Statistics Review I

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

- Lab today
- Exercise 1 this Friday by 11:59 p.m.
- Just this once. You'll need to submit other exercises normally by Wednesday and not Friday
- No need to worry. The assigned exercises shouldn't take longer than the lab time. If you attend the lab, you'll be able to complete the exercise on the spot.
- Please have your work knitted in html format.
- Problem Set 1 will be posted by the end of this week, which will be due next Friday 11:59 p.m.

Issues with R?

- Lab today
- I have office hours today after class (14:00-15:00).

Motivation

The focus of our course is regression analysis, a useful toolkit for learning from data.

To understand regression, its mechanics, and its pitfalls, we need to understand the underlying statistical theory.

- Insights from theory can help us become better practitioners and savvier consumers of science.

Today, we will review important concepts you learned in Math 243.

- Maybe some you missed, too.

A Brief Math Review

Notation

Data on a variable X are * a sequence of n observations, indexed by i :

$$
\left\{x_{i}: 1, \ldots, n\right\} .
$$

Example: $n=5$	
i	x_{i}
1	8
2	9
3	4
4	7
5	2

- i indicates the row number.
- n is the number of rows.
- x_{i} is the value of X for row i.

[^0]
Summation

The summation operator adds a sequence of numbers over an index:

$$
\sum_{i=1}^{n} x_{i} \equiv x_{1}+x_{2}+\cdots+x_{n}
$$

- "The sum of x_{i} from 1 to n."

Example: $n=4$

i	x_{i}
1	7
2	4
3	10
4	2

$$
\begin{aligned}
\sum_{i=1}^{4} x_{i} & =7+4+10+2 \\
& =23
\end{aligned}
$$

Summation

Rule 1

For any constant c,

$$
\sum_{i=1}^{n} c=n c
$$

Example: $n=4$	
i	c
1	2
2	2
3	2
4	2

$$
\begin{aligned}
\sum_{i=1}^{4} 2 & =4 \times 2 \\
& =8
\end{aligned}
$$

Summation

Rule 2

For any constant c,

$$
\sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i}
$$

Example: $n=3$		
i	c	x_{i}
1	2	7
2	2	4
3	2	10

$$
\begin{aligned}
\sum_{i=1}^{3} 2 x_{i} & =2 \times 7+2 \times 4+2 \times 10 \\
& =14+8+20 \\
& =42 \\
2 \sum_{i=1}^{3} x_{i} & =2(7+4+10) \\
& =42
\end{aligned}
$$

Summation

Rule 3

If $\left\{\left(x_{i}, y_{i}\right): 1, \ldots, n\right\}$ is a set of n pairs, and a and b are constants, then

$$
\sum_{i=1}^{n}\left(a x_{i}+b y_{i}\right)=a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} y_{i} .
$$

Example: $n=2$				
i	a	x_{i}	b	y_{i}
1	2	7	1	4
2	2	4	1	2

$$
\begin{aligned}
\sum_{i=1}^{2}\left(2 x_{i}+y_{i}\right) & =18+10 \\
& =28 \\
2 \sum_{i=1}^{2} x_{i}+\sum_{i=1}^{2} y_{i} & =2 \times 11+6 \\
& =28
\end{aligned}
$$

Summation

Caution

The sum of the ratios is not the ratio of the sums:

$$
\sum_{i=1}^{n} x_{i} / y_{i} \neq\left(\sum_{i=1}^{n} x_{i}\right) /\left(\sum_{i=1}^{n} y_{i}\right) .
$$

- If $n=2$, then $\frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}} \neq \frac{x_{1}+x_{2}}{y_{1}+y_{2}}$.

The sum of squares is not the square of the sums:

$$
\sum_{i=1}^{n} x_{i}^{2} \neq\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

- If $n=2$, then $x_{1}^{2}+x_{2}^{2} \neq\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.

Probability Review

Random Variables

Experiment: Any procedure that is infinitely repeatable and has a welldefined set of outcomes.

- Flip a coin 10 times and record the number of heads.
- Roll two six-sided dice and record the sum.

Random Variable: A variable with numerical values determined by an experiment or a random phenomenon.

- Describes the sample space of an experiment.
- Sample space: The set of potential outcomes an experiment could generate, e.g., the sum of two dice is an integer from 2 to 12.
- Event: A subset of the sample space or a combination of outcomes, e.g., rolling a two or a four.

Random Variables

Notation: capital letters for random variables (e.g., X, Y, or Z) and lowercase letters for particular outcomes (e.g., x, y, or z).

