value of the independent variable (i.e., ).
A5. Non-Autocorrelation: The values of error terms are independent
from one another (i.e., )
A6. Normality: The population error term is normally distributed with
mean zero and variance  (i.e., )

1-3 imply unbiasedness.

4-5 imply ef�ciency.

X

X E(u|X) = 0

Var(u|X) = σ2

E[uiuj] = 0, ∀i s.t. i ≠ j

σ2 u ∼ N(0, σ2)
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Normality
With the �rst �ve assumptions, normality buys us a sampling distribution
for :

Common violations: autocorrelation and spatially correlated errors.

β̂j

β̂j ∼ Normal(βj,   Var(β̂j))

∼ Normal(0, 1)
β̂j−βj

√Var(β̂j)
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Sampling Distribution
In practice, we can only estimate , so we use the  distribution:

.

Use this to construct -statistics and conduct hypothesis testing.

Where are the critical values?

Critical values describe speci�c quantiles of the  distribution.

 is the entire sampling distribution.

σ2 t

∼ tn−k = tdf
β̂j−βj

SE(β̂j)

t

tdf

tdf
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Hypothesis Testing
Conduct a one-sided (right tail) test at the 5% level.

lm(read4 ~ lexppp + lunch, data = meap01) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  -14.0     14.2       -0.989 3.23e�  1
#> 2 lexppp        10.8      1.68       6.45  1.40e� 10
#> 3 lunch         -0.463    0.0136   -33.9   5.72e-196

H0:  vs. Ha: 

 and 

Reject H0 if .

Statement is true, so we reject H0 at the 5% level.

βSpend = 0 βSpend > 0

tstat = 6.45 t0.95, 1823−3 = 1.65

tstat = 6.45 > t0.95, 1823−3 = 1.65
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Hypothesis Testing
Conduct a one-sided (left tail) test at the 5% level.

lm(read4 ~ lexppp + lunch, data = meap01) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  -14.0     14.2       -0.989 3.23e�  1
#> 2 lexppp        10.8      1.68       6.45  1.40e� 10
#> 3 lunch         -0.463    0.0136   -33.9   5.72e-196

H0:  vs. Ha: 

 and 

Reject H0 if .

Statement is false, so we fail to reject H0 at the 5% level.

βSpend = 0 βSpend < 0

tstat = 6.45 t0.95, 1823−3 = 1.65

tstat = 6.45 < −t0.95, 1823−3 = −1.65
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Hypothesis Testing
Conduct a two-sided test at the 5% level.

lm(read4 ~ lexppp + lunch, data = meap01) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  -14.0     14.2       -0.989 3.23e�  1
#> 2 lexppp        10.8      1.68       6.45  1.40e� 10
#> 3 lunch         -0.463    0.0136   -33.9   5.72e-196

H0:  vs. Ha: 

 and 

Reject H0 if .

Statement is true, so we reject H0 at the 5% level.

βSpend = 0 βSpend ≠ 0

tstat = 6.45 t0.975, 1823−3 = 1.96

|tstat| = |6.45| > t0.975, 1823−3 = 1.96
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Hypothesis Testing
Conduct a two-sided test at the 5% level.

lm(read4 ~ lexppp + lunch, data = meap01) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  -14.0     14.2       -0.989 3.23e�  1
#> 2 lexppp        10.8      1.68       6.45  1.40e� 10
#> 3 lunch         -0.463    0.0136   -33.9   5.72e-196

H0:  vs. Ha: 

 and 

Reject H0 if .

Statement is true, so we reject H0 at the 5% level.

βLunch = −1 βLunch ≠ −1

tstat = = 39.49
β̂Lunch−β0

Lunch

SE(β̂Lunch)
t0.975, 1823−3 = 1.96

|tstat| = |39.49| > t0.975, 1823−3 = 1.96
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F Tests
t tests allow us to test simple hypotheses involving a single parameter.

e.g.,  or .

F tests allow us to test hypotheses that involve multiple parameters.

e.g.,  or .

β1 = 0 β2 = 1

β1 = β2 β3 + β4 = 1
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F Tests
Example

Economists often say that "money is fungible."

We might want to test whether money received as income actually has the
same effect on consumption as money received from tax credits.

Consumptioni = β0 + β1Incomei + β2Crediti + ui
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F Tests
Example, continued

We can write our null hypothesis as

Imposing the null hypothesis gives us a restricted model

H0 : β1 = β2 ⟺ H0 : β1 − β2 = 0

Consumptioni = β0 + β1Incomei + β1Crediti + ui

Consumptioni = β0 + β1 (Incomei + Crediti) + ui
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F Tests
Example, continued

To test the null hypothesis  against ,  
we use the  statistic

which (as its name suggests) follows the  distribution with  numerator
degrees of freedom and  denominator degrees of freedom.

Here,  is the number of restrictions we impose via .

Ho : β1 = β2 Ha : β1 ≠ β2

F

Fq, n−k =
(RSSr − RSSu) /q

RSSu/(n − k)

F q

n − k

q H0
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F Tests
Example, continued

The term  is the sum of squared residuals (RSS) from our restricted
model

and  is the sum of squared residuals (RSS) from our unrestricted
model

RSSr

Consumptioni = β0 + β1 (Incomei + Crediti) + ui

RSSu

Consumptioni = β0 + β1Incomei + β2Crediti + ui
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F Tests
Finally, we compare our -statistic to a critical value of  to test the null
hypothesis.

If  > , then reject the null hypothesis at the  percent level.

Find  in a table using the desired signi�cance level, numerator
degrees of freedom, and denominator degrees of freedom.

Aside: Why are -statistics always positive?

F F

F Fcrit α × 100

Fcrit

F
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F Tests
RSS is usually a large cumbersome number.

Alternative: Calculate the -statistic using .

Where does this come from?

F R2

F =
(R2

u − R2
r) /q

(1 − R2
u)/(n − k)

TSS = RSS + ESS

R2 = ESS/TSS

RSSr = TSS(1 − R2
r)

RSSu = TSS(1 − R2
u)
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Application: Hedonic ModelingApplication: Hedonic Modeling
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Hedonic Modeling
Questions

How much are home buyers willing to pay for houses with additional
bedrooms?
How much salary are workers willing to give up in exchange for safer
working conditions?
What is the market value of my neighbor's house?

Answers?

Hedonic modeling is a speci�c application of multiple regression.

Prices or wages on the left hand side.
Attributes of a good or a job on the right-hand side.
Use coef�cient estimates and �tted values.
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Hedonic Modeling

Example
Using data on home sales, you run a regression and obtain the �tted model

What is the forecasted price of a 1000-square-foot house with 1 bedroom
and 1 bathroom?

A homeowner is thinking about adding 1500 square feet to their home with
3 more bedrooms and an additional bathroom. How much extra money
could she expect if she completed the addition and sold her home?

^Pricei = 75000 + 50 ⋅ (Sq. ft.)i + 16000 ⋅ Bedroomsi + 10000 ⋅ Bathroomsi

^Price = 75000 + 50 ⋅ (1000) + 16000 ⋅ (1) + 10000 ⋅ (1) = 1.51 × 105

ΔPrice = 50 ⋅ (1500) + 16000 ⋅ (3) + 10000 ⋅ (1) = 1.33 × 105
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