Statistics Review I

EC 320: Introduction to Econometrics

Winter 2022

Prologue

Housekeeping

- Lab today
- Exercise 1 this Friday by 11:59 p.m.
 - Just this once. You'll need to submit other exercises normally by Wednesday and not Friday
 - No need to worry. The assigned exercises shouldn't take longer than the lab time. If you attend the lab, you'll be able to complete the exercise on the spot.
 - Please have your work knitted in html format.
- Problem Set 1 will be posted by the end of this week, which will be due next Friday 11:59 p.m.

Issues with R?

- Lab today
- I have office hours today after class (14:00-15:00).

Motivation

The focus of our course is **regression analysis**, a useful toolkit for learning from data.

To understand regression, its mechanics, and its pitfalls, **we need to understand the underlying statistical theory.**

• Insights from theory can help us become better practitioners and savvier consumers of science.

Today, we will review important concepts you learned in Math 243.

• Maybe some you missed, too.

A Brief Math Review

Notation

Data on a variable $X \operatorname{are}^*$ a sequence of n observations, indexed by i:

 $\{x_i:1,\ldots,n\}.$

ò	<i>(</i> 1 .)
l	$\boldsymbol{\omega}_{i}$
1	8
2	9
3	4
4	7
5	2

- *i* indicates the row number.
- *n* is the number of rows.
- x_i is the value of X for row i.

* Data = **plural** of datum.

The **summation operator** adds a sequence of numbers over an index:

$$\sum_{i=1}^n x_i \equiv x_1 + x_2 + \dots + x_n.$$

• "The sum of x_i from 1 to n."

Example: n = 4

i	x_i
1	7
2	4
3	10
4	2

$$\sum_{i=1}^4 x_i = 7+4+10+2 = 23$$

Rule 1

For any constant *c*,

$$\sum_{i=1}^n c = nc.$$

•	
i	С
1	2
2	2
3	2
4	2

$$\sum_{i=1}^4 2 = 4 imes 2 = 8$$

Rule 2

For any constant *c*,

$$\sum_{i=1}^n c x_i = c \sum_{i=1}^n x_i.$$

i	С	x_i
1	2	7
2	2	4
3	2	10

$$\sum_{i=1}^{3} 2x_i = 2 imes 7 + 2 imes 4 + 2 imes 10 \ = 14 + 8 + 20 \ = 42$$

$$2\sum_{i=1}^{3}x_i=2(7+4+10)
onumber = 42$$

Rule 3

If $\{(x_i, y_i) : 1, \ldots, n\}$ is a set of n pairs, and a and b are constants, then

$$\sum_{i=1}^n (ax_i+by_i)=a\sum_{i=1}^n x_i+b\sum_{i=1}^n y_i.$$

Example: $n=2$ i a x_i b y_i					
1	2	7	1	4	
2	2	4	1	2	

$$\sum_{i=1}^2 (2x_i+y_i) = 18+10 = 28$$

$$2\sum_{i=1}^2 x_i + \sum_{i=1}^2 y_i = 2 imes 11 + 6 = 28$$

Caution

The **sum of the ratios is not** the **ratio of the sums**:

$$\sum_{i=1}^n x_i/y_i
eq \left(\sum_{i=1}^n x_i
ight) ig/ \left(\sum_{i=1}^n y_i
ight).$$

• If
$$n=2$$
, then $rac{x_1}{y_1}+rac{x_2}{y_2}
eq rac{x_1+x_2}{y_1+y_2}.$

The sum of squares is not the square of the sums:

$$\sum_{i=1}^n x_i^2
eq \left(\sum_{i=1}^n x_i
ight)^2.$$

• If n=2, then $x_1^2+x_2^2
eq (x_1+x_2)^2=x_1^2+2x_1x_2+x_2^2.$

Probability Review

Random Variables

Experiment: Any procedure that is *infinitely repeatable* and has a *well- defined set of outcomes*.

- Flip a coin 10 times and record the number of heads.
- Roll two six-sided dice and record the sum.

Random Variable: A variable with numerical values determined by an experiment or a random phenomenon.

- Describes the sample space of an experiment.
- **Sample space:** The set of potential outcomes an experiment could generate, *e.g.*, the sum of two dice is an integer from 2 to 12.
- **Event:** A subset of the sample space or a combination of outcomes, *e.g.*, rolling a two or a four.

