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Housekeeping
Grading: Midterm 1 grade out.

Problem Set 2: Due Monday, Feb 7th by 11:59pm on Canvas.

Lab & Exercise: Wednesday, Feb 2nd by 11:59pm.
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Where Are We?

Where we've been
High Concepts

Reviewed core ideas from statistics

Developed a framework for thinking about causality

Dabbled in regression analysis.

Also, R.
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Where Are We?

Where we're going
The Weeds!

Learn the mechanics of how OLS works

Interpret regression results (mechanically and critically)

Extend ideas about causality to a regression context

Think more deeply about statistical inference

Lay a foundation for more-sophisticated regression techniques.

Also, more R.
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Simple Linear RegressionSimple Linear Regression
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Addressing Questions

Example: Effect of police on crime
Policy Question: Do on-campus police reduce crime on campus?

Empirical Question: Does the number of on-campus police officers
affect campus crime rates? If so, by how much?

How can we answer these questions?

Prior beliefs.

Theory.

Data!
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Let's "Look" at Data

Example: Effect of police on crime
Search:

Showing 1 to 6 of 96 entries Previous Next

Police per 1000 Students Crimes per 1000 students

1 20.42 1.1

2 0.15 2

3 0.47 1.41

4 14.68 2.06

5 23.75 1.52

6 7.68 2.76
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Take 2

Example: Effect of police on crime
"Looking" at data wasn't especially helpful.

Let's try using a scatter plot.

Plot each data point in -space.

Police on the -axis.

Crime on the -axis.

(X, Y )

X

Y
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Take 2

Example: Effect of police on crime
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Take 2

Example: Effect of police on crime
The scatter plot tells us more than the spreadsheet.

Somewhat weak positive relationship.

Sample correlation coefficient of 0.14 confirms this.

But our question was

Does the number of on-campus police officers affect campus
crime rates? If so, by how much?

The scatter plot and correlation coefficient provide only a partial
answer.
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Take 3

Example: Effect of police on crime
Our next step is to estimate a statistical model.

To keep it simple, we will relate an explained variable  to an explanatory
variable  in a linear model.

Y

X
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Simple Linear Regression Model
We express the relationship between a explained variable and an
explanatory variable as linear:

 is the intercept or constant.

 is the slope coefficient.

 is an error term or disturbance term.

Yi = β0 + β1Xi + ui.

β0

β1

ui

Simple = Only one explanatory variable.
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Simple Linear Regression Model
The intercept tells us the expected value of  when .

Usually not the focus of an analysis.

Yi Xi = 0

Yi = β0 + β1Xi + ui

14 / 35



Simple Linear Regression Model
The slope coefficient tells us the expected change in  when  increases
by one.

"A one-unit increase in  is associated with a -unit increase in ."

Under certain (strong) assumptions about the error term,  is the effect of 
 on .

Otherwise, it's the association of  with .

Yi Xi

Yi = β0 + β1Xi + ui

Xi β1 Yi

β1

Xi Yi

Xi Yi
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Simple Linear Regression Model
The error term reminds us that  does not perfectly explain .

Represents all other factors that explain .

Useful mnemonic: pretend that  stands for "unobserved" or
"unexplained."

Xi Yi

Yi = β0 + β1Xi + ui

Yi

u
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Take 3, continued

Example: Effect of police on crime
How might we apply the simple linear regression model to our question
about the effect of on-campus police on campus crime?

Which variable is ? Which is ?

 is the crime rate for colleges without police.
 is the increase in the crime rate for an additional police officer per

1000 students.

X Y

Crimei = β0 + β1Policei + ui.

β0

β1
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Take 3, continued

Example: Effect of police on crime
How might we apply the simple linear regression model to our question?

 and  are the population parameters we want, but we cannot observe
them.

Instead, we must estimate the population parameters.

 and  generate predictions of  called .

We call the predictions of the dependent variable fitted values.

Together, these trace a line: .

Crimei = β0 + β1Policei + ui

β0 β1

β̂0 β̂1 Crimei
^Crimei

^Crimei = β̂0 + β̂1Policei
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Take 3, attempted

Example: Effect of police on crime
Guess:  and .β̂0 = 60 β̂1 = −7

19 / 35



Take 4

Example: Effect of police on crime
Guess:  and .β̂0 = 30 β̂1 = 0
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Take 5

Example: Effect of police on crime
Guess:  and .β̂0 = 15.6 β̂1 = 7.94
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Residuals
Using  and  to make  generates misses called residuals:

Sometimes called .

β̂0 β̂1 Ŷi

ûi = Yi − Ŷi.

ei
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Residuals

Example: Effect of police on crime
Using  and  to make  generates residuals.β̂0 = 15.6 β̂1 = 7.94 ^Crimei
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Residuals
We want an estimator that makes fewer big misses.

Why not minimize ?

There are positive and negative residuals  no solution (can always
find a line with more negative residuals).

Alternative: Minimize the sum of squared residuals a.k.a. the residual sum
of squares (RSS).

Squared numbers are never negative.

∑
n

i=1 ûi

⟹

24 / 35



Residuals

Example: Effect of police on crime
RSS gives bigger penalties to bigger residuals.
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Residuals

Minimizing RSS
We could test thousands of guesses of  and  and pick the pair that
minimizes RSS.

Or we just do a little math and derive some useful formulas that give us
RSS-minimizing coefficients without the guesswork.

β̂0 β̂1
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Ordinary Least Squares (OLS)Ordinary Least Squares (OLS)
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OLS
The OLS estimator chooses the parameters  and  that minimize the
residual sum of squares (RSS):

This is why we call the estimator ordinary least squares.

β̂0 β̂1

min
β̂0, β̂1

n

∑
i=1

û
2
i
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Deriving the OLS Estimator

Outline
1. Replace  with an equivalent expression involving  and .

2. Take partial derivatives of our RSS expression with respect to  and 
and set each one equal to zero (first-order conditions).

3. Use the first-order conditions to solve for  and  in terms of data on 
 and .

4. Check second-order conditions to make sure we found the  and 
that minimize RSS.

∑n

i=1 û2
i β̂0 β̂1

β̂0 β̂1

β̂0 β̂1

Yi Xi

β̂0 β̂1
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OLS Formulas
For details, see the handout posted on Canvas.

Slope coefficient

Intercept

β̂1 =
∑

n

i=1(Yi − Ȳ )(Xi − X̄)

∑n
i=1(Xi − X̄)2

β̂0 = Ȳ − β̂1X̄
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https://raw.githack.com/bchang2/ec320_w22/main/Lectures/07-Simple_Linear_Regression_Estimation/OLS_derivation.pdf


Slope coefficient
The slope estimator is equal to the sample covariance divided by the
sample variance of :X

β̂1 =

=

= .

∑
n

i=1(Yi − Ȳ )(Xi − X̄)

∑n
i=1(Xi − X̄)2

∑
n

i=1(Yi − Ȳ )(Xi − X̄)1
n−1

∑
n
i=1(Xi − X̄)21

n−1

SXY

S2
X
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Take 6

Example: Effect of police on crime
Using the OLS formulas, we get  = 18.41 and  = 1.76.β̂0 β̂1
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Coefficient Interpretation

Example: Effect of police on crime
Using OLS gives us the fitted line

What does  = 18.41 tell us?

What does  = 1.76 tell us?

Gut check: Does this mean that police cause crime?

Probably not. Why?

^Crimei = β̂0 + β̂1Policei.

β̂0

β̂1
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Outliers

Example: Association of police with crime
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Outliers

Example: Association of police with crime
Fitted line without outlier. Fitted line with outlier.
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