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Housekeeping
Lab today & Ex05 due today
Midterm 1 solution posted
Extra OH 7pm-8pm on Zoom
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Last Time
We discussed the classical assumptions of OLS:

1. Linearity: The population relationship is linear in parameters
with an additive error term.

2. Sample Variation: There is variation in .
3. Random Sampling: We have a random sample from the

population of interest.
4. Exogeneity: The  variable is exogenous (i.e., ).
5. Homoskedasticity: The error term has the same variance for

each value of the independent variable (i.e., ).
6. Normality: The population error term is normally distributed

with mean zero and variance  (i.e., )

We restricted our attention to the first 5 assumptions.

X

X E(u|X) = 0

Var(u|X) = σ2

σ2 u ∼ N(0, σ2)
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Classical Assumptions

Last Time
1. We used the first 4 assumptions to show that OLS is unbiased: 

2. We used the first 5 assumptions to derive a formula for the variance of
the OLS estimator: .

E[β̂] = β

Var(β̂1) = σ2

∑
n

i=1(Xi−X̄)2
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Classical Assumptions

Today
We will use the sampling distribution of  to conduct hypothesis tests.

Can use all 6 classical assumptions to show that OLS is normally
distributed:

We'll "prove" this using R.

β̂1

β̂1 ∼ N(β1, )
σ2

∑
n
i=1(Xi − X̄)2
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Population Population relationship

Simulation

Yi = 2.53 + 0.57Xi + ui

Yi = β0 + β1Xi + ui
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Sample 1: 30 random individuals Population relationship



Sample relationship



Simulation

Yi = 2.53 + 0.57Xi + ui

Ŷ i = 2.36 + 0.61Xi
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Sample 2: 30 random individuals Population relationship



Sample relationship



Simulation

Yi = 2.53 + 0.57Yi + ui

Ŷ i = 2.79 + 0.56Xi
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Sample 3: 30 random individuals Population relationship



Sample relationship



Simulation

Yi = 2.53 + 0.57Xi + ui

Ŷ i = 3.21 + 0.45Xi
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Repeat 10,000 times (Monte Carlo simulation).





Intercept Estimates Slope Estimates



Simulation
Can you spot the classical assumptions?

# Set population and sample sizes
n_p <- 100
n_s <- 30 
# Generate population data
pop_df <- tibble(
  x = rnorm(n_p, mean = 5, sd = 1.5), 
  e = rnorm(n_p, mean = 0, sd = 1), 
  y = 2.53 + 0.57 * x + e 
)
# Define simulation procedure
sim_ols <- function(x, size = n_s) { 
  lm(y ~ x, data = pop_df %>% sample_n(size = size)) %>% 
    tidy() %>% 
    mutate(iteration = x) 
}
# Run simulation
sim_df <- map_df(1:10000, ~sim_ols(.x, size = n_s))
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InferenceInference
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Motivation
What does statistical evidence say about existing theories?

We want to test hypotheses posed by politicians, economists, scientists,
people with foil hats, etc.

Does building a giant wall reduce crime?
Does shutting down a government adversely affect the economy?
Does legal cannabis reduce drunk driving or reduce opioid use?
Do air quality standards improve health or reduce jobs?

While uncertainty exists, we can still conduct reliable statistical tests
(rejecting or failing to reject a hypothesis).
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Inference
We know OLS has some nice properties, and we know how to estimate an
intercept and slope coefficient using OLS.

Our current workflow:

Get data (points with  and  values).
Regress  on .
Plot the fitted values (i.e., ) and report the estimates.

But how do we actually learn something from this exercise?

Based upon our value of , can we rule out previously hypothesized
values?
How confident should we be in the precision of our estimates?

We need to be able to deal with uncertainty. Enter: Inference.

X Y

Y X

Ŷi = β̂0 + β̂1Xi

β̂1
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Inference
We use the standard error of , along with  itself, to learn about the
parameter .

