# **The Fundamental Problem of Econometrics** EC 320: Introduction to Econometrics

Winter 2022

# Prologue

# Statistics Inform Policy

**Policy:** In 2017, the University of Oregon started requiring first-year students to live on campus.

**Rationale:** First-year students who live on campus fare better than those who live off campus.

- 80 percent more likely to graduate in four years.
- Second-year retention rate 5 percentage points higher.
- GPAs 0.13 points higher, on average.

# Do these comparisons suggest that the policy will improve student outcomes?

Do they describe the effect of living on campus?

Do they describe **something else?** 

# Other Things Equal

The UO's interpretation of those comparisons warrants skepticism.

- The decision to live on campus is probably related to family wealth and interest in school.
- Family wealth and interest in school are also related to academic achievement.

**Why?** The difference in outcomes between those on and off campus is not an *other things equal*<sup>\*</sup> comparison.

**Upshot:** We can't attribute the difference in outcomes solely to living on campus.

<sup>\*</sup> Other things equal = ceteris paribus, all else held constant, etc.

# Other Things Equal

#### A high bar

When all other factors are held constant, statistical comparisons detect causal relationships.

(Micro)economics has developed a comparative advantage in understanding where **other things equal** comparisons can and cannot be made.

- Anyone can retort "correlation doesn't necessarily imply causation."
- Understanding *why* is difficult, but useful for learning from data.

# The Fundamental Problem of Econometrics

# **Causal Identification**

#### Goal

Identify the effect of a **treatment** on an **outcome**.

#### Ideal data

Ideally, we could calculate the **treatment effect** for each individual as

$$Y_{1,i} - Y_{0,i}$$

- $Y_{1,i}$  is the outcome for person *i* when she receives the treatment.
- $Y_{0,i}$  is the outcome for person i when she does not receive the treatment.
- Known as potential outcomes.

## **Causal Identification**

#### Ideal data

The *ideal* data for 10 people

| #> |    | i  | trt | y1i  | y0i  | effect_i |
|----|----|----|-----|------|------|----------|
| #> | 1  | 1  | 1   | 5.01 | 2.56 | 2.45     |
| #> | 2  | 2  | 1   | 8.85 | 2.53 | 6.32     |
| #> | 3  | 3  | 1   | 6.31 | 2.67 | 3.64     |
| #> | 4  | 4  | 1   | 5.97 | 2.79 | 3.18     |
| #> | 5  | 5  | 1   | 7.61 | 4.34 | 3.27     |
| #> | 6  | 6  | 0   | 7.63 | 4.15 | 3.48     |
| #> | 7  | 7  | 0   | 4.75 | 0.56 | 4.19     |
| #> | 8  | 8  | 0   | 5.77 | 3.52 | 2.25     |
| #> | 9  | 9  | 0   | 7.47 | 4.49 | 2.98     |
| #> | 10 | 10 | 0   | 7.79 | 1.40 | 6.39     |

Calculate the causal effect of treatment.

$$au_i = y_{1,i} - y_{0,i}$$

for each individual *i*.

The mean of  $\tau_i$  is the **average treatment effect** (ATE).

Thus,  $\overline{ au}=3.82$ 

## Fundamental Problem of Econometrics

#### Ideal comparison

 $au_i = y_{1,i} - y_{0,i}$ 

Highlights the fundamental problem of econometrics.

#### The problem

- If we observe  $y_{1,i}$ , then we cannot observe  $y_{0,i}$ .
- If we observe  $y_{0,i}$ , then we cannot observe  $y_{1,i}$ .
- Can only observe what actually happened; cannot observe the **counterfactual**.

## Fundamental Problem of Econometrics

A dataset that we can observe for 10 people looks something like

| #> |    | i  | trt | y1i  | y0i  |
|----|----|----|-----|------|------|
| #> | 1  | 1  | 1   | 5.01 | NA   |
| #> | 2  | 2  | 1   | 8.85 | NA   |
| #> | 3  | 3  | 1   | 6.31 | NA   |
| #> | 4  | 4  | 1   | 5.97 | NA   |
| #> | 5  | 5  | 1   | 7.61 | NA   |
| #> | 6  | 6  | 0   | NA   | 4.15 |
| #> | 7  | 7  | 0   | NA   | 0.56 |
| #> | 8  | 8  | 0   | NA   | 3.52 |
| #> | 9  | 9  | 0   | NA   | 4.49 |
| #> | 10 | 10 | 0   | NA   | 1.40 |

We can't observe  $y_{1,i}$  and  $y_{0,i}$ .

But, we do observe

- *y*<sub>1,*i*</sub> for *i* in 1, 2, 3, 4, 5
- *y*<sub>0,*j*</sub> for *j* in 6, 7, 8, 9, 10

**Q:** How do we "fill in" the NA's and estimate  $\overline{\tau}$ ?

# Estimating Causal Effects

**Notation:**  $D_i$  is a binary indicator variable such that

- $D_i = 1$  if individual *i* is treated.
- $D_i = 0$  if individual *i* is not treated (*control* group).