Random Variables

Notation: capital letters for random variables (*e.g.*, X, Y, or Z) and lowercase letters for particular outcomes (*e.g.*, x, y, or z).

Example 1: Flipping a coin.

- Two outcomes: heads or tails.
- Quantify the outcomes: Define a random variable Heads such that Heads = 1 if heads and Heads = 0 if tails.

Example 2: Flipping a coin 10 times.

- Several outcomes: 10 heads and 0 tails, 9 heads and 1 tails, 8 heads and 2 tails, etc.
- The number of heads is a random variable:

{Heads : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Discrete Random Variable: A random variable that takes a countable set of values.

- A **Bernoulli** (or binary) random variable takes values of either 1 or 0.
 - Characterized by $\mathbb{P}(X=1)$, "the probability of success."
 - Probabilities sum to 1: $\mathbb{P}(X = 1) + \mathbb{P}(X = 0) = 1$.

• For a "fair" coin, $\mathbb{P}(\text{Heads} = 1) = \frac{1}{2} \implies \mathbb{P}(\text{Heads} = 0) = \frac{1}{2}$.

- More generally, if $\mathbb{P}(X=1)= heta$ for some $heta\in[0,1]$, then $\mathbb{P}(X=0)=1- heta.$
 - If the probability of passing this class is 75%, then the probability of not passing is 25%.

Probabilities

We describe a discrete random variable by listing its possible values with associated probabilities.

If X takes on k possible values $\{x_1,\ldots,x_k\}$, then the probabilities p_1,p_2,\ldots,p_k are defined by

$$p_j = \mathbb{P}(X = x_j), \quad j = 1, 2, \dots, k,$$

where

 $p_j \in [0,1]$

and

$$p_1+p_2+\cdots+p_k=1.$$

Probability density function

The **probability density function** (**pdf**) of *X* summarizes possible outcomes and associated probabilities:

$$f(x_j)=p_j, \quad j=1,2,\ldots,k.$$

Example

2020 Presidential election: 538 electoral votes at stake.

- $\{X: 0, 1, \dots, 538\}$ is the number of electoral votes won by the Democratic candidate.
- Extremely unlikely that she will win 0 votes or all 538 votes: f(0)pprox 0 and f(538)pprox 0.
- Nonzero probability of winning an exact majority: f(270) > 0.

Example

Basketball player goes to the foul line to shoot two free throws.

- X is the number of shots made (either 0, 1, or 2).
- The pdf of X is f(0) = 0.3, f(1) = 0.4, f(2) = 0.3.
- Note: the probabilities sum to 1.

Use the pdf to calculate the probability of the **event** that the player makes at least one shot, i.e., $\mathbb{P}(X \ge 1)$.

• $\mathbb{P}(X \ge 1) = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) = 0.4 + 0.3 = 0.7.$

Continuous Random Variable: A random variable that takes any real value with *zero* probability.

• Wait, what?! The variable takes so many values that we can't count all possibilities, so the probability of any one particular value is zero.

Measurement is discrete (*e.g.*, dollars and cents), but variables with many possible values are best treated as continuous.

• *e.g.*, electoral votes, height, wages, temperature, *etc.*

Probability density functions also describe continuous random variables.

- Difference: Interested in the probability of events within a *range* of values.
- *e.g.* What is the probability of more than 1 inch of rain tomorrow?

Uniform Distribution

The probability density function of a variable uniformly distributed between 0 and 2 is

$$f(x) = egin{cases} rac{1}{2} & ext{if } 0 \leq x \leq 2 \ 0 & ext{if } x < 0 ext{ or } x > 2 \end{cases}$$

Uniform Distribution

By definition, the area under f(x) is equal to 1.

The **shaded area** illustrates the probability of the event $1 \le X \le 1.5$.

• $\mathbb{P}(1 \le X \le 1.5) = (1.5 - 1) \times 0.5 = 0.25.$

Normal Distribution

The "bell curve."

- Symmetric: mean and median occur at the same point (*i.e.*, no skew).
- Low-probability events in tails; high-probability events near center.

Normal Distribution

The **shaded area** illustrates the probability of the event $-2 \le X \le 2$.

- "Find area under curve" = use integral calculus (or, in practice, R).
- $\mathbb{P}(-2 \leq X \leq 2) pprox 0.95.$

A density function describes an entire distribution, but sometimes we just want a summary.

