Statistics Review II

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

Lectures \& my office hours held remote this week; Lab in-person unless announced otherwise

Problem Set 1 available on Canvas.

- Submission type: .html or .pdf
- Due this Friday

Exercise 2 due this Wednesday
Extra office hours?

- Wednesday 19:00-20:00?

Knit issues / R issues?

- Meet me after class
- Office hours

Statistics Review

Overview

Goal: Learn about a population.

- In particular, learn about an unknown population parameter.

Challenge: Usually cannot access information about the entire population.
Solution: Sample from the population and estimate the parameter.

- Draw n observations from the population, then use an estimator.

Sampling

There are myriad ways to produce a sample, , but we will restrict our attention to simple random sampling, where

1. Each observation is a random variable.
2. The n random variables are independent.
3. Life becomes much simpler for the econometrician.

* Only a subset of these can help produce reliable statistics.

Estimators

An estimator is a rule (or formula) for estimating an unknown population parameter given a sample of data.

- Each observation in the sample is a random variable.
- An estimator is a combination of random variables \Longrightarrow it is a random variable.

Example: Sample mean

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- \bar{X} is an estimator for the population mean μ.
- Given a sample, \bar{X} yields an estimate \bar{x} or $\hat{\mu}$, a specific number.

A physicist, a chemist, and an econometrician go to an archery range...

Archer 1
Archer 2

Archer 3

Archer 4

Population vs. Sample

Question: Why do we care about population vs. sample?

Population

Population relationship

$$
\mu=3.75
$$

Population vs. Sample

Question: Why do we care about population vs. sample?

Sample 1: 10 random individuals

Population relationship

$$
\mu=3.75
$$

Sample relationship

$$
\hat{\mu}=8.34
$$

Population vs. Sample

Question: Why do we care about population vs. sample?

Sample 2: 10 random individuals

Population relationship

$$
\mu=3.75
$$

Sample relationship

$$
\hat{\mu}=-8.54
$$

Population vs. Sample

Question: Why do we care about population vs. sample?

Sample 3: 10 random individuals

Population relationship

$$
\mu=3.75
$$

Sample relationship

$$
\hat{\mu}=4.62
$$

Let's repeat this $\mathbf{1 0 , 0 0 0}$ times and then plot the estimates.
(This exercise is called a Monte Carlo simulation.)

Population vs. Sample

Question: Why do we care about population vs. sample?

- On average, the mean of the samples are close to the population mean.
- But...some individual samples can miss the mark.
- The difference between individual samples and the population creates uncertainty.

Population vs. Sample

Question: Why do we care about population vs. sample?
Answer: Uncertainty matters.

- $\hat{\mu}$ is a random variable that depends on the sample.
- In practice, we don't know whether our sample is similar to the population or not.
- Individual samples may have means that differ greatly from the population.
- We will have to keep track of this uncertainty.

Properties of Estimators

Imagine that we want to estimate an unknown parameter μ, and we know the distributions of three competing estimators. Which one should we use?

Properties of Estimators

Question: What properties make an estimator reliable?

Answer 1: Unbiasedness.

On average (after many samples), does the estimator tend toward the correct value?

More formally: Does the mean of estimator's distribution equal the parameter it estimates?

$$
\operatorname{Bias}_{\mu}(\hat{\mu})=\mathbb{E}[\hat{\mu}]-\mu
$$

Properties of Estimators

Question: What properties make an estimator reliable?
Answer 1: Unbiasedness.

Unbiased estimator: $\mathbb{E}[\hat{\mu}]=\mu$

Biased estimator: $\mathbb{E}[\hat{\mu}] \neq \mu$

Properties of Estimators

Question: What properties make an estimator reliable?

Answer 2: Low Variance (a.k.a. Efficiency).

The central tendencies (means) of competing distributions are not the only things that matter. We also care about the variance of an estimator.

$$
\operatorname{Var}(\hat{\mu})=\mathbb{E}\left[(\hat{\mu}-\mathbb{E}[\hat{\mu}])^{2}\right]
$$

Lower variance estimators produce estimates closer to the mean in each sample.

Properties of Estimators

Question: What properties make an estimator reliable?
Answer 2: Low Variance (a.k.a. Efficiency).

The Bias-Variance Tradeoff

Should we be willing to take a bit of bias to reduce the variance?
In econometrics, we generally prefer unbiased estimators. Some other disciplines think more about this tradeoff.

Unbiased Estimators

In addition to the sample mean, there are several other unbiased estimators we will use often.

- Sample variance to estimate variance σ^{2}.
- Sample covariance to estimate covariance $\sigma_{X Y}$.
- Sample correlation to estimate the population correlation coefficient $\rho_{X Y}$.

Unbiased Estimators

The sample variance S_{X}^{2} is an unbiased estimator of the population variance σ^{2} :

$$
S_{X}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Unbiased Estimators

The sample covariance $S_{X Y}$ is an unbiased estimator of the population covariance $\sigma_{X Y}$:

$$
S_{X Y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right) .
$$

Unbiased Estimators

The sample correlation $r_{X Y}$ is an unbiased estimator of the population correlation coefficient $\rho_{X Y}$:

$$
r_{X Y}=\frac{S_{X Y}}{\sqrt{S_{X}^{2}} \sqrt{S_{Y}^{2}}} .
$$

Hypothesis Testing

Given What do we make of an estimate of the population mean?