Then, rephrasing the previous slide,

- We only observe  $y_{1,i}$  when  $D_i = 1$ .
- We only observe  $y_{0,i}$  when  $D_i = 0$ .

**Q:** How can we estimate  $\overline{\tau}$  using only  $(y_{1,i}|D_i = 1)$  and  $(y_{0,i}|D_i = 0)$ ?

## Estimating Causal Effects

**Q:** How can we estimate  $\overline{\tau}$  using only  $(y_{1,i}|D_i=1)$  and  $(y_{0,i}|D_i=0)$ ?

Idea: What if we compare the groups' means? I.e.,

 $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$ 

**Q:** When does a simple difference-in-means provide information on the **causal effect** of the treatment?

**Q<sub>2.0</sub>:** Is  $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$  a good estimator for  $\overline{\tau}$ ?

### Estimating Causal Effects

**Assumption:** Let  $\tau_i = \tau$  for all *i*.

• The treatment effect is equal (constant) across all individuals *i*.

Note: We defined

$$au_i = au = y_{1,i} - y_{0,i}$$

which implies

$$y_{1,i}=y_{0,i}+ au$$

**Q:** Is  $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$  a good estimator for  $\tau$ ?

Difference-in-means

$$= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

$$= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$=Avg( au+y_{0,i}\mid D_i=1)-Avg(y_{0,i}\mid D_i=0)$$

$$= au + Avg(y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

= Average causal effect + Selection bias

Our proposed difference-in-means estimator gives us the sum of

- 1.  $\tau$ , the **causal, average treatment effect** that we want.
- 2. **Selection bias:** How much treatment and control groups differ, on average.

## **Selection Bias**

**Problem:** Existence of selection bias precludes *all else equal* comparisons.

• To make valid comparisons that yield causal effects, we need to shut down the bias term.

Potential solution: Conduct an experiment.

- How? Random assignment of treatment.
- Hence the name, *randomized* control trial (RCT).

#### Example: Effect of de-worming on attendance

**Motivation:** Intestinal worms are common among children in lessdeveloped countries. The symptoms of these parasites can keep schoolaged children at home, disrupting human capital accumulation.

**Policy Question:** Do school-based de-worming interventions provide a cost-effective way to increase school attendance?

#### Example: Effect of de-worming on attendance

**Research Question:** How much do de-worming interventions increase school attendance?

**Q:** Could we simply compare average attendance among children with and without access to de-worming medication?

**A:** If we're after the causal effect, probably not.

Q: Why not?

**A:** Selection bias: Families with access to de-worming medication probably have healthier children for other reasons, too (wealth, access to clean drinking water, *etc.*).

Can't make an *all else equal* comparison. Biased and/or spurious results.

#### Example: Effect of de-worming on attendance

Solution: Run an experiment.

Imagine an RCT where we have two groups:

- **Treatment:** Villages that where children get de-worming medication in school.
- **Control:** Villages that where children don't get de-worming medication in school (status quo).

By randomizing villages into **treatment** or **control**, we will, on average, include all kinds of villages (poor vs. less poor, access to clean water vs. contaminated water, hospital vs. no hospital, *etc.*) in both groups.

All else equal!

# 54 villages of varying levels of development plus randomly assigned treatment



#### Example: Effect of de-worming on attendance

We can estimate the **causal effect** of de-worming on school attendance by comparing the average attendance rates in the treatment group () with those in the control group (no ).

 $Attendance_{\mathrm{Treatment}}-Attendance_{\mathrm{Control}}$ 

Alternatively, we can use the regression

```
\text{Attendance}_i = \beta_0 + \beta_1 \text{Treatment}_i + u_i \tag{1}
```

where Treatment<sub>i</sub> is a binary variable (=1 if village *i* received the deworming treatment). Q: Should trust the results of (1)? Why?
A: On average, randomly assigning treatment should balance treatment and control across the other dimensions that affect school attendance.

#### Randomization can go wrong!



## Causality

#### Example: Returns to education

The optimal investment in education by students, parents, and legislators depends in part on the monetary *return to education*.

#### **Thought experiment:**

- Randomly select an individual.
- Give her an additional year of education.
- How much do her earnings increase?

The change in her earnings describes the **causal effect** of education on earnings.

## Causality

#### Example: Returns to education

**Q:** Could we simply compare the earnings those with more education to those with less?

**A:** If we want to measure the causal effect, probably not.

- 1. People *choose* education based on their ability and other factors.
- 2. High-ability people tend to earn more *and* stay in school longer.
- 3. Education likely reduces experience (time out of the workforce).

Point (3) also illustrates the difficulty in learning about the effect of education while *holding all else constant*.

Many important variables have the same challenge: gender, race, income.

### Causality

#### Example: Returns to education

**Q:** How can we estimate the returns to education?

Option 1: Run an experiment.

- Randomly assign education (might be difficult).
- Randomly encourage education (might work).
- Randomly assign programs that affect education (*e.g.*, mentoring).

**Option 2:** Look for a *natural experiment* (a policy or accident in society that arbitrarily increased education for one subset of people).

• Admissions cutoffs