Multiple Linear Regression: Estimation EC 320: Introduction to Econometrics

Winter 2022

Prologue

Other Things Being Equal

Goal: Isolate the effect of one variable on another.

- All else equal, how does increasing X affect Y.

Challenge: Changes in X often coincide with changes in other variables.

- Failure to account for other changes can bias OLS estimates of the effect of X on Y.

A potential solution: Account for other variables using multiple linear regression.

- Easier to defend the exogeneity assumption.

Other Things Equal?

OLS picks $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that trace out the line of best fit. Ideally, we wound like to interpret the slope of the line as the causal effect of X on Y.

Confounders

However, the data are grouped by a third variable W. How would omitting W from the regression model affect the slope estimator?

Confounders

The problem with W is that it affects both Y and X. Without adjusting for W, we cannot isolate the causal effect of X on Y.

Controlling for Confounders

The Relationship between Y and X, Controlling for a Binary Variable W

1. Start with raw data. Correlation between X and $Y: 0.361$

Controlling for Confounders

```
lm(Y ~ X, data = df) %>% tidy()
```

```
#> # A tibble: 2 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 1.51 0.169 8.91 3.36e-16
#> 2 X
    0.494 0.0811
    6.10 5.53e- 9
    lm(Y ~ X + W, data = df) %>% tidy()
```

\#> \# A tibble: 3×5

\#>	term	estimate	std.error	statistic	p.value
\#>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1	(Intercept)	1.11	0.104	10.6	$3.57 \mathrm{e}-21$
\#> 2 X	-0.518	0.0731	-7.09	$2.32 \mathrm{e}-11$	
\#> 3 W	3.88	0.208	18.6	$2.32 \mathrm{e}-45$	

Multiple Linear Regression

Multiple Linear Regression

More explanatory variables

Simple linear regression features one outcome variable and one explanatory variable:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} .
$$

Multiple linear regression features one outcome variable and multiple explanatory variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{m} X_{m i}+u_{i} .
$$

Why?

- Better explain the variation in Y.
- Improve predictions.
- Avoid bias.

Multiple Linear Regression

OLS Estimation

As was the case with simple linear regressions, OLS minimizes the sum of squared residuals (RSS).

However, residuals are now defined as

$$
\hat{u}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i}-\cdots-\hat{\beta}_{m} X_{m i} .
$$

To obtain estimates, take partial derivatives of RSS with respect to each $\hat{\beta}$, set each derivative equal to zero, and solve the system of $m+1$ equations.

- Without matrices, the algebra is difficult. For the remainder of this course, we will let R do the work for us.

Coefficient Interpretation

Model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\cdots+\beta_{k} X_{k i}+u_{i} .
$$

Interpretation

- The intercept $\hat{\beta}_{0}$ is the average value of Y_{i} when all of the explanatory variables are equal to zero.
- Slope parameters $\hat{\beta}_{1}, \ldots, \hat{\beta}_{k}$ give us the change in Y_{i} from a one-unit change in X_{j}, holding the other X variables constant.

Algebraic Properties of OLS

The OLS first-order conditions yield the same properties as before.

1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_{i}=0$.
2. The sample covariance between the independent variables and the residuals is zero.
3. The point ($\bar{X}_{1}, \bar{X}_{2}, \ldots, \bar{X}_{k}, \bar{Y}$) is always on the fitted regression "line."

Goodness of Fit

Fitted values are defined similarly:

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{k} X_{k i} .
$$

The formula for R^{2} is the same as before:

$$
R^{2}=\frac{\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sum\left(Y_{i}-\bar{Y}\right)^{2}} .
$$

Goodness of Fit

Model 1: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+u_{i}$.
Model 2: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+v_{i}$

True or false?

Model 2 will yield a lower R^{2} than Model 1.

- Hint: Think of R^{2} as $R^{2}=1-\frac{\text { RSS }}{\text { TSS }}$.

Goodness of Fit

Model 1

Goodness of Fit

Goodness of Fit

Problem: As we add variables to our model, R^{2} mechanically increases.
To see this problem, we can simulate a dataset of 10,000 observations on y and 1,000 random x_{k} variables. No relations between y and the x_{k} !