Example 1: Flipping a coin.

- Two outcomes: heads or tails.
- Quantify the outcomes: Define a random variable Heads such that Heads $=1$ if heads and Heads $=0$ if tails.

Example 2: Flipping a coin 10 times.

- Several outcomes: 10 heads and 0 tails, 9 heads and 1 tails, 8 heads and 2 tails, etc.
- The number of heads is a random variable:
\{Heads: $0,1,2,3,4,5,6,7,8,9,10\}$.

Discrete Random Variables

Discrete Random Variable: A random variable that takes a countable set of values.

A Bernoulli (or binary) random variable takes values of either 1 or 0 .

- Characterized by $\mathbb{P}(X=1)$, "the probability of success."
- Probabilities sum to 1: $\mathbb{P}(X=1)+\mathbb{P}(X=0)=1$.
- For a "fair" coin, $\mathbb{P}($ Heads $=1)=\frac{1}{2} \Longrightarrow \mathbb{P}($ Heads $=0)=\frac{1}{2}$.
- More generally, if $\mathbb{P}(X=1)=\theta$ for some $\theta \in[0,1]$, then $\mathbb{P}(X=0)=1-\theta$.
- If the probability of passing this class is 75%, then the probability of not passing is 25%.

Discrete Random Variables

Probabilities

We describe a discrete random variable by listing its possible values with associated probabilities.

If X takes on k possible values $\left\{x_{1}, \ldots, x_{k}\right\}$, then the probabilities $p_{1}, p_{2}, \ldots, p_{k}$ are defined by

$$
p_{j}=\mathbb{P}\left(X=x_{j}\right), \quad j=1,2, \ldots, k,
$$

where

$$
p_{j} \in[0,1]
$$

and

$$
p_{1}+p_{2}+\cdots+p_{k}=1
$$

Discrete Random Variables

Probability density function

The probability density function (pdf) of X summarizes possible outcomes and associated probabilities:

$$
f\left(x_{j}\right)=p_{j}, \quad j=1,2, \ldots, k
$$

Example

2020 Presidential election: 538 electoral votes at stake.

- $\{X: 0,1, \ldots, 538\}$ is the number of electoral votes won by the Democratic candidate.
- Extremely unlikely that she will win 0 votes or all 538 votes: $f(0) \approx 0$ and $f(538) \approx 0$.
- Nonzero probability of winning an exact majority: $f(270)>0$.

Discrete Random Variables

Example

Basketball player goes to the foul line to shoot two free throws.

- X is the number of shots made (either 0,1 , or 2).
- The pdf of X is $f(0)=0.3, f(1)=0.4, f(2)=0.3$.
- Note: the probabilities sum to 1.

Use the pdf to calculate the probability of the event that the player makes at least one shot, i.e., $\mathbb{P}(X \geq 1)$.

- $\mathbb{P}(X \geq 1)=\mathbb{P}(X=1)+\mathbb{P}(X=2)=0.4+0.3=0.7$.

Continuous Random Variables

Continuous Random Variable: A random variable that takes any real value with zero probability.

- Wait, what?! The variable takes so many values that we can't count all possibilities, so the probability of any one particular value is zero.

Measurement is discrete (e.g., dollars and cents), but variables with many possible values are best treated as continuous.

- e.g., electoral votes, height, wages, temperature, etc.

Continuous Random Variables

Probability density functions also describe continuous random variables.

- Difference: Interested in the probability of events within a range of values.
- e.g. What is the probability of more than 1 inch of rain tomorrow?

Continuous Random Variables

Uniform Distribution

The probability density function of a variable uniformly distributed between 0 and 2 is

$$
f(x)= \begin{cases}\frac{1}{2} & \text { if } 0 \leq x \leq 2 \\ 0 & \text { if } x<0 \text { or } x>2\end{cases}
$$

Continuous Random Variables

Uniform Distribution

By definition, the area under $f(x)$ is equal to 1 .
The shaded area illustrates the probability of the event $1 \leq X \leq 1.5$.

- $\mathbb{P}(1 \leq X \leq 1.5)=(1.5-1) \times 0.5=0.25$.

Continuous Random Variables

Normal Distribution

The "bell curve."

- Symmetric: mean and median occur at the same point (i.e., no skew).
- Low-probability events in tails; high-probability events near center.

Continuous Random Variables

Normal Distribution

The shaded area illustrates the probability of the event $-2 \leq X \leq 2$.

