What is Econometrics?

EC 320: Introduction to Econometrics

Boyoon Chang Winter 2022

Prologue

Who am I?

Boyoon (Bo) Chang

- Doctoral student in economics
- Former research associate in economics team at a law firm
- Focus in applied microeconomics, empirical industrial organization

Where can you find me?

- Office: 420 PLC
- Office hours: MW 14:00-15:00, or by appointment
- Email: bchang@uoregon.edu (use EC 320 in the subject line)

Your GE: Kyutaro Matsuzawa

- Office hours: T/TR 14:00-15:00 via Zoom (info on Canvas)
- Email: kyutarom@uoregon.edu (use EC 320 in the subject line)

Today's Topic

Syllabus

- Course material
- What, when, where, who

Econometrics

- Motivation
- Examples

R

- What is R?
- Why are we using R?
- Getting started with R

Motivation

Why study econometrics?

- 1. Develop skills that employers value.
- 2. Cultivate healthy skepticism.
- 3. Learn about the world using **data**.

Motivation

Why study econometrics?

Provide answers to important questions

- Do minimum wage policies **reduce poverty**?
- Does the death penalty **deter violent crime**?
- Are recessions **good for your health**?
- How will global warming **affect the economy**?
- What explains the gender pay gap?

Econometrics

Most econometric inquiry concerns one of two distinct goals:

- Prediction: Accurately predict or forecast an outcome given a set of predictors. Given what we know about *x*, what values do we expect *y* to take?
- 2. **Causal identification:** Estimate the effect of an intervention on an outcome. How does *y* change when we change *x*?

The main focus of EC 320 and EC 421 is causal identification.

- But...both rely on a common set of statistical techniques.
- For those interested, Professor Tim Duy teaches forecasting (EC 422) this Winter.

Econometrics

Not all relationships are causal

Econometrics

Correlation vs. Causation

Common refrain: "Correlation doesn't necessarily imply causation!"

- **Q:** Why might correlation fail to describe a causal relationship?
- A: Omitted-variables bias, selection bias, simultaneity, reverse causality.

Correlation can imply causation.

- Requires strong assumptions.
- Real life often violates these assumptions!
- Solutions: Conduct an experiment or find a natural experiment.

Recent study by UO economist Grant McDermott and coauthors.

Question: Do commercial fishers preempt fishing bans by increasing their fishing effort before the bans go into effect?

Motivation

- Recent conservation efforts seek to preserve aquatic habitat and increase fish stocks.
- Policy lever: Restrict fishing activity in marine protected areas.
- Concern: Preemptive behavior could *decrease* fish stocks.

Data

• Vessel-level data on fishing effort/intensity.

Natural Experiment

Phoenix Islands Protected Area (PIPA)

- First mentioned on 1 September 2014; implemented 1 January 2015.
- Treatment group: PIPA.
- Control group: Outlying Kiribati islands.

Natural Experiment

Measure the causal effect of the fishing ban by comparing fishing effort in treatment and control regions, before-and-after the implementation of the policy.

- A difference-in-differences comparison.
- **Assumption:** Parallel trends. If we believe this assumption, then the observed change supports a causal interpretation. If not, then the change could reflect other factors and thus fail to isolate the causal effect of the ban.

Results

Discussion

Results provide causal evidence that commercial fishers engage in preemptive behavior in response to conservation policy changes.

Results are *consistent* with economic theory, but *cannot prove* that the theory is correct.

- Science cannot prove anything.
- Science can falsify or reject existing hypotheses or corroborate existing evidence.

Also...the causal statement rests on a critical assumption.

- Cannot prove that the assumption is true, but can falsify it.
- Failure to falsify \neq assumption is true.

R

What is R?

According to the R project website,

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

What does that mean?

- R is free and open source.
- R executes a variety of statistical techniques and produces beautiful graphs.
- R has a vibrant, thriving online community (see stack overflow).

Why are we using R?