The **expected value** describes the *central tendency* of distribution in a single number.

• Central tendency = typical value.

Definition (Discrete)

The expected value of a discrete random variable X is the weighted average of its k values $\{x_1, \ldots, x_k\}$ and their associated probabilities:

$$\mathbb{E}(X) = x_1 \, \mathbb{P}(x_1) + x_2 \, \mathbb{P}(x_2) + \dots + x_k \, \mathbb{P}(x_k)
onumber \ = \sum_{j=1}^k x_j \, \mathbb{P}(x_j).$$

• Also known as the **population mean**.

Example

Rolling a six-sided die once can take values $\{1, 2, 3, 4, 5, 6\}$, each with equal probability. What is the expected value of a roll?

 $\mathbb{E}(\text{Roll}) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3.5.$

• **Note:** The expected value can be a number that isn't a possible outcome of *X*.

Definition (Continuous)

If X is a continuous random variable and f(x) is its probability density function, then the expected value of X is

$$\mathbb{E}(X) = \int_{-\infty}^\infty x f(x) dx.$$

- **Note:** *x* represents the particular values of *X*.
- Same idea as the discrete definition: describes the **population mean**.

Rule 1

For any constant c, $\mathbb{E}(c) = c$.

Not-so-exciting examples

 $\mathbb{E}(5)=5.$

 $\mathbb{E}(1) = 1.$

 $\mathbb{E}(4700) = 4700.$

Rule 2

For any constants a and b, $\mathbb{E}(aX + b) = a \mathbb{E}(X) + b$.

Example

Suppose X is the high temperature in degrees Celsius in Eugene during August. The long-run average is $\mathbb{E}(X) = 28$. If Y is the temperature in degrees Fahrenheit, then $Y = 32 + \frac{9}{5}X$. What is $\mathbb{E}(Y)$?

•
$$\mathbb{E}(Y) = 32 + \frac{9}{5}\mathbb{E}(X) = 32 + \frac{9}{5} \times 28 = 82.4.$$

Rule 3

If $\{a_1, a_2, \ldots, a_n\}$ are constants and $\{X_1, X_2, \ldots, X_n\}$ are random variables, then

 $\mathbb{E}(a_1X_1 + a_2X_2 + \cdots + a_nX_n) = a_1\mathbb{E}(X_1) + a_2\mathbb{E}(X_2) + \cdots + a_n\mathbb{E}(X_n).$

In English, the expected value of the sum = the sum of expected values.

Rule 3

The expected value of the sum = the sum of expected values.

Example

Suppose that a coffee shop sells X_1 small, X_2 medium, and X_3 large caffeinated beverages in a day. The quantities sold are random with expected values $\mathbb{E}(X_1) = 43$, $\mathbb{E}(X_2) = 56$, and $\mathbb{E}(X_3) = 21$. The prices of small, medium, and large beverages are 1.75, 2.50, and 3.25 dollars. What is expected revenue?

$$\mathbb{E}(1.75X_1 + 2.50X_2 + 3.35X_n) = 1.75 \mathbb{E}(X_1) + 2.50 \mathbb{E}(X_2) + 3.25 \mathbb{E}(X_3)$$

= 1.75(43) + 2.50(56) + 3.25(21)
= 283.5

Caution

Previously, we found that the expected value of rolling a six-sided die is $\mathbb{E}(\mathrm{Roll})=3.5.$

• If we square this number, we get $\left[\mathbb{E}(\text{Roll})\right]^2 = 12.25$.

Is $\left[\mathbb{E}(\mathrm{Roll})\right]^2$ the same as $\mathbb{E}\left(\mathrm{Roll}^2\right)$?

No!

$$\mathbb{E}\Big(\mathrm{Roll}^2\Big) = 1^2 imes rac{1}{6} + 2^2 imes rac{1}{6} + 3^2 imes rac{1}{6} + 4^2 imes rac{1}{6} + 5^2 imes rac{1}{6} + 6^2 imes rac{1}{6} \ pprox 15.167 \
eq 12.25.$$

Caution

Except in special cases, the transformation of an expected value is not the expected value of a transformed random variable.

For some function $g(\cdot)$, it is typically the case that

 $g\left(\mathbb{E}(X)\right) \neq \mathbb{E}(g(X)).$

Random variables X and Y share the same population mean, but are distributed differently.

How tightly is a random variable distributed about its mean?