- "Find area under curve" = use integral calculus (or, in practice, R).
- $\mathbb{P}(-2 \leq X \leq 2) \approx 0.95$.

Expected Value

A density function describes an entire distribution, but sometimes we just want a summary.

The expected value describes the central tendency of distribution in a single number.

- Central tendency = typical value.

Expected Value

Definition (Discrete)

The expected value of a discrete random variable X is the weighted average of its k values $\left\{x_{1}, \ldots, x_{k}\right\}$ and their associated probabilities:

$$
\begin{aligned}
\mathbb{E}(X) & =x_{1} \mathbb{P}\left(x_{1}\right)+x_{2} \mathbb{P}\left(x_{2}\right)+\cdots+x_{k} \mathbb{P}\left(x_{k}\right) \\
& =\sum_{j=1}^{k} x_{j} \mathbb{P}\left(x_{j}\right) .
\end{aligned}
$$

- Also known as the population mean.

Expected Value

Example

Rolling a six-sided die once can take values $\{1,2,3,4,5,6\}$, each with equal probability. What is the expected value of a roll?

$$
\mathbb{E}(\text { Roll })=1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6}=3.5 .
$$

- Note: The expected value can be a number that isn't a possible outcome of X.

Expected Value

Definition (Continuous)

If X is a continuous random variable and $f(x)$ is its probability density function, then the expected value of X is

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

- Note: x represents the particular values of X.
- Same idea as the discrete definition: describes the population mean.

Expected Value

Rule 1

For any constant $c, \mathbb{E}(c)=c$.
Not-so-exciting examples

$$
\begin{aligned}
& \mathbb{E}(5)=5 \\
& \mathbb{E}(1)=1 \\
& \mathbb{E}(4700)=4700
\end{aligned}
$$

Expected Value

Rule 2

For any constants a and $b, \mathbb{E}(a X+b)=a \mathbb{E}(X)+b$.

Example

Suppose X is the high temperature in degrees Celsius in Eugene during August. The long-run average is $\mathbb{E}(X)=28$. If Y is the temperature in degrees Fahrenheit, then $Y=32+\frac{9}{5} X$. What is $\mathbb{E}(Y)$?

- $\mathbb{E}(Y)=32+\frac{9}{5} \mathbb{E}(X)=32+\frac{9}{5} \times 28=82.4$.

Expected Value

Rule 3

If $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ are constants and $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are random variables, then

$$
\mathbb{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+a_{2} \mathbb{E}\left(X_{2}\right)+\cdots+a_{n} \mathbb{E}\left(X_{n}\right)
$$

In English, the expected value of the sum = the sum of expected values.

Expected Value

Rule 3

The expected value of the sum = the sum of expected values.

Example

Suppose that a coffee shop sells X_{1} small, X_{2} medium, and X_{3} large caffeinated beverages in a day. The quantities sold are random with expected values $\mathbb{E}\left(X_{1}\right)=43, \mathbb{E}\left(X_{2}\right)=56$, and $\mathbb{E}\left(X_{3}\right)=21$. The prices of small, medium, and large beverages are $1.75,2.50$, and 3.25 dollars. What is expected revenue?

$$
\begin{aligned}
\mathbb{E}\left(1.75 X_{1}+2.50 X_{2}+3.35 X_{n}\right) & =1.75 \mathbb{E}\left(X_{1}\right)+2.50 \mathbb{E}\left(X_{2}\right)+3.25 \mathbb{E}\left(X_{3}\right) \\
& =1.75(43)+2.50(56)+3.25(21) \\
& =283.5
\end{aligned}
$$

Expected Value

Caution

Previously, we found that the expected value of rolling a six-sided die is $\mathbb{E}($ Roll $)=3.5$.

- If we square this number, we get $[\mathbb{E}(\text { Roll })]^{2}=12.25$.

Is $[\mathbb{E}(\text { Roll })]^{2}$ the same as $\mathbb{E}\left(\right.$ Roll $\left.^{2}\right)$?

No!

$$
\begin{aligned}
\mathbb{E}\left(\text { Roll }^{2}\right) & =1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+3^{2} \times \frac{1}{6}+4^{2} \times \frac{1}{6}+5^{2} \times \frac{1}{6}+6^{2} \times \frac{1}{6} \\
& \approx 15.167 \\
& \neq 12.25
\end{aligned}
$$

Expected Value

Caution

Except in special cases, the transformation of an expected value is not the expected value of a transformed random variable.

