
Multiple Linear Regression: Estimation
EC 320: Introduction to Econometrics

Winter 2022



ProloguePrologue

2 / 312 / 31



Other Things Being Equal
Goal: Isolate the effect of one variable on another.

All else equal, how does increasing  affect .

Challenge: Changes in  often coincide with changes in other variables.

Failure to account for other changes can bias OLS estimates of the
effect of  on .

A potential solution: Account for other variables using multiple linear
regression.

Easier to defend the exogeneity assumption.
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Other Things Equal?
OLS picks  and  that trace out the line of best �t. Ideally, we wound like
to interpret the slope of the line as the causal effect of  on .

β̂0 β̂1

X Y
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Confounders
However, the data are grouped by a third variable . How would omitting 

 from the regression model affect the slope estimator?
W

W
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Confounders
The problem with  is that it affects both  and . Without adjusting for 

, we cannot isolate the causal effect of  on .
W Y X

W X Y
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Controlling for Confounders
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Controlling for Confounders
lm(Y ~ X, data = df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    1.51     0.169       8.91 3.36e-16
#> 2 X              0.494    0.0811      6.10 5.53e� 9

lm(Y ~ X + W, data = df) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    1.11     0.104      10.6  3.57e-21
#> 2 X             -0.518    0.0731     -7.09 2.32e-11
#> 3 W              3.88     0.208      18.6  2.32e-45
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Multiple Linear Regression

More explanatory variables
Simple linear regression features one outcome variable and one
explanatory variable:

Multiple linear regression features one outcome variable and multiple
explanatory variables:

Why?

Better explain the variation in .
Improve predictions.
Avoid bias.

Yi = β0 + β1Xi + ui.

Yi = β0 + β1X1i + β2X2i + ⋯ + βmXmi + ui.

Y
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Multiple Linear Regression
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OLS Estimation
As was the case with simple linear regressions, OLS minimizes the sum of
squared residuals (RSS).

However, residuals are now de�ned as

To obtain estimates, take partial derivatives of RSS with respect to each ,
set each derivative equal to zero, and solve the system of  equations.

Without matrices, the algebra is dif�cult. For the remainder of this
course, we will let R do the work for us.

ûi = Yi − β̂0 − β̂1X1i − β̂2X2i − ⋯ − β̂mXmi.

β̂

m + 1
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Coef�cient Interpretation
Model

Interpretation

The intercept  is the average value of  when all of the explanatory
variables are equal to zero.
Slope parameters  give us the change in  from a one-unit
change in , holding the other  variables constant.

Yi = β0 + β1X1i + β2X2i + ⋯ + βkXki + ui.

β̂0 Yi

β̂1, … , β̂k Yi

Xj X
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Algebraic Properties of OLS
The OLS �rst-order conditions yield the same properties as before.

�. Residuals sum to zero: .

�. The sample covariance between the independent variables and the
residuals is zero.

�. The point  is always on the �tted regression "line."

∑n

i=1 ûi = 0

(X̄1, X̄2, … , X̄k, Ȳ )
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Goodness of Fit
Fitted values are de�ned similarly:

The formula for  is the same as before:

Ŷi = β̂0 + β̂1X1i + β̂2X2i + ⋯ + β̂kXki.

R2

R2 = .
∑(Ŷi − Ȳ )2

∑(Yi − Ȳ )2
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Goodness of Fit
Model 1: .

Model 2: 

True or false?

Model 2 will yield a lower  than Model 1.

Hint: Think of  as .

Yi = β0 + β1X1i + ui

Yi = β0 + β1X1i + β2X2i + vi

R2

R2 R2 = 1 − RSS
TSS
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Goodness of Fit
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Goodness of Fit
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Goodness of Fit
Problem: As we add variables to our model,  mechanically increases.

To see this problem, we can simulate a dataset of 10,000 observations on 
and 1,000 random  variables. No relations between  and the !

Pseudo-code outline of the simulation:

Generate 10,000 observations on 
Generate 10,000 observations on variables  through 
Regressions

LM1: Regress  on ; record R2

LM2: Regress  on  and ; record R2

���
LM1000: Regress  on , , ���, ; record R2

R2

y

xk y xk

y

x1 x1000

y x1

y x1 x2

y x1 x2 x1000
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Goodness of Fit
Problem: As we add variables to our model,  mechanically increases.

