Simple Linear Regression: Estimation

 EC 320: Introduction to EconometricsWinter 2022

Prologue

Housekeeping

Grading: Midterm 1 grade out.
Problem Set 2: Due Monday, Feb 7th by 11:59pm on Canvas.
Lab \& Exercise: Wednesday, Feb 2nd by 11:59pm.

Where Are We?

Where we've been

High Concepts

- Reviewed core ideas from statistics
- Developed a framework for thinking about causality
- Dabbled in regression analysis.

Also, R.

Where Are We?

Where we're going

The Weeds!

- Learn the mechanics of how OLS works
- Interpret regression results (mechanically and critically)
- Extend ideas about causality to a regression context
- Think more deeply about statistical inference
- Lay a foundation for more-sophisticated regression techniques.

Also, more R.

Simple Linear Regression

Addressing Questions

Example: Effect of police on crime

Policy Question: Do on-campus police reduce crime on campus?

- Empirical Question: Does the number of on-campus police officers affect campus crime rates? If so, by how much?

How can we answer these questions?

- Prior beliefs.
- Theory.
- Data!

Let's "Look" at Data

Example: Effect of police on crime

	Search:	
	Police per 1000 Students	Crimes per 1000 students
1	20.42	1.1
2	0.15	2
3	0.47	1.41
4	14.68	2.06
5	23.75	1.52
6	7.68	Previous
Showing 1 to 6 of 96 entries		Next

Take 2

Example: Effect of police on crime

"Looking" at data wasn't especially helpful.
Let's try using a scatter plot.

- Plot each data point in (X, Y)-space.
- Police on the X-axis.
- Crime on the Y-axis.

Take 2

Example: Effect of police on crime

Take 2

Example: Effect of police on crime

The scatter plot tells us more than the spreadsheet.

- Somewhat weak positive relationship.
- Sample correlation coefficient of 0.14 confirms this.

But our question was
Does the number of on-campus police officers affect campus crime rates? If so, by how much?

- The scatter plot and correlation coefficient provide only a partial answer.

Take 3

Example: Effect of police on crime

Our next step is to estimate a statistical model.
To keep it simple, we will relate an explained variable Y to an explanatory variable X in a linear model.

Simple Linear Regression Model

We express the relationship between a explained variable and an explanatory variable as linear:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i} .
$$

- β_{0} is the intercept or constant.
- β_{1} is the slope coefficient.
- u_{i} is an error term or disturbance term.

Simple Linear Regression Model

The intercept tells us the expected value of Y_{i} when $X_{i}=0$.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

Usually not the focus of an analysis.

Simple Linear Regression Model

The slope coefficient tells us the expected change in Y_{i} when X_{i} increases by one.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

"A one-unit increase in X_{i} is associated with a β_{1}-unit increase in Y_{i}."
Under certain (strong) assumptions about the error term, β_{1} is the effect of X_{i} on Y_{i}.

- Otherwise, it's the association of X_{i} with Y_{i}.

Simple Linear Regression Model

The error term reminds us that X_{i} does not perfectly explain Y_{i}.

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+u_{i}
$$

Represents all other factors that explain Y_{i}.

- Useful mnemonic: pretend that u stands for "unobserved" or "unexplained."

Take 3, continued

Example: Effect of police on crime

How might we apply the simple linear regression model to our question about the effect of on-campus police on campus crime?

- Which variable is X ? Which is Y ?

$$
\text { Crime }_{i}=\beta_{0}+\beta_{1} \text { Police }_{i}+u_{i} .
$$

- β_{0} is the crime rate for colleges without police.
- β_{1} is the increase in the crime rate for an additional police officer per 1000 students.

Take 3, continued

Example: Effect of police on crime

How might we apply the simple linear regression model to our question?

$$
\text { Crime }_{i}=\beta_{0}+\beta_{1} \text { Police }_{i}+u_{i}
$$

β_{0} and β_{1} are the population parameters we want, but we cannot observe them.

Instead, we must estimate the population parameters.

- $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ generate predictions of Crime $_{i}$ called Crime $_{i}$.
- We call the predictions of the dependent variable fitted values.
- Together, these trace a line: Crime $_{i}=\hat{\beta}_{0}+\hat{\beta}_{1}$ Police $_{i}$.

Take 3, attempted

Example: Effect of police on crime

Guess: $\hat{\beta_{0}}=60$ and $\hat{\beta_{1}}=-7$.

Take 4

Example: Effect of police on crime

Guess: $\hat{\beta_{0}}=30$ and $\hat{\beta_{1}}=0$.

Take 5

Example: Effect of police on crime

Guess: $\hat{\beta}_{0}=15.6$ and $\hat{\beta}_{1}=7.94$.

Residuals

Using $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ to make \hat{Y}_{i} generates misses called residuals:

$$
\hat{u}_{i}=Y_{i}-\hat{Y}_{i} .
$$

- Sometimes called e_{i}.

Residuals

Example: Effect of police on crime

Using $\hat{\beta}_{0}=15.6$ and $\hat{\beta_{1}}=7.94$ to make Crime ${ }_{i}$ generates residuals.

Residuals

We want an estimator that makes fewer big misses.
Why not minimize $\sum_{i=1}^{n} \hat{u}_{i}$?

- There are positive and negative residuals \Longrightarrow no solution (can always find a line with more negative residuals).

Alternative: Minimize the sum of squared residuals a.k.a. the residual sum of squares (RSS).

- Squared numbers are never negative.

Residuals

Example: Effect of police on crime

RSS gives bigger penalties to bigger residuals.

Residuals

Minimizing RSS

We could test thousands of guesses of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ and pick the pair that minimizes RSS.

- Or we just do a little math and derive some useful formulas that give us RSS-minimizing coefficients without the guesswork.

Ordinary Least Squares (OLS)

The OLS estimator chooses the parameters $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize the residual sum of squares (RSS):

$$
\min _{\hat{\beta}_{0}, \hat{\beta}_{1}} \sum_{i=1}^{n} \hat{u}_{i}^{2}
$$

This is why we call the estimator ordinary least squares.

Deriving the OLS Estimator

Outline

1. Replace $\sum_{i=1}^{n} \hat{u}_{i}^{2}$ with an equivalent expression involving $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$.
2. Take partial derivatives of our RSS expression with respect to $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ and set each one equal to zero (first-order conditions).
3. Use the first-order conditions to solve for $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ in terms of data on Y_{i} and X_{i}.
4. Check second-order conditions to make sure we found the $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ that minimize RSS.

OLS Formulas

For details, see the handout posted on Canvas.

Slope coefficient

$$
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

Intercept

$$
\hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
$$

Slope coefficient

The slope estimator is equal to the sample covariance divided by the sample variance of X :

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)\left(X_{i}-\bar{X}\right)}{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& =\frac{S_{X Y}}{S_{X}^{2}}
\end{aligned}
$$

Take 6

Example: Effect of police on crime

Using the OLS formulas, we get $\hat{\beta_{0}}=18.41$ and $\hat{\beta_{1}}=1.76$.

Coefficient Interpretation

Example: Effect of police on crime

Using OLS gives us the fitted line

$$
\text { Crime }_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} \text { Police }_{i} .
$$

What does $\hat{\beta}_{0}=18.41$ tell us?
What does $\hat{\beta_{1}}=1.76$ tell us?
Gut check: Does this mean that police cause crime?

- Probably not. Why?

Outliers

Example: Association of police with crime

Outliers

Example: Association of police with crime

Fitted line without outlier. Fitted line with outlier.