For some function $g(\cdot)$, it is typically the case that

$$
g(\mathbb{E}(X)) \neq \mathbb{E}(g(X)) .
$$

Variance

Random variables X and Y share the same population mean, but are distributed differently.

Variance

How tightly is a random variable distributed about its mean?

- Let $\mu=\mathbb{E}(X)$.
- Describe the distance of X from its population mean μ as the squared difference: $(X-\mu)^{2}$.

Variance tells us how far X deviates from μ, on average:

$$
\operatorname{Var}(X) \equiv \mathbb{E}\left((X-\mu)^{2}\right)=\sigma^{2}
$$

- σ^{2} is shorthand for variance.

Variance

Rule 1

$\operatorname{Var}(X)=0 \Longleftrightarrow X$ is a constant.

- If a random variable never deviates from its mean, then it has zero variance.
- If a random variable is always equal to its mean, then it's a (not-sorandom) constant.

Variance

Rule 2

For any constants a and $b, \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.

Example

Suppose X is the high temperature in degrees Celsius in Eugene during August. If Y is the temperature in degrees Fahrenheit, then $Y=32+\frac{9}{5} X$. What is $\operatorname{Var}(Y)$?

- $\operatorname{Var}(Y)=\left(\frac{9}{5}\right)^{2} \operatorname{Var}(X)=\frac{81}{25} \operatorname{Var}(X)$.

Standard Deviation

Standard deviation is the positive square root of the variance:

$$
\operatorname{sd}(X)=+\sqrt{\operatorname{Var}(X)}=\sigma
$$

- σ is shorthand for standard deviation.

Standard Deviation

Rule 1

For any constant $c, \operatorname{sd}(c)=0$.

Rule 2

For any constants a and $b, \operatorname{sd}(a X+b)=|a| \operatorname{sd}(X)$.

Standardizing a Random Variable

When we're working with a random variable X with an unfamiliar scale, it is useful to standardize it by defining a new variable Z :

$$
Z \equiv \frac{X-\mu}{\sigma}
$$

Z has mean 0 and standard deviation 1 . How?

- First, some simple trickery: $Z=a X+b$, where $a \equiv \frac{1}{\sigma}$ and $b \equiv-\frac{\mu}{\sigma}$.
- $\mathbb{E}(Z)=a \mathbb{E}(X)+b=\mu \frac{1}{\sigma}-\frac{\mu}{\sigma}=0$.
- $\operatorname{Var}(Z)=a^{2} \operatorname{Var}(X)=\frac{1}{\sigma^{2}} \sigma^{2}=1$.

Covariance

Idea: Characterize the relationship between two random variables X and Y.
Definition: $\operatorname{Cov}(X, Y) \equiv \mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\sigma_{x y}$.

- Positive correlation: When $\sigma_{x y}>0$, then X is above its mean when Y is above its mean, on average.
- Negative correlation: When $\sigma_{x y}<0$, then X is below its mean when Y is above its mean, on average.

Covariance

Rule 1

If X and Y are independent, then $\operatorname{Cov}(X, Y)=0$.

- Statistical independence: If X and Y are independent, then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$.
- $\operatorname{Cov}(X, Y)=0$ means that X and Y are uncorrelated.

Caution: $\operatorname{Cov}(X, Y)=0$ does not imply that X and Y are independent.

Covariance

Rule 2

For any constants a, b, c, and $d, \operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$

Correlation Coefficient

A problem with covariance is that it is sensitive to units of measurement.
The correlation coefficient solves this problem by rescaling the covariance:

$$
\operatorname{Corr}(X, Y) \equiv \frac{\operatorname{Cov}(X, Y)}{\operatorname{sd}(X) \times \operatorname{sd}(Y)}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- Also denoted as $\rho_{X Y}$.
- $-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- Invariant to scale: if I double $Y, \operatorname{Corr}(X, Y)$ will not change.

Correlation Coefficient

Perfect positive correlation: $\operatorname{Corr}(X, Y)=1$.

Correlation Coefficient

Perfect negative correlation: $\operatorname{Corr}(X, Y)=-1$.

Correlation Coefficient

Positive correlation: $\operatorname{Corr}(X, Y)>0$.

Correlation Coefficient

Negative correlation: $\operatorname{Corr}(X, Y)<0$.

Correlation Coefficient

No correlation: $\operatorname{Corr}(X, Y)=0$.

Variance, Revisited

Variance Rule 3

For constants a and b,

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

- If X and Y are uncorrelated, then $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
- If X and Y are uncorrelated, then $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

[^0]: * Data = plural of datum.

