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Housekeeping
Problem Set 02 due today by 11:59 pm on Canvas
The solution to the problem set will be released on Wednesday.
Midterm grade appeal until tomorrow. Solution posted tomorrow. No
appeals will be addressed after the solution is being posted.
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Agenda

Last Week
How does OLS estimate a regression line?

Minimize RSS.

What are the direct consequences of minimizing RSS?

Residuals sum to zero.
Residuals and the explanatory variable  are uncorrelated.
Mean values of  and  are on the fitted regression line.

Whatever do we mean by goodness of fit?

What information does  convey? "The proportion of the variance
explained by the regression line"

X

X Y

R2
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Agenda

Today
Under what conditions is OLS desirable?

Desired properties: Unbiasedness, efficiency, and ability to conduct
hypothesis tests.
Cost: Six classical assumptions about the population relationship and
the sample.
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Returns to Schooling
Policy Question: How much should the state subsidize higher education?

Could higher education subsidies increase future tax revenue?
Could targeted subsidies reduce income inequality and racial wealth
gaps?
Are there positive externalities associated with higher education?

Empirical Question: What is the monetary return to an additional year of
education?

Focuses on the private benefits of education. Not the only important
question!
Useful for learning about the econometric assumptions that allow
causal interpretation.
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Returns to Schooling
Step 1: Write down the population model.

Step 2: Find data.

Source: Blackburn and Neumark (1992).

Step 3: Run a regression using OLS.

log(Earningsi) = β0 + β1Educationi + ui

log( ^Earningsi) = β̂0 + β̂1Educationi
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Returns to Schooling
  5.97  0.06  .log( ^Earningsi) = + × Educationi
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Returns to Schooling
Additional year of school associated with a 6% increase in earnings.
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Returns to Schooling
  0.097.R2 =
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Returns to Schooling
Education explains 9.7% of the variation in wages.
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Returns to Schooling
What must we assume to interpret   0.06 as the return to schooling?β̂1 =
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Population

Error: Difference between the
wage of a worker with 16 years
of education and the expected
wage with 16 years of
education.

Sample

Residual: Difference between
the wage of a worker with 16
years of education and the
average wage of workers with
16 years of education.

Residuals vs. Errors
The most important assumptions concern the error term .

Important: An error  and a residual  are related, but different.

ui

ui ûi

Yi = β0 + β1Xi + ui Yi = β̂0 + β̂1Xi + ûi
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Residuals vs. Errors
A residual tells us how a worker's wages compare to the average wages of
workers in the sample with the same level of education.
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Residuals vs. Errors
A residual tells us how a worker's wages compare to the average wages of
workers in the sample with the same level of education.
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Residuals vs. Errors
An error tells us how a worker's wages compare to the expected wages of
workers in the population with the same level of education.
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Classical AssumptionsClassical Assumptions
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Classical Assumptions of OLS
A1. Linearity: The population relationship is linear in parameters with
an additive error term.
A2. Sample Variation: There is variation in .
A3. Exogeneity: The  variable is exogenous (i.e., )†

A4. Homoskedasticity: The error term has the same variance for each
value of the independent variable (i.e., ).
A5. Non-autocorrelation: The values of error terms are independent
from one another (i.e., ).†

A6. Normality: The population error term is normally distributed with
mean zero and variance  (i.e., )

X

X E(u|X) = 0

Var(u|X) = σ2

E[uiuj] = 0, ∀i s.t. i ≠ j

σ2 u ∼ N(0, σ2)

† Random Sampling: Notice up until now, our underlying data type used for analysis was cross-sectional
data. Under random sampling, this yields  and  independent for any two observations  and , which
is what non-autocorrelation assumption implies. However here I explicitly state non-autocorrelation to 1)
generalize this case to account for a case we use time series data, 2) to be consistent with the notations
from the textbook. Also it could be shown that the errors for different observations are independent
conditional on the explanatory variables in the cross-sectional sample under random sampling.

ui uj i j
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When Can We Trust OLS?When Can We Trust OLS?
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Unbiased estimator: Biased estimator: 

Bias
An estimator is biased if its expected value is different from the true
population parameter.

E[β̂] = β E[β̂] ≠ β
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When is OLS Unbiased?

Assumptions
A1. Linearity: The population relationship is linear in parameters with an
additive error term.

A2. Sample Variation: There is variation in .

A3. Exogeneity: The  variable is exogenous (i.e., ). †

Result
OLS is unbiased.

X

X E(u|X) = 0

† Should A3 be true, random sampling should be performed in cross sectional data, meaning that A3
implies random sampling in a sense.
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Linearity

Assumption
The population relationship is linear in parameters with an additive error
term.

Examples
Wagei = β0 + β1Experiencei + ui

log(Happinessi) = β0 + β1 log(Moneyi) + ui

√Convictionsi = β0 + β1(Early Childhood Lead Exposure)i + ui

log(Earningsi) = β0 + β1Educationi + ui
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Linearity

Assumption
The population relationship is linear in parameters with an additive error
term.

