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HouseKeepingHouseKeeping
Lab 04 today, Exercise 04 due today.Lab 04 today, Exercise 04 due today.
Problem Set 2 out, due next Monday.Problem Set 2 out, due next Monday.
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Last Time
We considered a simple linear regression of  on :

 and  are population parameters that describe the "true"
relationship between  and .

Problem: We don't know the population parameters. The best we can
do is to estimate them.

Yi Xi

Yi = β0 + β1Xi + ui.

β0 β1

Xi Yi
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Last Time
We derived the OLS estimator by picking estimates that minimize .

Intercept:

Slope:

We used these formulas to obtain estimates of the parameters  and  in
a regression of  on .

∑
n

i=1 û
2
i

β̂0 = Ȳ − β̂1X̄.

β̂1 = .
∑

n

i=1(Yi − Ȳ )(Xi − X̄)

∑
n

i=1(Xi − X̄)2

β0 β1

Yi Xi
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Last Time
With the OLS estimates of the population parameters, we constructed a
regression line:

 are predicted or fitted values of .

You can think of  as an estimate of the average value of  given a
particular of .

OLS still produces prediction errors: .

Put differently, there is a part of  we can explain and a part we
cannot: .

Ŷi = β̂0 + β̂1Xi.

Ŷi Yi

Ŷi Yi

Xi

ûi = Yi − Ŷi

Yi

Yi = Ŷi + ûi
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Review
What is the equation for the regression model estimated below?
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Review
The estimated intercept is -9.85. What does this tell us?

7 / 31



Review
The estimated slope is 2.2. How do we interpret it?
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Today

Agenda
1. Highlight important properties of OLS.

2. Discuss goodness of fit: how well does one variable explain another?

3. Units of measurement.
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OLS PropertiesOLS Properties
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OLS Properties
The way we selected OLS estimates  and  gives us three important
properties:

1. Residuals sum to zero: .

2. The sample covariance between the independent variable and the
residuals is zero: .

3. The point  is always on the regression line.

β̂0 β̂1

∑
n

i=1 ûi = 0

∑
n

i=1 Xiûi = 0

(X̄, Ȳ )
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OLS Residuals
Residuals sum to zero: .

By extension, the sample mean of the residuals are zero.

You will prove this in Problem Set 2.

∑
n

i=1 ûi = 0
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OLS Residuals
The sample covariance between the independent variable and the
residuals is zero: .

You will prove a version of this in Problem Set 2.

∑
n

i=1 Xiûi = 0
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OLS Regression Line
The point  is always on the regression line.

Start with the regression line: .

.

Plug  into :

(X̄, Ȳ )

Ŷi = β̂0 + β̂1Xi

Ŷi = Ȳ − β̂1X̄ + β̂1Xi

X̄ Xi

Ŷi = Ȳ − β̂1X̄ + β̂1X̄

= Ȳ .

14 / 31



Goodness of FitGoodness of Fit
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Goodness of Fit

Regression 1 vs. Regression 2
Same slope.

Same intercept.

Q: Which fitted regression line "explains"* the data better?

* Explains = fits.
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 = 0.73  = 0.07

Goodness of Fit

Regression 1 vs. Regression 2
The coefficient of determination  is the fraction of the variation in 
"explained" by  in a linear regression.

 explains all of the variation in .
 explains none of the variation in .

R2 Yi

Xi

R2 = 1 ⟹ Xi Yi

R2 = 0 ⟹ Xi Yi

R2 R2
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Goodness of Fit
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Goodness of Fit
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Goodness of Fit
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Explained and Unexplained Variation
Residuals remind us that there are parts of  we can't explain.

Sum the above, divide by , and use the fact that OLS residuals sum to
zero to get .

Total Sum of Squares (TSS) measures variation in :

We will decompose this variation into explained and unexplained parts.

Yi

Yi = Ŷi + ûi

n

¯̂u = 0 ⟹ Ȳ =
¯̂
Y

Yi

TSS ≡
n

∑
i=1

(Yi − Ȳ )2.
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Explained and Unexplained Variation
Explained Sum of Squares (ESS) measures the variation in :

Residual Sum of Squares (RSS) measures the variation in :

Goal: Show that .

Ŷi

ESS ≡
n

∑
i=1

(Ŷi − Ȳ )2.

ûi

RSS ≡
n

∑
i=1

û
2
i .

TSS = ESS + RSS
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Step 1: Plug  into TSS.






Step 2: Recall that  and .










Yi = Ŷi + ûi

TSS

= ∑n

i=1(Yi − Ȳ )2

= ∑
n

i=1([Ŷi + ûi] − [
¯̂
Y + ¯̂u])2

¯̂u = 0 Ȳ =
¯̂
Y

TSS

= ∑
n

i=1 ([Ŷi − Ȳ ] + ûi)
2

= ∑
n

i=1 ([Ŷi − Ȳ ] + ûi)([Ŷi − Ȳ ] + ûi)

= ∑
n

i=1(Ŷi − Ȳ )2 +∑
n

i=1 û
2
i + 2∑

n

i=1 ((Ŷi − Ȳ )ûi)



Step 3: Notice ESS and RSS.






TSS

= ∑
n

i=1(Ŷi − Ȳ )2 +∑
n

i=1 û
2
i + 2∑

n

i=1 ((Ŷi − Ȳ )ûi)

= ESS + RSS + 2∑
n

i=1 ((Ŷi − Ȳ )ûi)



Step 4: Simplify.






Step 5: Shut down the last two terms. Notice that










TSS

= ESS + RSS + 2∑
n

i=1 ((Ŷi − Ȳ )ûi)

= ESS + RSS + 2∑n

i=1 Ŷiûi − 2Ȳ ∑n

i=1 ûi

∑n

i=1 Ŷiûi

= ∑n

i=1(β̂0 + β̂1Xi)ûi

= β̂0 ∑
n

i=1 ûi + β̂1 ∑
n

i=1 Xiûi

= 0



Goodness of Fit

Calculating 
.

.

 is related to the correlation between the actual values of  and the
fitted values of .

Can show that .

R2

R2 = ESS
TSS

R2 = 1 − RSS
TSS

R2 Y

Y

R2 = (r
Y ,Ŷ

)2
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Goodness of Fit

So what?
In the social sciences, low  values are common.

Low  doesn't mean that an estimated regression is useless.

In a randomized control trial,  is usually less than 0.1.

High  doesn't necessarily mean you have a "good" regression.

Worries about selection bias and omitted variables still apply.

R2

R2

R2

R2
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Units of MeasurementUnits of Measurement
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Last Time
We ran a regression of crimes per 1000 students on police per 1000
students. We found that  = 18.41 and  = 1.76.β̂0 β̂1
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Last Time
What if we had run a regression of crimes per student on police per 1000
students? What would happen to the slope?

 = 0.001756.β̂1
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Demeaning

Practice problem
Suppose that, before running a regression of  on , you decided to
demean each variable by subtracting off the mean from each observation.
This gave you  and .

Then you decide to estimate

What will you get for your intercept estimate ?

Yi Xi

~
Y i = Yi − Ȳ

~
Xi = Xi − X̄

~
Y i = β0 + β1

~
Xi + ui.

β̂0
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