CN2F: A Cloud-Native Cellular Network
Framework

Sepehr Ganjil, Shirin Behnaminial, Ali Ahangarpourl, Erfan Mazaheri!, Sara Baradaran!, Zeinab Zalil,
Mohammad Reza Heidarpour', Ali Rakhshan?, Mahsa Faraji Shoyari?
!Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
2Mobile Communications Company Research and Development Center, Tehran, Iran

Abstract—Upcoming cellular networks aim to improve the
efficiency and flexibility of mobile networks by incorporat-
ing various technologies, such as Software-Defined Networking
(SDN), Network Function Virtualization (NFV), and Network
Slicing (NS). There exist open-source projects that implement
components of different cellular generations. In this paper, we
elaborate on how to use these open-source projects to realize a
flexible and extendable testbed for conducting experiments on the
future generation of cellular networks. In particular, a Cloud-
Native Cellular Network Framework (CN2F) is presented, which
uses OpenAirlnterface’s codebase to generate cellular Virtual
Network Functions (VNFs) and deploys Kubernetes to disperse
and manage them among multiple worker nodes. Moreover,
CN2F leverages ONOS and Mininet to emulate the effect of the IP
transport networks in the fronthaul and backhaul of real-world
cellular networks. Using CN2F, we implement different network
scenarios, including Edge Computing (EC), Cloud Computing
(CC), and Radio Access Network (RAN) slicing, to showcase the
effectiveness of the proposed testbed for academia and industrial
Research and Development (R&D) activities.

Index Terms—Cellular Testbed, SDN, Network Slicing, VNF
Placement

I. INTRODUCTION

The fifth generation of mobile communication networks
(5G) promises the support of a range of applications from
Ultra-Reliable Low-Latency Communication (URLLC) to en-
hanced Mobile Broadband (eMBB) to massive Machine-Type
Communication (mMTC) connections. The diversity of sup-
ported applications hinders to use of the conventional one-
size-fits-all structure for future cellular networks, thereby
necessitating innovative models. In order to increase flexibility
and efficient resource sharing among different application
sectors, new models are supposed to be built upon virtual-
ization/softwarization technologies, such as Software-Defined
Networking (SDN), Network Function Virtualization (NFV),
and Network Slicing (NS), among others [1]].

In recent years, several AI/ML-based algorithms have been
proposed to enable intelligent and autonomous network man-
agement, which should be tested and evaluated before their
commercial rollout [2]-[8]]. These algorithms use a large
amount of data extractable from both the Radio Access Net-
work (RAN) and Core Network (CN) to learn patterns and
automatically enhance network operations [9]], [10]. Small-
scale testing of such algorithms allows developers to identify
potential issues and address problems before a large-scale
rollout. In this way, different cellular network testbeds are

Master Node

Orchestrator —————————> &
APP/Admin API

[b | N
Bridge

Worker Node
D Software Radio

Fig. 1: CN2F architecture with a master node and three worker
nodes

Switch

FH ‘ Worker Node

Bridge

‘Worker Node

designed, which enable researchers to evaluate real-world
network scenarios [11]], [12]].

In this paper, we propose the CN2F, a simple Cloud-Native
Cellular Network Framework, as a general framework to build
prototypes for future generations of cellular networks. Fig.
depicts the CN2F structure. The CN2F comprises a cluster of
four nodes (one master and three workers), an L2/L.3 switch,
two bridge nodes, and a software-defined network.

First, we review the main technological concepts and frame-
works such as containers, Docker [13]], Kubernetes [14],
Mininet [[15], and RAN splitting. Then, we explain how to
use these primitives to set up the CN2F framework (including
the cluster and bridges). Specifically, for the CN2F setup, we
provide an Ansible playbook to prepare and install necessary
packages on nodes, which is a principled method to make a
Kubernetes cluster. We also describe how to create cellular
Virtual Network Functions (VNFs) (in the form of pod in
Kubernete) from Docker Images. For the cellular VNFs, we
take the OpenAirInterface (OAI) project as one of the existing
open-source candidates for the software implementation of the
4G/5G RAN and CN components (e.g., MME, HSS, etc.,
for 4G and AMF, UDM, SMF, etc., for 5G). Finally, we
demonstrate using CN2F to investigate the importance of VNF
placement and RAN slicing as two significant capabilities of
future cellular networks.