After deriving the distribution of ,† we have two (related) options for
formal statistical inference (learning) about our unknown parameter :

Hypothesis tests: Determine whether there is statistically significant
evidence to reject a hypothesized value or range of values.

Confidence intervals: Use the estimate and its standard error to create
an interval that, when repeated, will generally†† contain the true
parameter.

β̂1 β̂1

β1

β̂1

β1

† Hint: It's normal with mean  and variance .



†† E.g., similarly constructed 95% confidence intervals will contain the true parameter 95% of the time.

β1
σ2

∑n

i=1(Xi−X̄)2
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OLS Variance
Hypothesis tests and confidence intervals require information about the
variance of the OLS estimator:

Problem

The variance formula has a population parameter:  (a.k.a. error
variance).

We can't observe population parameters.

Solution: Estimate .

Var(β̂1) = .
σ2

∑
n

i=1(Xi − X̄)2

σ2

σ2
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Estimating Error Variance

Learning from our (prediction) errors
We can estimate the variance of  (a.k.a. ) using the sum of squared
residuals:

where  gives the number of regression parameters.

In a simple linear regression, .

 is an unbiased estimator of .

ui σ2

s2
u =

∑i û
2
i

n − k

k

k = 2

s2
u σ2
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OLS Variance, Take 2

With , we can calculate

Taking the square root, we get the standard error of the OLS estimator:

Standard error = standard deviation of an estimator.

s2
u =

∑
i
û

2
i

n − k

Var(β̂1) = .
s2

u

∑
n

i=1(Xi − X̄)2

ŜE(β̂1) = √ .
s2

u

∑n
i=1(Xi − X̄)2
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Standard Errors
R's lm()  function estimates standard errors out of the box:

tidy(lm(y ~ x, pop_df))

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

I won't ask you to estimate standard errors by hand!
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Hypothesis TestsHypothesis Tests
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Hypothesis Tests
Null hypothesis (H0): 

Alternative hypothesis (Ha): 

There are four possible outcomes of our test:

1. We fail to reject the null hypothesis and the null is true.

2. We reject the null hypothesis and the null is false.

3. We reject the null hypothesis, but the null is actually true (Type I error).

4. We fail to reject the null hypothesis, but the null is actually false (Type
II error).

β1 = 0

β1 ≠ 0
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Hypothesis Tests
Goal: Make a statement about  using information on .

 is random: it could be anything, even if  is true.

But if  is true, then  is unlikely to take values far from zero.

As the standard error shrinks, we are even less likely to observe
"extreme" values of  (assuming ).

Our test should take extreme values of  as evidence against the null
hypothesis, but it should also weight them by what we know about the
variance of .

β1 β̂1

β̂1 β1 = 0

β1 = 0 β̂1

β̂1 β1 = 0

β̂1

β̂1
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Null hypothesis

H0: 

Alternative hypothesis

Ha: 

Hypothesis Tests

To conduct the test, we calculate a -statistic:

Distributed according to a -distribution with  degrees of freedom.
 is the value of  in our null hypothesis (e.g., ).

β1 = 0 β1 ≠ 0

t

t =
β̂1 − β0

1

ŜE(β̂1)

t n − 2

β0
1 β1 β0

1 = 0
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Hypothesis Tests
Next, we use the -statistic to calculate a -value.

Describes the probability of seeing a -statistic as extreme as the one we
observe if the null hypothesis is actually true.

But...we still need some benchmark to compare our -value against.

t p

t

p

27 / 51



Hypothesis Tests
We worry mostly about false positives, so we conduct hypothesis tests
based on the probability of making a Type I error.

How? We select a significance level  that specifies our tolerance for false
positives. This is the probability of Type I error we choose to live with.

α
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Hypothesis Tests
We then compare  to the -value of our test.

If the -value is less than , then we reject the null hypothesis at the 
 percent level.