Pseudo-code outline of the simulation:

- Generate 10,000 observations on y
- Generate 10,000 observations on variables x_{1} through x_{1000}
- Regressions
- LM_{1} : Regress y on x_{1}; record R^{2}
- LM_{2} : Regress y on x_{1} and x_{2}; record R^{2}
- ...
- LM_{1000} : Regress y on $x_{1}, x_{2}, \ldots, x_{1000}$; record R^{2}

Goodness of Fit

Problem: As we add variables to our model, R^{2} mechanically increases.
R code for the simulation:

```
set.seed(1234)
#plan(multiprocess)
y \leftarrow rnorm(1e4) # 10000 obs
x \leftarrow matrix(data = rnorm(1e6), nrow = 1e4) # 10000 by 100 matrix
x %\diamond% cbind(matrix(data = 1, nrow = 1e4, ncol = 1) # 10000 by 1 vector
    , x)
r_fun \leftarrow function(i) {
    tmp_reg \leftarrow lm(y ~ x[,1:(i + 1)]) %>% summary()
    data.frame(
    k = i + 1,
    r2 = tmp_reg$r.squared,
    r2_adj = tmp_reg$adj.r.squared)
}
r_df \leftarrow future_map(1:(1e2-1), r_fun) %>% bind_rows()
r_df
```


Goodness of Fit

Problem: As we add variables to our model, R^{2} mechanically increases.

Goodness of Fit

One solution: Adjusted R^{2}

Goodness of Fit

Problem: As we add variables to our model, R^{2} mechanically increases.
One solution: Penalize for the number of variables, e.g., adjusted R^{2} :

$$
\bar{R}^{2}=1-\frac{\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2} /(n-k-1)}{\sum_{i}\left(Y_{i}-\bar{Y}\right)^{2} /(n-1)}
$$

Note: Adjusted R^{2} need not be between 0 and 1 .

Goodness of Fit

Example: 2016 Election

```
lm(trump_margin ~ white, data = election) %>% glance()
#> # A tibble: 1 x 12
#> r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.320 0.320 25.4 1462. 1.51e-262 1 -14472. 28950. 28969.
#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
lm(trump_margin ~ white + poverty, data = election) %>% glance()
#> # A tibble: 1 x 12
#> r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.345 0.344 24.9 818. 4.20e-286 2 -14414. 28836. 28860.
#> # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```


OLS Assumptions

Same as before, except for assumption 2 :

1. Linearity: The population relationship is linear in parameters with an additive error term.
2. No perfect collinearity: No X variable is a perfect linear combination of the others.
3. Exogeneity: The X variable is exogenous (i.e., $\mathbb{E}(u \mid X)=0$).
4. Homoskedasticity: The error term has the same variance for each value of the independent variable (i.e., $\operatorname{Var}(u \mid X)=\sigma^{2}$).
5. Non-autocorrelation: The values of error terms are independent from one another (i.e., $E\left[u_{i} u_{j}\right]=0, \forall i$ s.t. $i \neq j$)
6. Normality: The population error term is normally distributed with mean zero and variance σ^{2} (i.e., $u \sim N\left(0, \sigma^{2}\right)$)

Perfect Collinearity

Example: 2016 Election

OLS cannot estimate parameters for white and nonwhite simultaneously.

- white = 100 - nonwhite.

```
lm(trump_margin ~ white + nonwhite, data = election) %>% tidy()
```

\#> \# A tibble: 3	$\times 5$				
\#>	term	estimate	std.error	statistic	p.value
\#>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>
\#> 1	(Intercept)	-40.7	1.95	-20.9	$6.82 e-91$
\#> 2 white	0.910	0.0238	38.2	$1.51 e-262$	
\#> 3	nonwhite	NA	NA	NA	NA

R drops perfectly collinear variables for you.

Multiple Linear Regression

Tradeoffs

There are tradeoffs to remember as we add/remove variables:

Fewer variables

- Generally explain less variation in y.
- Provide simple interpretations and visualizations (parsimonious).
- May need to worry about omitted-variable bias.

More variables

- More likely to find spurious relationships (statistically significant due to chance; do not reflect true, population-level relationships).
- More difficult to interpret the model.
- May still leave out important variables.

Omitted Variables

Omitted Variables

Bias

Omitted Variables

Math Score		
Explanatory variable	$\mathbf{1}$	$\mathbf{2}$
Intercept	-84.84	$\mathbf{- 6 . 3 4}$
	(18.57)	(15.00)
log(Spend)	-1.52	$\mathbf{1 1 . 3 4}$
	(2.18)	(1.77)
Lunch		$\mathbf{- 0 . 4 7}$
		(0.01)

Data from 1823 elementary schools in Michigan

- Math Score is average fourth grade state math test scores.
- $\log ($ Spend $)$ is the natural logarithm of spending per pupil.
- Lunch is the percentage of student eligible for free or reduced-price lunch.

Omitted-Variable Bias

Model 1: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+u_{i}$.
Model 2: $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+v_{i}$
Estimating Model 1 (without X_{2}) yields omitted-variable bias:

$$
\text { Bias }=\beta_{2} \frac{\operatorname{Cov}\left(X_{1 i}, X_{2 i}\right)}{\operatorname{Var}\left(X_{1 i}\right)} .
$$

The sign of the bias depends on

1. The correlation between X_{2} and Y, i.e., β_{2}.
2. The correlation between X_{1} and X_{2}, i.e., $\operatorname{Cov}\left(X_{1 i}, X_{2 i}\right)$.