The results of this paper are reproducible, and the source
codes alongside scripts to set up the CN2F and execute the

'A Pod is a group of one or more containers, with shared storage and
network resources, and a specification for how to run the containers.

Traffic
Signaling

Internet/IMS/...

Fig. 2: A simplified LTE architecture

use cases are publicly available on our GitHulﬂ repository for
the academia and industrial community.

The remainder of this paper is structured as follows. Section
provides the necessary background and definitions. Section
describes the CN2F structure in detail. Section [IV] explains
our evaluation and the implementation of two use cases in our
framework. Section |V|reviews alternative testbeds proposed in
the literature, along with their goals and applications. Finally,
Section [VI] concludes the paper.

II. BACKGROUND

In this section, we briefly review the required background
material for building a cloud-native cellular network frame-
work. First, we discuss topics specific to cellular networks,
such as different generations of cellular networks along with
available options and open-source projects usable for building
and deploying cellular VNFs on a given testbed/cluster. Then,
in the second part, we cover primitive technologies needed at
the time of generating cloud-native applications and building
a cluster over which a cloud-native application is deployed.
Though the topics elaborated on in the second part are general,
our objective is to show how to use these technologies to
achieve a flexible cloud-native cellular network.

A. Cellular Network Concepts

Wireless mobile networks first started as an extension to
the Public Switched Telephone Networks (PSTN) in order to
support mobile users. In the beginning, they were composed
of a single high-power base station to cover an area of around
70 to 80 km radius. To increase the capacity (number of
subscribers), the cellular idea emerged. The cellular structure
suggests using multiple low-power base stations through which
the whole area is tiled by (cell-like) hexagons and the fre-
quency reuse becomes possible. The downside of the cellular
structure is the need for handoff and interference management.
However, because of its capacity-increasing benefits, the un-
derlying structure of all current Wireless Wide Area Networks
(WWAN) obeys the cellular pattern.

1) Cellular Generations and Open-Source Projects:

2 Available at https://github.com/CN2F/core

a) 1G and 2G Networks: The first generation (1G) was
analog and only supported voice. The 2G is characterized
by being the first that used digital modulation, and hence,
featured higher service quality (e.g., encoding), security (e.g.,
encryption), new services (e.g., short message service), and
more efficient Radio Frequency (RF) spectrum usage through
Time Division Multiple Access (TDMA) and Code Division
Multiple Access (CDMA). The dominant standard of the 2G
network is GSM (Global System for Mobile communication),
which is still alive due to the vast investment and capability
to support Internet of Things (IoT) applications. For the
open-source software projects that implement 2G network
components, we can refer to OpenBTS and YateBTS.

b) 3G Networks: The main feature of the 3G networks is
the change of the focus from voice to data. In this generation,
the network core is separated into two parts: one based on
the conventional circuit switch architecture to support voice
and one based on the packet switch architecture (best-suited)
to support data. As a result, the 3G networks support both
voice and data. Moreover, 3G realized ITU’s IMT-2000 vision
for cellular networks and supports new services such as mobile
Internet through increased data rate. The dominant 3G standard
is UMTS (Universal Mobile Telecommunications Service),
which then evolved to HSPA (High-Speed Packet Access or
3.5G) as a transient generation with higher data rates. 3G
networks are also still alive, again due to the vast investment
and supporting IoT applications. OpenBTS-UMTS [16] is an
open-source project that implements parts of the 3G networks.