If the -value is greater than , then we fail to reject the null
hypothesis.

Note: Fail to reject  accept.

α p

p α

α ⋅ 100

p α

≠
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Hypothesis Tests
Example: Are campus police associated with campus crime?

lm(crime ~ police, data = campus) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    18.4       2.38      7.75 1.06e-11
#> 2 police          1.76      1.30      1.35 1.81e- 1

H0:  v.s. Ha: 

Significance level:  (i.e., 5 percent test)

Test Condition: Reject H0 if 

. Do we reject the null hypothesis?

βPolice = 0 βPolice ≠ 0

α = 0.05

p < α

p = 0.18
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Hypothesis Tests
-values are difficult to calculate by hand.

Alternative: Compare -statistic to critical values from the -distribution.

p

t t
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Hypothesis Tests
Notation:  or .

Find in a  table using the significance level  and  degrees of
freedom.

Compare the the critical value to your -statistic:

If , then reject the null.

If , then fail to reject the null.

t1−α/2,n−2 tcrit

t α n − 2

t

|t| > |t1−α/2,n−2|

|t| < |t1−α/2,n−2|
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Two-Sided Tests
Based on a critical value of  1.98, we can identify a
rejection region on the -distribution.

If our  statistic is in the rejection region, then we reject the null hypothesis
at the 5 percent level.

t1−α/2,n−2 = t0.975,100 =

t

t
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Two-Sided Tests
R defaults to testing hypotheses against the null hypothesis of zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

H0:  vs. Ha: 

Significance level:  (i.e., 5 percent test)

 and  , which implies that .

Therefore, we reject H0 at the 5% level.

β1 = 0 β1 ≠ 0

α = 0.05

tstat = 7.15 t0.975, 28 = 2.05 p < 0.05
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Two-Sided Tests
Example: Are campus police associated with campus crime?

lm(crime ~ police, data = campus) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    18.4       2.38      7.75 1.06e-11
#> 2 police          1.76      1.30      1.35 1.81e- 1

H0:  v.s. Ha: 

Significance level:  (i.e., 10 percent test)

Test Condition: Reject H0 if 

 and . Do we reject the null hypothesis?

βPolice = 0 βPolice ≠ 0

α = 0.1

|t| > tcrit

t = 1.35 tcrit = 1.66
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One-Sided Tests
Sometimes we are confident that a parameter is non-negative or non-
positive.

A one-sided test assumes that values on one side of the null hypothesis
are impossible.

Option 1: H0:  vs. Ha: 

Option 2: H0:  vs. Ha: 

If this assumption is reasonable, then our rejection region changes.

Same .

β1 = 0 β1 > 0

β1 = 0 β1 < 0

α
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One-Sided Tests
Left-tailed: Based on a critical value of  1.66, we can
identify a rejection region on the -distribution.

If our  statistic is in the rejection region, then we reject the null hypothesis
at the 5 percent level.

t1−α,n−2 = t0.95,100 =

t

t
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One-Sided Tests
Right-tailed: Based on a critical value of  1.66, we can
identify a rejection region on the -distribution.

If our  statistic is in the rejection region, then we reject the null hypothesis
at the 5 percent level.

t1−α,n−2 = t0.95,100 =

t

t
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One-Sided Tests
Example: Do campus police deter campus crime?

lm(crime ~ police, data = campus) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    18.4       2.38      7.75 1.06e-11
#> 2 police          1.76      1.30      1.35 1.81e- 1

H0:  v.s. Ha: 

Significance level:  (i.e., 10 percent test)

Test Condition: Reject H0 if 

 and . Do we reject the null hypothesis?

βPolice = 0 βPolice < 0

α = 0.1

t < −tcrit

t = 1.35 tcrit = 1.29
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Confidence IntervalsConfidence Intervals
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Confidence Intervals
Until now, we have considered point estimates of population parameters.

Sometimes a range of values is more interesting/honest.