- Let $\mu = \mathbb{E}(X)$.
- Describe the distance of X from its population mean μ as the squared difference: $(X \mu)^2$.

Variance tells us how far X deviates from μ , on average:

$$\operatorname{Var}(X) \equiv \mathbb{E}ig((X-\mu)^2ig) = \sigma^2$$

• σ^2 is shorthand for variance.

Rule 1

 $\operatorname{Var}(X) = 0 \iff X$ is a constant.

- If a random variable never deviates from its mean, then it has zero variance.
- If a random variable is always equal to its mean, then it's a (not-so-random) constant.

Rule 2

For any constants a and b, $Var(aX + b) = a^2 Var(X)$.

Example

Suppose X is the high temperature in degrees Celsius in Eugene during August. If Y is the temperature in degrees Fahrenheit, then $Y = 32 + \frac{9}{5}X$. What is Var(Y)?

•
$$\operatorname{Var}(Y) = (\frac{9}{5})^2 \operatorname{Var}(X) = \frac{81}{25} \operatorname{Var}(X).$$

Standard Deviation

Standard deviation is the positive square root of the variance:

$$\operatorname{sd}(X) = + \sqrt{\operatorname{Var}(X)} = \sigma$$

• σ is shorthand for standard deviation.

Standard Deviation

Rule 1

For any constant c, sd(c) = 0.

Rule 2

For any constants a and b, sd(aX + b) = |a| sd(X).

Standardizing a Random Variable

When we're working with a random variable *X* with an unfamiliar scale, it is useful to **standardize** it by defining a new variable *Z*:

$$Z\equiv rac{X-\mu}{\sigma}.$$

Z has mean 0 and standard deviation 1. How?

• First, some simple trickery: Z = aX + b, where $a \equiv \frac{1}{\sigma}$ and $b \equiv -\frac{\mu}{\sigma}$.

•
$$\mathbb{E}(Z) = a \mathbb{E}(X) + b = \mu \frac{1}{\sigma} - \frac{\mu}{\sigma} = 0.$$

• $Var(Z) = a^2 Var(X) = \frac{1}{\sigma^2} \sigma^2 = 1.$

Covariance

Idea: Characterize the relationship between two random variables X and Y.

Definition: $\operatorname{Cov}(X, Y) \equiv \mathbb{E}[(X - \mu_X)(Y - \mu_Y)] = \sigma_{xy}.$

- **Positive correlation:** When $\sigma_{xy} > 0$, then X is above its mean when Y is above its mean, on average.
- Negative correlation: When $\sigma_{xy} < 0$, then X is below its mean when Y is above its mean, on average.

Covariance

Rule 1

If X and Y are independent, then Cov(X, Y) = 0.

- Statistical independence: If X and Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X) \mathbb{E}(Y).$
- Cov(X, Y) = 0 means that X and Y are uncorrelated.

Caution: Cov(X, Y) = 0 **does not imply** that X and Y are independent.

Covariance

Rule 2

For any constants a, b, c, and d, $\operatorname{Cov}(aX+b, cY+d) = ac \operatorname{Cov}(X,Y)$

A problem with covariance is that it is sensitive to units of measurement.

The **correlation coefficient** solves this problem by rescaling the covariance:

$$\operatorname{Corr}(X,Y)\equiv rac{\operatorname{Cov}(X,Y)}{\operatorname{sd}(X) imes\operatorname{sd}(Y)}=rac{\sigma_{XY}}{\sigma_X\sigma_Y}.$$

- Also denoted as ho_{XY} .
- $\bullet \ -1 \leq \operatorname{Corr}(X,Y) \leq 1$
- Invariant to scale: if I double Y, Corr(X, Y) will not change.

Perfect positive correlation: Corr(X, Y) = 1.

Perfect negative correlation: Corr(X, Y) = -1.

Positive correlation: Corr(X, Y) > 0.

Negative correlation: Corr(X, Y) < 0.

No correlation: Corr(X, Y) = 0.

Variance, Revisited

Variance Rule 3

For constants a and b,

 $\operatorname{Var}(aX+bY)=a^2\operatorname{Var}(X)+b^2\operatorname{Var}(Y)+2ab\operatorname{Cov}(X,Y).$

- If X and Y are uncorrelated, then Var(X + Y) = Var(X) + Var(Y)
- If X and Y are uncorrelated, then $\operatorname{Var}(X-Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$