c¢) 4G Networks: The main feature of the 4G networks
is an all-IP structure. In other words, the network core is
purely packet-switched, named EPC (Evolved Packet Core).
As a result, from this generation forward, we can state that
cellular networks are the extension of the Internet and data
services to mobile users. 4G networks satisfy the requirements
of ITU’s IMT-Advanced, and for multimedia communications
such as voice, they rely on the IMS (IP Multimedia Subsystem)
framework. Moreover, 4G networks demonstrate many ad-
vances in the communication theory in practice, such as small
calls, relays, Carrier Aggregation (CA), Coordinated Multi-
Point (CoMP), Inter-Cell Interference Coordination (ICIC) in
the RAN, Control and User Plane Separation (CUPS) (as the
first traits of SDN), and Dedicated Core Networks Selection
(DECOR) (as the first traits of slicing) in the core of the

https://github.com/CN2F/core

1
< |
/\/ 7§ ,*S1-MME (S1-AP) !
4
Q S1-U

UE

eNB

Traffic
_______ Signaling

Internet/IMS/...

Fig. 3: The LTE’s CUPS architecture

network. The dominant standard of 4G networks is LTE (Long
Term Evolution), and the open-source 4G projects include OAI
[17] and srsLTE [[18]].

As this paper implements 4G cellular VNFs on the CN2F,
we provide more details on EPC components here. Fig.
depicts a simplified LTE architecture. All links are logical and
may be realized through an IP network. The PGW (Packet
Gateway) is the gateway of the cellular network. Its main
functionality is to be the mobility anchor point, which hides
the mobility of the users from the outside world. PGW uses
tunneling (encapsulation of the packets) to route the users’
traffic to where they are located. Other functionalities of the
PGW include QoS enforcement and IP address allocation to
connected UEs (User Equipment). However, there may be
millions of users, and supporting all of them with one or a
handful of PGWs is not practical. This is where the need
for SGWs (Serving Gateways) becomes evident. In fact, the
whole area under the coverage of a cellular network operator is
divided into regions, consisting of several cells. Each SGW is
responsible for tracking the location of the UEs in a specific
region and making necessary tunnels to their corresponding
cell site base station (or eNB (evolved Node B)). Then, the
end-to-end tunneling between the PGW and a user (UE) in a
specific region is broken into two tunnels: the tunnel from the
PGW and an SGW (the one responsible for that region) and
the tunnel between that SGW and the eNB to which the UE is
connected. As a result, the PGW needs to change its state to
about one UE only when it crosses the region’s borders. The
component that is informed about the UE location by the eNBs
and instructs SGWs and PGW(s) to configure their tunneling
parameters is the MME (Mobility Management Entity). MME
is also involved in paging, handover, authentication, security,
and management of subscription profiles. Finally, since access
to the network is not for free, we need a database that records
subscribed users’ information, including their identities, im-
precise locations in the network, security features (secret keys),
and QoS contexts. The HSS (Home Subscriber Server) realizes
this database and its secure connection to the MME in the LTE
architecture.

The 3GPP release 14 introduced the idea of CUPS, the sepa-
ration of the user plane and control plane as depicted in Fig.
In CUPS, SGW and PGW are decomposed into two parts: one

that routes users’ data packets (SGW-U and PGW-U) and one
that performs controlling the connections (SGW-C and PGW-
C). Therefore, MME (as a pure controlling entity) establishes
the connection to SGW-C and PGW-C, which control SGW-U
and PGW-U, respectively. CUPS adds flexibility to network
deployment and operation (as different components can be
independently scaled up/down on demand and in different
places), and it can be considered the first introduction of the
SDN in cellular networks, which is matured/completed in the
5G networks (3GPP release 15 and above).

