Simple Linear Regression: Estimation EC 320: Introduction to Econometrics

Winter 2022

HouseKeeping

- Lab 04 today, Exercise 04 due today.
- Problem Set 2 out, due next Monday.

We considered a simple linear regression of Y_i on X_i :

 $Y_i = \beta_0 + \beta_1 X_i + u_i.$

- β_0 and β_1 are **population parameters** that describe the "true" relationship between X_i and Y_i .
- **Problem:** We don't know the population parameters. The best we can do is to estimate them.

We derived the OLS estimator by picking estimates that minimize $\sum_{i=1}^n \hat{u}_i^2.$ i

Intercept:

$$
\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}.
$$

Slope:

$$
{\hat \beta}_1 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2}.
$$

We used these formulas to obtain estimates of the parameters β_0 and β_1 in a regression of Y_i on $X_i.$

With the OLS estimates of the population parameters, we constructed a regression line:

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.
$$

- \hat{Y}_i are predicted or **fitted** values of Y_i .
- You can think of \hat{Y}_i as an estimate of the average value of Y_i given a particular of X_i .

OLS still produces prediction errors: $\hat{u}_i = Y_i - \hat{Y}_i.$

Put differently, there is a part of Y_i we can explain and a part we cannot: $Y_i = \hat{Y}_i + \hat{u}_i$.

Review

What is the equation for the regression model estimated below?

Review

The estimated **intercept** is -9.85. What does this tell us?

Review

The estimated **slope** is 2.2. How do we interpret it?

Today

Agenda

- 1. Highlight important properties of OLS.
- 2. Discuss goodness of fit: how well does one variable explain another?
- 3. Units of measurement.

OLS Properties

OLS Properties

The way we selected OLS estimates ${\hat \beta}_0$ and ${\hat \beta}_1$ gives us three important properties:

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.
- 2. The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^n X_i \hat{u}_i = 0$.
- 3. The point (\bar{X}, \bar{Y}) is always on the regression line.

OLS Residuals

Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.

- By extension, the sample mean of the residuals are zero.
- You will prove this in Problem Set 2.

OLS Residuals

The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^n X_i \hat{u}_i = 0$.

You will prove a version of this in Problem Set 2.

OLS Regression Line

The point (\bar{X}, \bar{Y}) is always on the regression line.

- Start with the regression line: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$
- $\hat{Y}_i = \bar{Y} \hat{\beta}_1\bar{X} + \hat{\beta}_1X_i.$
- Plug \bar{X} into X_i :

$$
\begin{aligned} \hat{Y}_i &= \bar{Y} - \hat{\beta}_1 \bar{X} + \hat{\beta}_1 \bar{X} \\ &= \bar{Y}. \end{aligned}
$$

Regression 1 *vs.* **Regression 2**

- Same slope.
- Same intercept.

Q: Which fitted regression line *"explains"* * the data better?

Regression 1 *vs.* **Regression 2**

The $\mathop{\mathrm{coeff}}$ $\mathop{\mathrm{coeff}}$ $\mathop{\mathrm{coeff}}$ $\mathop{\mathrm{of}}$ $\mathop{\mathrm{determination}} P^2$ is the fraction of the variation in Y_i " $explained$ " by X_i in a linear regression.

- $R^2 = 1 \implies X_i$ explains *all* of the variation in $Y_i.$
- $R^2 = 0 \implies X_i$ explains *none* of the variation in $Y_i.$

$$
R^2 = 0.73 \t R^2 = 0.07
$$

Explained and Unexplained Variation

Residuals remind us that there are parts of Y_i we can't explain.

$$
Y_i = \hat{Y}_i + \hat{u}_i
$$

Sum the above, divide by n , and use the fact that OLS residuals sum to zero to get $\overline{\hat{u}} = 0 \implies \overline{Y} = \overline{\hat{Y}}$.

Total Sum of Squares (TSS) measures variation in Y_i :

$$
\mathrm{TSS} \equiv \sum_{i=1}^n (Y_i - \bar{Y})^2.
$$

We will decompose this variation into explained and unexplained parts.

Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in \hat{Y}_i :

$$
\text{ESS} \equiv \sum_{i=1}^n (\hat{Y}_i - \bar{Y})^2.
$$

Residual Sum of Squares (RSS) measures the variation in \hat{u}_i :

$$
\text{RSS} \equiv \sum_{i=1}^n \hat{u}_i^2.
$$

Goal: Show that $TSS = ESS + RSS$.

Step 1: Plug $Y_i = \hat{Y}_i + \hat{u}_i$ into TSS.

TSS

$$
= \sum_{i=1}^n (Y_i - \bar{Y})^2
$$

=
$$
\sum_{i=1}^n ([\hat{Y}_i + \hat{u}_i] - [\bar{\hat{Y}} + \bar{\hat{u}}])^2
$$

 $\textbf{Step 2: }$ Recall that $\bar{\hat{u}} = 0$ and $\bar{Y} = \bar{\hat{Y}}$.

TSS

$$
= \sum_{i=1}^{n} \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right)^2
$$

= $\sum_{i=1}^{n} \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right) \left([\hat{Y}_i - \bar{Y}] + \hat{u}_i \right)$
= $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2 + 2 \sum_{i=1}^{n} \left((\hat{Y}_i - \bar{Y}) \hat{u}_i \right)$

Step 3: Notice **ESS** and **RSS**.

TSS

$$
= \sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2} + \sum_{i=1}^{n} \hat{u}_{i}^{2} + 2 \sum_{i=1}^{n} ((\hat{Y}_{i} - \bar{Y})\hat{u}_{i})
$$

= ESS + RSS + 2 $\sum_{i=1}^{n} ((\hat{Y}_{i} - \bar{Y})\hat{u}_{i})$

Step 4: Simplify.

TSS

$$
=\mathrm{ESS}+\mathrm{RSS}+2\sum_{i=1}^{n}\left((\hat{Y}_{i}-\bar{Y})\hat{u}_{i}\right)\\=\mathrm{ESS}+\mathrm{RSS}+2\sum_{i=1}^{n}\hat{Y}_{i}\hat{u}_{i}-2\bar{Y}\sum_{i=1}^{n}\hat{u}_{i}
$$

Step 5: Shut down the last two terms. Notice that

$$
\begin{array}{l} \sum_{i=1}^{n}\hat{Y}_{i}\hat{u}_{i}\\ \hspace*{1.5em}=\sum_{i=1}^{n}(\hat{\beta}_{0}+\hat{\beta}_{1}X_{i})\hat{u}_{i}\\ \hspace*{1.5em}=\hat{\beta}_{0}\sum_{i=1}^{n}\hat{u}_{i}+\hat{\beta}_{1}\sum_{i=1}^{n}X_{i}\hat{u}_{i}\\ \hspace*{1.5em}=\mathbb{0}\end{array}
$$

Calculating R^2

- $R^2 = \frac{ESS}{TSS}.$ TSS
- $R^2 = 1 \frac{\text{RSS}}{\text{TSS}}.$ TSS

 \mathbb{R}^2 is related to the correlation between the actual values of Y and the fitted values of Y .

Can show that $R^2 = (r_{Y,\hat{Y}})^2$.

So what?

In the social sciences, low R^2 values are common.

Low R^2 doesn't mean that an estimated regression is useless.

In a randomized control trial, R^2 is usually less than 0.1.

High R^2 doesn't necessarily mean you have a "good" regression.

Worries about selection bias and omitted variables still apply.

Units of Measurement

We ran a regression of crimes per 1000 students on police per 1000 students. We found that $\hat{\beta}_0$ = 18.41 and $\hat{\beta}_1$ = 1.76.

What if we had run a regression of crimes per student on police per 1000 students? What would happen to the slope?

 $= 0.001756.$ $\hat{Q}^{\dagger}_{\perp}$ 1

Demeaning

Practice problem

Suppose that, before running a regression of Y_i on X_i , you decided to *demean* each variable by subtracting off the mean from each observation. This gave you $\tilde{Y}_i = Y_i - \bar{Y}$ and $\tilde{X}_i = X_i - \bar{X}$.

Then you decide to estimate

$$
\tilde{Y}_i = \beta_0 + \beta_1 \tilde{X}_i + u_i.
$$

What will you get for your intercept estimate β_0 ? $\hat{\hat{A}}$ $\overline{0}$