Multiple Linear Regression: Estimation EC 320: Introduction to Econometrics

Winter 2022

Prologue

Other Things Being Equal

Goal: Isolate the effect of one variable on another.

• All else equal, how does increasing X affect Y.

Challenge: Changes in X often coincide with changes in other variables.

• Failure to account for other changes can *bias* OLS estimates of the effect of *X* on *Y*.

A potential solution: Account for other variables using multiple linear regression.

• Easier to defend the exogeneity assumption.

Other Things Equal?

OLS picks $\hat{\beta}_0$ and $\hat{\beta}_1$ that trace out the line of best fit. Ideally, we wound like to interpret the slope of the line as the causal effect of X on Y.

Confounders

However, the data are grouped by a third variable W. How would omitting W from the regression model affect the slope estimator?

Confounders

The problem with W is that it affects both Y and X. Without adjusting for W, we cannot isolate the causal effect of X on Y.

Controlling for Confounders

Controlling for Confounders

```
lm(Y ~ X, data = df) %>% tidy()
```

lm(Y ~ X + W, data = df) %>% tidy()

More explanatory variables

Simple linear regression features one outcome variable and one explanatory variable:

$$Y_i = eta_0 + eta_1 X_i + u_i.$$

Multiple linear regression features one outcome variable and multiple explanatory variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_m X_{mi} + u_i.$$

Why?

- Better explain the variation in *Y*.
- Improve predictions.
- Avoid bias.

OLS Estimation

As was the case with simple linear regressions, OLS minimizes the sum of squared residuals (RSS).

However, residuals are now defined as

$$\hat{u}_i = Y_i - \hat{eta}_0 - \hat{eta}_1 X_{1i} - \hat{eta}_2 X_{2i} - \dots - \hat{eta}_m X_{mi}.$$

To obtain estimates, take partial derivatives of RSS with respect to each $\hat{\beta}$, set each derivative equal to zero, and solve the system of m + 1 equations.

• Without matrices, the algebra is difficult. For the remainder of this course, we will let R do the work for us.

Coefficient Interpretation

Model

$$Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\cdots+eta_kX_{ki}+u_i.$$

Interpretation

- The intercept $\hat{\beta}_0$ is the average value of Y_i when all of the explanatory variables are equal to zero.
- Slope parameters $\hat{\beta}_1, \ldots, \hat{\beta}_k$ give us the change in Y_i from a one-unit change in X_j , holding the other X variables constant.

Algebraic Properties of OLS

The OLS first-order conditions yield the same properties as before.

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u_i} = 0$.
- 2. The sample covariance between the independent variables and the residuals is zero.
- 3. The point $(\bar{X}_1, \bar{X}_2, \dots, \bar{X}_k, \bar{Y})$ is always on the fitted regression "line."

Fitted values are defined similarly:

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_{1i} + \hat{eta}_2 X_{2i} + \dots + \hat{eta}_k X_{ki}.$$

The formula for R^2 is the same as before:

$$R^2 = rac{\sum (\hat{Y_i} - ar{Y})^2}{\sum (Y_i - ar{Y})^2}.$$

Model 1:
$$Y_i=eta_0+eta_1X_{1i}+u_i.$$

Model 2: $Y_i = eta_0 + eta_1 X_{1i} + eta_2 X_{2i} + v_i$

True or false?

Model 2 will yield a lower R^2 than Model 1.

• Hint: Think of
$$R^2$$
 as $R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$.

Problem: As we add variables to our model, R^2 mechanically increases.

To see this problem, we can simulate a dataset of 10,000 observations on yand 1,000 random x_k variables. **No relations between** y **and the** x_k !

Pseudo-code outline of the simulation:

- Generate 10,000 observations on \boldsymbol{y}
- Generate 10,000 observations on variables x_1 through x_{1000}
- Regressions
 - LM₁: Regress y on x_1 ; record R^2
 - \circ LM₂: Regress y on x_1 and x_2 ; record R²
 - ° ...
 - \circ LM $_{1000}$: Regress y on x_1 , x_2 , \ldots , x_{1000} ; record R 2

Problem: As we add variables to our model, R^2 mechanically increases.

