Simple Linear Regression: Estimation EC 320: Introduction to Econometrics

Winter 2022

HouseKeeping

- Lab 04 today, Exercise 04 due today.
- Problem Set 2 out, due next Monday.

We considered a simple linear regression of Y_i on X_i :

 $Y_i = eta_0 + eta_1 X_i + u_i.$

- β_0 and β_1 are **population parameters** that describe the "true" relationship between X_i and Y_i .
- **Problem:** We don't know the population parameters. The best we can do is to estimate them.

We derived the OLS estimator by picking estimates that minimize $\sum_{i=1}^{n} \hat{u}_{i}^{2}$.

• Intercept:

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

• Slope:

$${\hat eta}_1 = rac{\sum_{i=1}^n (Y_i - ar Y) (X_i - ar X)}{\sum_{i=1}^n (X_i - ar X)^2}.$$

We used these formulas to obtain estimates of the parameters β_0 and β_1 in a regression of Y_i on X_i .

With the OLS estimates of the population parameters, we constructed a regression line:

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i.$$

- \hat{Y}_i are predicted or **fitted** values of Y_i .
- You can think of \hat{Y}_i as an estimate of the average value of Y_i given a particular of X_i .

OLS still produces prediction errors: $\hat{u}_i = Y_i - \hat{Y}_i$.

- Put differently, there is a part of Y_i we can explain and a part we cannot: $Y_i = \hat{Y}_i + \hat{u}_i$.

Review

What is the equation for the regression model estimated below?

Review

The estimated **intercept** is -9.85. What does this tell us?

Review

The estimated **slope** is 2.2. How do we interpret it?

Today

Agenda

- 1. Highlight important properties of OLS.
- 2. Discuss goodness of fit: how well does one variable explain another?
- 3. Units of measurement.

OLS Properties

OLS Properties

The way we selected OLS estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ gives us three important properties:

- 1. Residuals sum to zero: $\sum_{i=1}^n \hat{u}_i = 0$.
- 2. The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^{n} X_i \hat{u}_i = 0.$
- 3. The point (\bar{X}, \bar{Y}) is always on the regression line.

OLS Residuals

Residuals sum to zero: $\sum_{i=1}^n \hat{u}_i = 0.$

- By extension, the sample mean of the residuals are zero.
- You will prove this in Problem Set 2.

OLS Residuals

The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^{n} X_i \hat{u}_i = 0.$

• You will prove a version of this in Problem Set 2.

OLS Regression Line

The point (\bar{X}, \bar{Y}) is always on the regression line.

- Start with the regression line: $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$.
- $\hat{Y}_i = ar{Y} \hat{eta}_1 ar{X} + \hat{eta}_1 X_i.$
- Plug \bar{X} into X_i :

$$egin{aligned} \hat{Y}_i &= ar{Y} - \hat{eta}_1ar{X} + \hat{eta}_1ar{X} \ &= ar{Y}. \end{aligned}$$

Regression 1 vs. **Regression 2**

- Same slope.
- Same intercept.

Q: Which fitted regression line "*explains*"^{*} the data better?

* Explains = fits.

Regression 1 vs. **Regression 2**

The **coefficient of determination** R^2 is the fraction of the variation in Y_i "explained" by X_i in a linear regression.

- $R^2 = 1 \implies X_i$ explains all of the variation in Y_i .
- $R^2 = 0 \implies X_i$ explains *none* of the variation in Y_i .

$$R^2 = 0.73$$
 $R^2 = 0.07$

Explained and Unexplained Variation

Residuals remind us that there are parts of Y_i we can't explain.

$$Y_i = \hat{Y}_i + \hat{u}_i$$

• Sum the above, divide by n, and use the fact that OLS residuals sum to zero to get $\bar{\hat{u}} = 0 \implies \bar{Y} = \bar{\hat{Y}}$.

Total Sum of Squares (TSS) measures variation in *Y_i*:

$$\mathrm{TSS} \equiv \sum_{i=1}^n (Y_i - ar{Y})^2.$$

• We will decompose this variation into explained and unexplained parts.

Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in \hat{Y}_i :

$$\mathrm{ESS} \equiv \sum_{i=1}^n (\hat{Y}_i - ar{Y})^2.$$

Residual Sum of Squares (RSS) measures the variation in \hat{u}_i :

$$ext{RSS} \equiv \sum_{i=1}^n \hat{u}_i^2.$$

Goal: Show that TSS = ESS + RSS.

Step 1: Plug $Y_i = \hat{Y}_i + \hat{u}_i$ into TSS.

TSS

$$egin{aligned} &= \sum_{i=1}^n (Y_i - ar{Y})^2 \ &= \sum_{i=1}^n ([\hat{Y}_i + \hat{u}_i] - [ar{\hat{Y}} + ar{\hat{u}}])^2 \end{aligned}$$

Step 2: Recall that $ar{\hat{u}}=0$ and $ar{Y}=ar{\hat{Y}}.$

TSS

$$\begin{split} &= \sum_{i=1}^n \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right)^2 \\ &= \sum_{i=1}^n \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right) \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right) \\ &= \sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^n \hat{u}_i^2 + 2 \sum_{i=1}^n \left((\hat{Y}_i - \bar{Y}) \hat{u}_i \right) \end{split}$$

Step 3: Notice ESS and RSS.

TSS

$$= \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + 2 \sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$$

= ESS + RSS + 2 $\sum_{i=1}^{n} \left((\hat{Y}_{i} - \bar{Y}) \hat{u}_{i} \right)$

Step 4: Simplify.

 \mathbf{TSS}

$$egin{aligned} &= \mathrm{ESS} + \mathrm{RSS} + 2\sum_{i=1}^n \left((\hat{Y_i} - ar{Y}) \hat{u}_i
ight) \ &= \mathrm{ESS} + \mathrm{RSS} + 2\sum_{i=1}^n \hat{Y_i} \hat{u}_i - 2ar{Y} \sum_{i=1}^n \hat{u}_i \end{aligned}$$

Step 5: Shut down the last two terms. Notice that

$$egin{aligned} &\sum_{i=1}^n \hat{Y}_i \hat{u}_i \ &= \sum_{i=1}^n (\hat{eta}_0 + \hat{eta}_1 X_i) \hat{u}_i \ &= \hat{eta}_0 \sum_{i=1}^n \hat{u}_i + \hat{eta}_1 \sum_{i=1}^n X_i \hat{u}_i \ &= 0 \end{aligned}$$

Calculating R^2

- $R^2 = \frac{\mathrm{ESS}}{\mathrm{TSS}}$.
- $R^2 = 1 \frac{\mathrm{RSS}}{\mathrm{TSS}}$.

 R^2 is related to the correlation between the actual values of Y and the fitted values of Y.

• Can show that $R^2 = (r_{Y,\hat{Y}})^2.$

So what?

In the social sciences, low R^2 values are common.

Low R^2 doesn't mean that an estimated regression is useless.

• In a randomized control trial, R^2 is usually less than 0.1.

High R^2 doesn't necessarily mean you have a "good" regression.

• Worries about selection bias and omitted variables still apply.

Units of Measurement

We ran a regression of crimes per 1000 students on police per 1000 students. We found that $\hat{\beta}_0$ = 18.41 and $\hat{\beta}_1$ = 1.76.

What if we had run a regression of crimes per student on police per 1000 students? What would happen to the slope?

 $\hat{\beta_1} = 0.001756.$

Demeaning

Practice problem

Suppose that, before running a regression of Y_i on X_i , you decided to demean each variable by subtracting off the mean from each observation. This gave you $\tilde{Y}_i = Y_i - \bar{Y}$ and $\tilde{X}_i = X_i - \bar{X}$.

Then you decide to estimate

$${ ilde Y}_i=eta_0+eta_1{ ilde X}_i+u_i.$$

What will you get for your intercept estimate $\hat{\beta}_0$?