- Is it meaningfully different than existing evidence on the population mean?
- Is is statistically distinguishable from previously hypothesized values of the population mean?
- Is the estimate extreme enough to update our prior beliefs about the population mean?

We can conduct statistical tests to address these questions.

Hypothesis Testing

Null hypothesis $\left(\mathbf{H}_{\mathbf{0}}\right): \mu=\mu_{0}$
Alternative hypothesis $\left(\mathbf{H}_{1}\right): \mu \neq \mu_{0}$
There are four possible outcomes of our test:

1. We fail to reject the null hypothesis and the null is true.
2. We reject the null hypothesis and the null is false.
3. We reject the null hypothesis, but the null is actually true (Type I error).
4. We fail to reject the null hypothesis, but the null is actually false (Type II error).

Hypothesis Testing

We fail to reject the null hypothesis and the null is true.

- The defendant was acquitted and he didn't do the crime.

We reject the null hypothesis and the null is false.

- The defendant was convicted and he did the crime.

Hypothesis Testing

We reject the null hypothesis, but the null is actually true.

- The defendant was convicted, but he didn't do the crime!
- Type I error (a.k.a. false positive)

We fail to reject the null hypothesis, but the null is actually false.

- The defendant was acquitted, but he did the crime!
- Type II error (a.k.a. false negative)

Hypothesis Testing

$\hat{\mu}$ is random: it could be anything, even if $\mu=\mu_{0}$ is true.

- But if $\mu=0$ is true, then $\hat{\mu}$ is unlikely to take values far from zero.
- As the variance of $\hat{\mu}$ shrinks, we are even less likely to observe "extreme" values of $\hat{\mu}$ (assuming $\mu=\mu_{0}$).

Our test should take extreme values of $\hat{\mu}$ as evidence against the null hypothesis, but it should also weight them by what we know about the variance of $\hat{\mu}$.

- For now, we'll assume that the variable of interest X is normally distributed with mean μ and standard deviation σ^{2}.

Hypothesis Testing

Reject H_{0} if $\hat{\mu}$ lies in the rejection region.

- The area of the rejection region is defined by the significance level of the test.
- In a 5% test, the area is 0.05 .
- Significance level = tolerance for Type I error.

Hypothesis Testing

Reject H_{0} if $|z|=\left|\frac{\hat{\mu}-\mu_{0}}{\operatorname{sd}(\hat{\mu})}\right|>1.96$.

$\mu_{0}-1.96$ s.d.
μ_{0}
$\mu_{0}+1.96$ sd

What happens to z as $\left|\hat{\mu}-\mu_{0}\right|$ increases?
What happens to z as $\operatorname{sd}(\hat{\mu})$ increases?

Hypothesis Testing

The formula for the z statistic assumes that we know $\operatorname{sd}(\hat{\mu})$.

- In practice, we don't know $\operatorname{sd}(\hat{\mu})$, so we have to estimate it.

If the variance of X is σ^{2}, then

$$
\sigma_{\hat{\mu}}^{2}=\frac{\sigma^{2}}{n}
$$

- We can estimate σ^{2} with the sample variance S_{X}^{2}.

The sample variance of the sample mean is

$$
S_{\hat{\mu}}^{2}=\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Hypothesis Testing

The standard error of $\hat{\mu}$ is the square root of $S_{\hat{\mu}}^{2}$:

$$
\mathrm{SE}(\hat{\mu})=\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

- Standard error = sample standard deviation of an estimator.

When we use $\operatorname{SE}(\hat{\mu})$ in place of $\operatorname{sd}(\hat{\mu})$, the z statistic becomes a t statistic:

$$
t=\frac{\hat{\mu}-\mu_{0}}{\operatorname{SE}(\hat{\mu})} .
$$

- Unlike the standard deviation of $\hat{\mu}, \mathrm{SE}(\hat{\mu})$ varies from sample to sample.
- Consequence: t statistics do not necessarily have a normal distribution.

Hypothesis Testing

Normal distribution vs. t distribution

- A normal distribution has the same shape for any sample size.
- The shape of the t distribution depends the degrees of freedom.

- Degrees of freedom $=500$.

Hypothesis Testing

t Tests (two-sided)

To conduct a t test, compare the t statistic to the appropriate critical value of the t distribution.

- To find the critical value in a t table, we need the degrees of freedom and the significance level α.

Reject H_{0} at the $\alpha \cdot 100$-percent level if

$$
|t|=\left|\frac{\hat{\mu}-\mu_{0}}{\operatorname{SE}(\hat{\mu})}\right|>t_{\text {crit }} .
$$

Hypothesis Testing

On Your Own

As the term progresses, we will encounter additional flavors of hypothesis testing and other related concepts.