We can construct -percent level confidence intervals for 

 denotes the  quantile of a  distribution with 
degrees of freedom.

(1 − α) ⋅ 100 β1

β̂1 ± t1−α/2,n−2 ŜE(β̂1)

t1−α/2,n−2 1 − α/2 t n − 2
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Confidence Intervals
Q: Where does the confidence interval formula come from?

A: The confidence interval formula comes from the rejection condition of a
two-sided test.

Reject H0 if 

The test condition implies

Fail to reject H0 if 

which is equivalent to

Fail to reject H0 if .

|t| > tcrit

|t| ≤ tcrit

−tcrit ≤ t ≤ tcrit
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Confidence Intervals
Replacing  with its formula gives

Fail to reject H0 if .

Standard errors are always positive, so the inequalities do not flip when we
multiply by :

Fail to reject H0 if .

Subtracting  yields

Fail to reject H0 if 
.

t

−tcrit ≤ ≤ tcrit
β̂1−β0

1

ŜE(β̂1)

ŜE(β̂1)

−tcrit ŜE(β̂1) ≤ β̂1 − β0
1 ≤ tcrit ŜE(β̂1)

β̂1

−β̂1 − tcrit ŜE(β̂1) ≤ −β0
1 ≤ −β̂1 + tcrit ŜE(β̂1)
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Confidence Intervals
Multiplying by -1 and rearranging gives

Fail to reject H0 if 

.

Replacing  with  and dropping the test condition yields the interval

which is equivalent to

β̂1 − tcrit ŜE(β̂1) ≤ β0
1 ≤ β̂1 + tcrit ŜE(β̂1)

β0
1 β1

β̂1 − tcrit ŜE(β̂1) ≤ β1 ≤ β̂1 + tcrit ŜE(β̂1)

β̂1 ± tcrit ŜE(β̂1).
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Confidence Intervals
Insight: A confidence interval is related to a two-sided hypothesis test.

If a 95 percent confidence interval contains zero, then we fail to reject
the null hypothesis at the 5 percent level.

If a 95 percent confidence interval does not contain zero, then we reject
the null hypothesis at the 5 percent level.

Generally: A  percent confidence interval embeds a two-
sided test at the  level.

(1 − α) ⋅ 100

α ⋅ 100
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Confidence Intervals

Example
lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e- 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

# find degrees of freedom
dof <- summary(lm(y ~ x, data = pop_df))$df[2]
# return critical value
qt(0.975, dof)

#> [1] 1.984467

95% confidence interval for  is β1 0.567 ± 1.98 × 0.0793 = [0.410, 0.724]
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Confidence Intervals
We have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we
can place some trust (confidence) for containing the parameter.

More formally: If we repeatedly sample from our population and construct
confidence intervals for each of these samples, then  percent
of our intervals (e.g., 95%) will contain the population parameter
somewhere in the interval.

Now back to our simulation...

β1 [0.410, 0.724]

(1 − α) ⋅ 100
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Confidence Intervals
We drew 10,000 samples (each of size ) from our population and
estimated our regression model for each sample:

(repeated 10,000 times)

Now, let's estimate 95% confidence intervals for each of these intervals...

n = 30

Yi = β̂1 + β̂1Xi + ûi
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Confidence Intervals
From our previous simulation: 97.9% of 95% confidence intervals contain
the true parameter value of .β1
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Confidence Intervals

Example: Association of police with crime
You can instruct tidy  to return a 95 percent confidence interval for the
association of campus police with campus crime:

lm(crime ~ police, data = campus) %>% tidy(conf.int = TRUE, conf.level = 0.95)

#> # A tibble: 2 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)    18.4       2.38      7.75 1.06e-11   13.7       23.1 
#> 2 police          1.76      1.30      1.35 1.81e- 1   -0.830      4.34
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Confidence Intervals

Example: Association of police with crime

Four confidence intervals for the same coefficient.
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