R code for the simulation:

set.seed(1234)
#plan(multiprocess)
y �� rnorm(1e4) # 10000 obs
x �� matrix(data = rnorm(1e6), nrow = 1e4) # 10000 by 100 matrix
x %��% cbind(matrix(data = 1, nrow = 1e4, ncol = 1) # 10000 by 1 vector
             , x) 
r_fun �� function(i) {
  tmp_reg �� lm(y ~ x[,1:(i + 1)]) %>% summary()
  data.frame(
  k = i + 1,
  r2 = tmp_reg$r.squared,
  r2_adj = tmp_reg$adj.r.squared)
}
r_df �� future_map(1:(1e2-1), r_fun) %>% bind_rows()
r_df

R2
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Goodness of Fit
Problem: As we add variables to our model,  mechanically increases.R2
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Goodness of Fit
One solution: Adjusted R2
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Goodness of Fit
Problem: As we add variables to our model,  mechanically increases.

One solution: Penalize for the number of variables, e.g., adjusted :

Note: Adjusted  need not be between 0 and 1.

R2

R2

R̄
2

= 1 −
∑i (Yi − Ŷ i)

2

/(n − k − 1)

∑i (Yi − Ȳ )
2
/(n − 1)

R2
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Goodness of Fit

Example: 2016 Election
lm(trump_margin ~ white, data = election) %>% glance()

#> # A tibble: 1 × 12
#>   r.squared adj.r.squared sigma statistic   p.value    df  logLik    AIC    BIC
#>       <dbl>         <dbl> <dbl>     <dbl>     <dbl> <dbl>   <dbl>  <dbl>  <dbl>
#> 1     0.320         0.320  25.4     1462. 1.51e-262     1 -14472. 28950. 28969.
#> # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

lm(trump_margin ~ white + poverty, data = election) %>% glance()

#> # A tibble: 1 × 12
#>   r.squared adj.r.squared sigma statistic   p.value    df  logLik    AIC    BIC
#>       <dbl>         <dbl> <dbl>     <dbl>     <dbl> <dbl>   <dbl>  <dbl>  <dbl>
#> 1     0.345         0.344  24.9      818. 4.20e-286     2 -14414. 28836. 28860.
#> # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
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OLS Assumptions
Same as before, except for assumption 2:

�. Linearity: The population relationship is linear in parameters with an
additive error term.

�. No perfect collinearity: No  variable is a perfect linear combination of
the others.

�. Exogeneity: The  variable is exogenous (i.e., ).
�. Homoskedasticity: The error term has the same variance for each value

of the independent variable (i.e., ).
�. Non-autocorrelation: The values of error terms are independent from

one another (i.e., )
�. Normality: The population error term is normally distributed with mean

zero and variance  (i.e., )

X

X E(u|X) = 0

Var(u|X) = σ2

E[uiuj] = 0, ∀i s.t. i ≠ j

σ2 u ∼ N(0, σ2)
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Perfect Collinearity

Example: 2016 Election
OLS cannot estimate parameters for white and nonwhite simultaneously.

white = 100 - nonwhite.

lm(trump_margin ~ white + nonwhite, data = election) %>% tidy()

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic    p.value
#>   <chr>          <dbl>     <dbl>     <dbl>      <dbl>
#> 1 (Intercept)  -40.7      1.95       -20.9  6.82e� 91
#> 2 white          0.910    0.0238      38.2  1.51e-262
#> 3 nonwhite      NA       NA           NA   NA

R drops perfectly collinear variables for you.
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Multiple Linear Regression

Tradeoffs
There are tradeoffs to remember as we add/remove variables:

Fewer variables

Generally explain less variation in .
Provide simple interpretations and visualizations (parsimonious).
May need to worry about omitted-variable bias.

More variables

More likely to �nd spurious relationships (statistically signi�cant due to
chance; do not re�ect true, population-level relationships).
More dif�cult to interpret the model.
May still leave out important variables.

y
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Omitted Variables
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Omitted Variables
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Omitted Variables
Math Score

Explanatory variable 1 2

Intercept -84.84 -6.34
(18.57) (15.00)

log(Spend) -1.52 11.34
(2.18) (1.77)

Lunch -0.47
(0.01)

Data from 1823 elementary schools in Michigan

Math Score is average fourth grade state math test scores.
log(Spend) is the natural logarithm of spending per pupil.
Lunch is the percentage of student eligible for free or reduced-price
lunch.
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Omitted-Variable Bias
Model 1: .

Model 2: 

Estimating Model 1 (without ) yields omitted-variable bias:

The sign of the bias depends on

�. The correlation between  and , i.e., .

�. The correlation between  and , i.e., .

Yi = β0 + β1X1i + ui

Yi = β0 + β1X1i + β2X2i + vi

X2

Bias = β2 .
Cov(X1i, X2i)

Var(X1i)

X2 Y β2

X1 X2 Cov(X1i, X2i)
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