You may find it helpful to review the following topics from Math 243:

- Confidence intervals
- One-sided t tests
- p values

Data and the tidyverse

Experimental data

Data generated in controlled, laboratory settings.
Ideal for causal identification, but difficult to obtain in the social sciences.

- Intractable logistical problems
- Too expensive
- Morally repugnant

Experiments outside the lab: randomized control trials and A/B testing.

Data

Observational data

Data generated in non-experimental settings.

- Surveys
- Censuses
- Administrative records
- Environmental data
- Financial and sales transactions
- Social media

Mainstay of economic research, but poses challenges to causal identification.

Tidy Data

		Search:	
	State	Population	Murders
1	Alabama	4779736	135
2	Alaska	710231	19
3	Arizona	6392017	232
4	Arkansas	2915918	93
5	California	37253956	1257
6	Colorado	5029196	65

Rows represent observations.

Columns represent variables.

Each value is associated with an observation and a variable.

Showing 1 to 6 of 51 entries
Previous Next

Cross Sectional Data

Sample of individuals from a population at a point in time.

Ideally, collected using random sampling.

- Random sampling + sufficient sample size = representative sample.
- Random sampling simplifies data analysis, but non-random samples are common (and difficult to work with).

Used extensively in applied microeconomics.*

Main focus of this course.

[^0]
Cross Sectional Data

Sample of US workers (Current Population Survey, 1976)

	Wage	Education	Tenure	Female?	Non-white?
1	3.1	11	0	1	0
2	3.24	12	2	1	0
3	3	11	0	0	0
4	6	8	28	0	0
5	5.3	12	2	0	0
6	8.75	16	8	0	0

Showing 1 to 6 of 526 entries

Previous | | 1 | 2 | 3 | 4 | 5 | \ldots | 88 | Next |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Time Series Data

Observations of variables over time.

- Quarterly US GDP
- Annual US infant mortality rates
- Daily Amazon stock prices

Complication: Observations are not independent draws.

- GDP this quarter highly related to GDP last quarter.

Used extensively in empirical macroeconomics.

Requires more-advanced methods (EC 421 and EC 422).

Time Series Data

Number of US manufacturing strikes per month (Jan. 1968 to Dec. 1976)

	Period	Strikes	Output
1	1	5	0.01517
2	2	4	0.00997
3	3	6	0.0117
4	4	16	0.00473
5	5	5	0.01277
6	6	8	0.01138

Showing 1 to 6 of 108 entries

	Previous	1	2	3	4	5	\ldots	18
Next								

Pooled Cross Sectional Data

Cross sections from different points in time.

Useful for studying policy changes and relationship that change over time.
Requires more-advanced methods (EC 421 and many 400-level applied micro classes).

Pooled Cross Sectional Data

Sample of US women (General Social Survey, 1972 to 1984)

	Year	Education	Age	Children	Black?
1	72	12	48	4	0
2	72	17	46	3	0
3	72	12	53	2	0
4	72	12	42	2	0
5	72	12	51	2	0
6	72	8	50	4	0

Showing 1 to 6 of 1,129 entries

Previous | 1 |
| :--- |
| 2 |$\quad 3 \quad 4 \quad 5 \quad$... 189 Next

Panel or Longitudinal Data

Time series for each cross-sectional unit.

- Example: daily attendance data for a sample of students.

Difficult to collect, but useful for causal identification.

- Can control for unobserved characteristics.

Requires more-advanced methods (EC 421 and many 400-level applied micro classes).

Panel or Longitudinal Data

Panel of US workers (National Longitudinal Survey of Youth, 1980 to 1987)

	ID	Year	Experience	$\boldsymbol{\operatorname { l o g } (\text { Wage) }}$	Union
1	13	1980	1	1.2	no
2	13	1981	2	1.85	yes
3	13	1982	3	1.34	no
4	13	1983	4	1.43	no
5	13	1984	5	1.57	no
6	13	1985	6	1.7	no

Showing 1 to 6 of 4,360 entries

Previous | | 1 | 2 | 3 | 4 | 5 | \ldots | 727 | Next |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tidy Data?

	worker_id	year	variable	value
1	13	1980	educ	14
2	13	1981	educ	14
3	13	1982	educ	14
4	13	1983	educ	14
5	13	1984	educ	14
6	13	1985	educ	14

Showing 1 to 6 of 21,800 entries

Previous	1	2	3	4	5	...	3,634	Next

Messy Data

Analysis-ready datasets are rare. Most data are "messy."
The focus of this class is data analysis, but data wrangling is a non-trivial part of a data scientist/analyst's job.
R has a suite of packages that facilitate data wrangling.

- readr, tidyr, dplyr, ggplot2 + others.
- Known collectively as the tidyverse.

tidyverse

The tidyverse: A package of packages

readr: Functions to import data.
tidyr: Functions to reshape messy data.
dplyr: Functions to work with data.
ggplot2: Functions to visualize data.

[^0]: * Applied microeconomics = Labor, health, education, public finance, development, industrial organization, and urban economics.