d) 5G Networks: The cellular networks take an ambitious
step in 5G with the goal of supporting applications with
different demands (first envisioned in ITU’s IMT-2020). The
realm of these applications is specified by the eMBB, the
mMTC (or massive IoT (mloT)), and the URLLC as the
extreme corners where well-known applications (e.g., smart
homes, augmented reality, and industry 4.0) can be placed
somewhere between, based on their demands similarity to the
mentioned corners (e.g., required peak data rate, connection
density, mobility, and latency). After a period of ambiguity
and discussion on “what will 5G be” [19], it became clear
that in order to support such diverse applications, SDN and
NFV would be the key technologies in any true 5G real-
ization. The SDN and NFV enable the creation of several
logical networks, called network slices, on top of the same
infrastructure, each tailored according to the requirements of
a specific application. Additionally, in the RAN, 5G introduced
New Radio (NR) which features even higher data rates, more
flexibility (such as different spectral modes of operations and
the alternative ways to interact with the core network; SA/NSA
(Standalone/Non-Standalone)), massive MIMO, mmWave, and
dual-connectivity (simultaneous connection of 5G UEs to a 4G
eNB and a 5G gNB).

5G core network, also known as SBA (Service Based
Architecture), consists of entities that less or more resemble
their EPC’s counterparts, such as Unified Data Management
(UDM) (= HSS), User Plane Function (UPF) (=~ SGW-
U and PGW-U), Session Management Function (SMF) (=~
SGW-C and PGW-C), and Access and Mobility Management
Function (AMF) (= MME). It also comprises new entities
related to virtual network functions and network slicing, such
as Network Repository Function (NRF) (a repository listing

Proposed by Known as Composed of
{ CRAN Y {BBURRH}
[: [}]) [}
\ China Mobile ' H @ H H H
i : ! NGFI | i RCCRRU!
: ! : e i
a I had I s
{ Small-cell forum i i (N)FAPIT; i\ VNF,PNF |
: i i : : i
s - e i
1])))]
[} ! [}

i 3GPP i L NR i i CU,DU E
1])))]
1] 1 1 1 1

Fig. 4: RAN splitting proposals

all the functions), Network Slice Selection Function (NSSF)
(which selects the network slice instances for a given UE),
Network Exposure Function (NEF) (which exposes some
internal events related to UEs), and Network Data Analytics
Function (NWDAF) (which collects and analyzes information
from the network and its users). The main characteristic of the
SBA is that different entities interact with each other through
well-established (and successful) API standards, such as HTTP
and JSON, which makes the core of the 5G cellular networks
more look like the usual client-server model in the Internet.

The 5G paradigm shifts towards more softwarization and
virtualization, which has also revolutionized open-source ac-
tivities. Projects such as OAI [20] and srsLTE [21] also
have products for the 5G networks. Other projects such as
freeSGC [22] and OpenSGS [23]] are also contributing to this
subject (see [24] for a thorough survey and comparison among
different 5SG open-source projects).

Different open-source projects for cellular networks differ
in community support, components they have implemented,
and stability level. We found only one project claimed to
be “running for hours and days without any restart,” which
is the LTE’s EPC (release 14) with MAGMA MME-based
deployment [25[]. Hence, in our work, we have used this
project for deploying on the CN2F.

2) RAN Splitting: RAN splitting refers to the split of the
RAN protocol stack, including the physical and MAC (Media
Access Control) layers, into two or more parts that can be
deployed separately within distinct nodes, and they can interact
with each other over well-defined APIs. The idea behind the
RAN splitting is to reduce capital expenditures and operating
expenses (as a result of minimizing the cell site equipment),
increase resource sharing and cope with the tidal effect (as
a result of centralization), and enable advanced collaborative
signal processing techniques, such as interference management
and CoMP transmission and reception.