- 1. R is **free**.
- 2. **R is popular** among economists, political scientists, psychologists, sociologists, geographers, anthropologists, biologists, data scientists, and statisticians.
- 3. Employers prefer R over most competing software environments.
- 4. R can **adapt to nearly any task**: 'metrics, spatial data analysis, machine learning, web scraping, data cleaning, website building, teaching.

R + [Examples]

R + Regression

A simple regression
fit ← lm(mpg ~ 1 + wt, data = mtcars)

Show the coefficients
coef(summary(fit))

#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 37.285126 1.877627 19.857575 8.241799e-19
#> wt -5.344472 0.559101 -9.559044 1.293959e-10

```
# A nice, clear table
library(broom)
tidy(fit)
```

#>	#	A tibble: 2	× 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	37.3	1.88	19.9	8.24e-19
#>	2	wt	-5.34	0.559	-9.56	1.29e-10

R + Plotting (w/ plot)

GDP per capita

R + Plotting (w/ plot)

```
# Load packages with dataset
library(gapminder)
# Create dataset
plot(
    x = gapminder$gdpPercap, y = gapminder$lifeExp,
    xlab = "GDP per capita", ylab = "Life Expectancy"
)
```

R + Plotting (w/ggplot2)

R + Plotting (w/ ggplot2)

```
# Load packages
library(gapminder); library(dplyr)
# Create dataset
ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) +
geom_point(alpha = 0.75) +
scale_x_continuous("GDP per capita", label = scales::comma) +
ylab("Life Expectancy") +
theme_pander(base_size = 17, base_family = "Arial", fc = met_slate)
```

R + More plotting (w/ ggplot2)

R + More plotting (w/ ggplot2)

```
# Load packages
library(gapminder); library(dplyr)
# Create dataset
ggplot(
  data = filter(gapminder, year %in% c(1952, 2002)),
  aes(x = gdpPercap, y = lifeExp, color = continent, group = country)
) +
geom path(alpha = 0.25) +
geom point(aes(shape = as.character(year), size = pop), alpha = 0.75) +
scale_x_log10("GDP per capita", label = scales::comma) +
ylab("Life Expectancy") +
scale shape manual("Year", values = c(1, 17)) +
scale color viridis("Continent", discrete = T, end = 0.95) +
guides(size = F) +
theme pander(base size = 17, base family = "Arial", fc = met slate)
```

R + Animated plots (w/gganimate)

Year: 1952

R + Animated plots (w/gganimate)

```
# The package for animating ggplot2
librarv(gganimate)
# As before
ggplot(
  data = gapminder %>% filter(continent \neq "Oceania"),
  aes(gdpPercap, lifeExp, size = pop, color = country)
) +
geom point(alpha = 0.7, show.legend = FALSE) +
scale colour manual(values = country colors) +
scale_size(range = c(2, 12)) +
scale x log10("GDP per capita", label = scales::comma) +
facet_wrap(~continent) +
theme pander(base size = 17, base family = "Arial", fc = met slate) +
theme(panel.border = element_rect(color = "grey90", fill = NA)) +
# Add gganimate code
labs(title = "Year: {frame time}") +
ylab("Life Expectancy") +
transition_time(year) +
ease aes("linear")
```

R + Animated maps (w/ gganimate)

Getting Started with R

Starting R

Installation

- Install R.
- Install **RStudio**.
- **Note:** All academic workstations at the UO have R, but having a copy of R on your computer will prove useful for the econometrics sequence and 400-level elective courses.

Resources

- Google and StackOverflow
- Time
- Your classmates
- Your GE
- Me

Starting R

R basics

1. Everything is an object .	foo
2. Every object has a name and value .	foo ← 2
3. You use functions on these objects.	<pre>mean(foo)</pre>
4. Functions come in libraries (packages).	<pre>library(dplyr)</pre>
5. R will try to help you.	?dplyr
6. R has its quirks .	NA; error; warning