R code for the simulation:

```
set.seed(1234)
#plan(multiprocess)
v \leftarrow rnorm(1e4) \# 10000 \ obs
x \leftarrow matrix(data = rnorm(1e6), nrow = 1e4) \# 10000 by 100 matrix
x % cbind(matrix(data = 1, nrow = 1e4, ncol = 1) # 10000 by 1 vector
              . x)
r fun \leftarrow function(i) \{
  tmp reg \leftarrow lm(y ~ x[,1:(i + 1)]) %>% summary()
  data.frame(
  k = i + 1.
  r2 = tmp reg$r.squared,
  r2_adj = tmp reg$adj.r.squared)
r_df \leftarrow future_map(1:(1e2-1), r_fun) \% >\% bind_rows()
r df
```

Problem: As we add variables to our model, R^2 mechanically increases.

^{21 / 31}

One solution: Adjusted R^2

Problem: As we add variables to our model, R^2 mechanically increases.

One solution: Penalize for the number of variables, *e.g.*, adjusted R^2 :

$$ar{R}^2 = 1 - rac{{\sum_i \left({Y_i - \hat{Y_i}}
ight)^2 / (n - k - 1)}}{{\sum_i \left({Y_i - ar{Y}}
ight)^2 / (n - 1)}}$$

Note: Adjusted R^2 need not be between 0 and 1.

Example: 2016 Election

lm(trump_margin ~ white, data = election) %>% glance()

lm(trump_margin ~ white + poverty, data = election) %>% glance()

OLS Assumptions

Same as before, except for assumption 2:

- 1. **Linearity:** The population relationship is linear in parameters with an additive error term.
- 2. **No perfect collinearity:** No *X* variable is a perfect linear combination of the others.
- 3. **Exogeneity:** The X variable is exogenous (*i.e.*, $\mathbb{E}(u|X) = 0$).
- 4. Homoskedasticity: The error term has the same variance for each value of the independent variable (*i.e.*, $Var(u|X) = \sigma^2$).
- 5. **Non-autocorrelation:** The values of error terms are independent from one another (*i.e.*, $E[u_iu_j] = 0, \forall i \text{ s.t. } i \neq j$)
- 6. **Normality:** The population error term is normally distributed with mean zero and variance σ^2 (*i.e.*, $u \sim N(0, \sigma^2)$)

Perfect Collinearity

Example: 2016 Election

OLS cannot estimate parameters for white and nonwhite simultaneously.

• white = 100 - nonwhite.

lm(trump_margin ~ white + nonwhite, data = election) %>% tidy()

R drops perfectly collinear variables for you.

Tradeoffs

There are tradeoffs to remember as we add/remove variables:

Fewer variables

- Generally explain less variation in y.
- Provide simple interpretations and visualizations (*parsimonious*).
- May need to worry about omitted-variable bias.

More variables

- More likely to find *spurious* relationships (statistically significant due to chance; do not reflect true, population-level relationships).
- More difficult to interpret the model.
- May still leave out important variables.

Omitted Variables

Omitted Variables

Omitted Variables

Math Score

Explanatory variable	1	2
Intercept	-84.84	-6.34
	(18.57)	(15.00)
log(Spend)	-1.52	11.34
	(2.18)	(1.77)
Lunch		-0.47
		(0.01)

Data from 1823 elementary schools in Michigan

- *Math Score* is average fourth grade state math test scores.
- *log(Spend)* is the natural logarithm of spending per pupil.
- *Lunch* is the percentage of student eligible for free or reduced-price lunch.

Omitted-Variable Bias

Model 1: $Y_i = \beta_0 + \beta_1 X_{1i} + u_i$.

Model 2: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + v_i$

Estimating Model 1 (without X_2) yields **omitted-variable bias**:

$$ext{Bias} = eta_2 rac{ ext{Cov}(X_{1i}, X_{2i})}{ ext{Var}(X_{1i})}$$

The sign of the bias depends on

- 1. The correlation between X_2 and Y, *i.e.*, β_2 .
- 2. The correlation between X_1 and X_2 , *i.e.*, $Cov(X_{1i}, X_{2i})$.