For RAN splitting, different schemes have been proposed
by different organizations, as shown in Fig. @ China Mobile
is the pioneer by first introducing the idea of RAN splitting
and proposing the Cloud/Central RAN (C-RAN) for the 3G
networks and, later, the Next Generation Fronthaul Interface
(NGFI) for 4G/5G networks. In C-RAN terminology, the
whole protocol stack breaks down into two parts named BBU

(Base-Band Unit) and RRH (Remote Radio Head). The 1/Q
samples are sent back and forth between BBU and RRH using
Common Public Radio Interface (CPRI) links. However, high
stress on the fronthaul link (in terms of bandwidth and delay)
resulted in limited deployments of C-RAN in practice. To
cope with further bandwidth and latency constraints in 4G/5G,
China Mobile redesigned the splitting in the NGFI scheme in
which the separated components of the RAN are called the
Remote Cloud Center (RCC) and Remote Radio Unit (RRU).
China Mobile proposes six options in NGFI for the RAN
splitting and compares the bandwidth and delay requirements
of each option in its white paper. Specifically, the OAI project
supports the following node functionalities:
o ¢NodeB
e« RCC and RRU (NGFI IF5): split-point at the OFDM
symbol generator (i.e., frequency-domain signals)
¢ RCC and RRU (NGFI IF4p5): time-domain fronthaul
(more than 1 GbE is required)

On the other hand, Small Cell Forum (SCF) has been
contributing by offering (Network) Function Application Plat-
form Interface ((N)FAPI) which defines the API between the
physical and the MAC (and above) layers for 3G, 4G, and 5G
networks. Here, the separated parts of the RAN are denoted
by Virtual Network Function (VNF) and Physical Network
Function (PNF), respectively.

Finally, at the time of introducing the New Radio (NR),
3GPP suggested ten options and suboptions for the splitting
point for the 5G-RAN, which referred to separated parts as the
Centralized Unit (CU), Distributed Unit (DU), and Radio Unit
(RU). The O-RAN Allianceﬂ has thoroughly assessed various
RU/DU split configurations as suggested by the 3GPP. The
focus was particularly on the alternatives for the physical layer
division between the RU and the DU. The selection of the 7.2x
split option results from its ability to harmonize the simplicity
of the architecture of RU with the requisite data rates and
latency parameters on the RU-DU interface. On the other hand,
for the split between the CU and the DU, the 3GPP option 2
is adopted by the O-RAN, whose interface is standardized as
the F1 interface [26].

As mentioned, from the fifth generation onwards, cellular
networks experience a transition from traditional hardware-
centric approaches to flexible and dynamically configurable
software-defined networks. In the following, we describe cloud
technologies allowing a shift towards network softwarization
and virtualization. Then, we explain how to use underlying
technologies for cloud-native applications and incorporate
them with cellular network projects to realize an end-to-end
testbed for evaluating real-world network scenarios.

B. Cloud-Native Applications and Infrastructure

In this part, we look over the concepts and technologies that
play essential roles in developing cloud-native applications and

3The Open RAN (O-RAN) Alliance fostered efficient interoperability
among multiple vendors by implementing standardized open interfaces in the
5G RAN. The O-RAN architecture further incorporates non-real-time radio
intelligence controller (non-RT RIC) and near-real-time radio intelligence
controller (near-RT RIC) modules, which are instrumental in facilitating
sophisticated radio management for 5G and future 6G wireless networks.

Image

FS Snapshot Startup Command

‘hello—wor1d| | CMD (‘hello-world")

Container
Running Process
Virtually isolated
hello-world (through namespace)
l process tree
Kernel
RAM Network
Virtually isolated
L (through namespace)
HDD and limited (through
CPU cgroup) resources
hello-world

Fig. 5: Image and container

building the supporting infrastructure.

1) Container and Docker: A container is a complete pack-
age of an application software itself and all its dependencies
which can run on different computing systems quickly and
reliably without complaining about necessary dependencies.
The Linux primitives enabling containerization are names-
paces that provide isolation in different levels (e.g., process,
filesystem, and network) and cgroups that can be used to
restrict resource consumption (e.g., memory, CPU, and band-
width).