Violations
Wagei = (β0 + β1Experiencei)ui

Consumptioni = + ui
1

β0+β1Incomei

Populationi = + ui
β0

1+eβ1+β3Foodi

Batting Averagei = β0(Wheaties Consumption)β1

i + ui
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Sample Variation

Assumption
There is variation in .

Example

X
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Sample Variation

Assumption
There is variation in .

Violation

X
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Exogeneity

Assumption
The  variable is exogenous: .

For any value of , the mean of the error term is zero.

The most important assumption!

Really two assumptions bundled into one:

1. On average, the error term is zero: .

2. The mean of the error term is the same for each value of : 
.

X E(u|X) = 0

X

E(u) = 0

X

E(u|X) = E(u)
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Exogeneity

Assumption
The  variable is exogenous: .

The assignment of  is effectively random.
Implication: no selection bias and no omitted-variable bias.

Examples
In the labor market, an important component of  is unobserved ability.

 and .
 and .

Do you believe this?

X E(u|X) = 0

X

u

E(u|Education = 12) = 0 E(u|Education = 20) = 0

E(u|Experience = 0) = 0 E(u|Experience = 40) = 0
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Graphically...



Valid exogeneity, i.e., E(u ∣ X) = 0



Invalid exogeneity, i.e., E(u ∣ X) ≠ 0



Variance Matters, TooVariance Matters, Too
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Why Variance Matters
Unbiasedness tells us that OLS gets it right, on average.

But we can't tell whether our sample is "typical."

Variance tells us how far OLS can deviate from the population parameter.

How tight is OLS centered on its expected value?

The smaller the variance, the closer OLS gets to the true population
parameters on any sample.

Given two unbiased estimators, we want the one with smaller variance.
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OLS Variance
To calculate the variance of OLS, we need:

1. The same four assumptions we made for unbiasedness.

2. Homoskedasticity

3. Non-autocorrelation
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Homoskedasticity

Assumption
The error term has the same variance for each value of the independent
variable:

Example

Var(u|X) = σ2.
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Homoskedasticity

Assumption
The error term has the same variance for each value of the independent
variable:

Violation: Heteroskedasticity

Var(u|X) = σ2.
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Non-Autocorrelation

Assumption
The population covariance between  and  is zero, meaning that any
individual's error term is drawn independently of other error terms.

This implies no systematic association between error term values for any pair of

individuals. The values of the error term should be independent of one another. If this

assumption is not satisfied, OLS gives inefficient estimates.

Example: The magnitude and the sign of disturbance term in one observation should not

lead to a tendency of determining magnitude and the sign of the disturbance term of the

other.

Violation: Errors that are correlated with time (autocorrelation)

ui uj

Cov(ui, uj) = E[(ui − μu)(uj − μu)]

= E[uiuj] = E[ui]E[uj] = 0, where i ≠ j
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OLS Variance
Variance of the slope estimator:

As the error variance increases, the variance of the slope estimator
increases.

As the variation in  increases, the variance of the slope estimator
decreases.

Larger sample sizes exhibit more variation in  falls as 
rises.

Var(β̂1) = .
σ2

∑
n

i=1(Xi − X̄)2

X

X ⟹ Var(β̂1) n
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Gauss-MarkovGauss-Markov
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Gauss-Markov Theorem
OLS is the Best Linear Unbiased Estimator under assumptions A1-A5:

A1. Linearity: The population relationship is linear in parameters with
an additive error term.

A2. Sample Variation: There is variation in .

A3. Exogeneity: The  variable is exogenous (i.e., ).

A4. Homoskedasticity: The error term has the same variance for each
value of the independent variable (i.e., ).

A5. Non-Autocorrelation: Any pair of error terms are drawn
independently of each other (i.e., )

X

X E(u|X) = 0

Var(u|X) = σ2

E(uiuj) = 0 ∀ i s.t. i ≠ j
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Gauss-Markov Theorem
OLS is the Best Linear Unbiased Estimator (BLUE)
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Population Population vs.vs. Sample, Revisited Sample, Revisited
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Population Population relationship

Population vs. Sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

yi = β0 + β1xi + ui
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Sample 3: 30 random individuals Population relationship



Sample relationship



Population vs. Sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

ŷ i = 3.21 + 0.45xi
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Repeat 10,000 times (Monte Carlo simulation).





On average, the regression
lines match the population line
nicely.

However, individual lines
(samples) can miss the mark.

Differences between individual
samples and the population
create uncertainty.

Population vs. Sample
Question: Why do we care about population vs. sample?
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Population vs. Sample
Question: Why do we care about population vs. sample?

Answer: Uncertainty matters.

 and  are random variables that depend on the random sample.

We can't tell if we have a "good" sample (similar to the population) or a
"bad sample" (very different than the population).

Next time, we will leverage all six classical assumptions, including
normality, to conduct hypothesis tests.

β̂0 β̂1
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