Docker [[13]] is an open-source virtualization technology that
facilitates the deployment, creation, and management of con-
tainerized applications. Similar to processes that are running
instances of programs (executable files), the containers are also
running instances of Docker images in their (possibly) isolated
and restricted environments. An image is a compressed archive
file containing application (and dependencies) files inside
some directories along with a startup command that specifies
the program by which the container’s life begins executing
(see Fig. 5). An image is created based on a recipe known as
Dockerfile, which specifies the base image, files to be copied
inside the image, instructions to build the application, and the
startup command. Moreover, run-time parameters (e.g., net-
working, environment variables, and volumes) can be specified
declaratively in a configuration docker—compose . yml file,
which is fed to a tool called Docker Compose to run/man-
age containers accordingly. Docker also provides a registry
(Docker Hub) to share (push/pull) official images built by

Worker Node 1

Pod 1 Pod 2

container 1
containert

Pod 3

container 1

’ kubelet ‘ ‘kube-proxy‘

Control Plane

\

API Server

Scheduler

Pod 1 Pod 2 Pod 3

Controller-Manager

container 1 | container 1 |

container 3 container 2 container 2

‘ kubelet l ‘kube-proxy‘

container 1 |

eted

S

Worker Node 2

Fig. 6: Structure of a Kubernetes cluster with two worker
nodes

different development teams.

2) Kubernetes: Kubernetes [14] is an open-source platform
for container orchestration, introduced by Google in 2014, to
manage and automate the deployment, scheduling, monitoring,
maintenance, self-healing, rollout and rollback, and operation
of application containers across a cluster of machines. In fact,
Docker enables developers and operators to create and run
containers, while Kubernetes is used to orchestrate different
containers. More precisely, Kubernetes allows the deployment
of microservices over a number of machines and simultane-
ously hides the infrastructure from the application’s point of
view. Users can also deploy applications on different cloud
providers using a standard set of APIs provided by Kubernetes,
without separately needing to use each provider’s API for
deployment and management of the applications.

In order to use the application management capability in
Kubernetes, a description of the application’s design is re-
quired. Then, Kubernetes turns the aforementioned description
into a running set of objects and ensures they keep running
by restarting those that fail. If some changes occur in the
application’s design, Kubernetes takes the required steps to
transform (update) the set of running objects into new ones.

To distribute microservices among several machines, we
need to create a Kubernetes cluster. The structure of a Ku-
bernetes cluster mainly includes a number of worker nodes
and a master node managing the application running over the
workers. This structure is illustrated in Fig.[6] As shown in this
figure, the master node includes several components, namely
etcd (which is a key-value database recording the desired/cur-
rent states), API server (which provides communication among
etcd and other components), scheduler (which is responsible to
place pods and other objects on worker nodes), and controller
(which is the brain of Kubernetes). A pod is a collection
of one or more containers with some managing metadata,
which represents the most basic deployable unit that can be

)

Pod Infrastructure

Container

Container A

Uses Linux Uses Linux

:> namespaces from namespaces from

Container B | |

Container A Container B

Pod
-

Fig. 7: Structure of a pod containing two containers

created and managed in Kubernetes. In addition, a worker node
consists of components called kubelet (the Kubernetes agent
on each node, which is responsible for executing master’s
commands, such as pod creation/deletion using tools (e.g.,
Docker)) and kube-proxy (responsible for the networking and
services).

Kubernetes has also spawned many other related open-
source projects, mainly under the umbrella of the Cloud-Native
Computing Foundation (CNCF), such as CoreDNS, Envoy,
Helm, and Prometheus. Moreover, CNCF organizes several
KubeCon + CloudNativeCon conferences per year.

a) Pod: A pod is a group of one or more containers (with
shared hostname, IPC (Inter-Process Communication), and
network namespacesﬂ) in addition to a set of specifications,
including parameters such as labels and ports, among others. A
pod can be viewed as an application-specific logical host and is
the smallest deployable unit of computing in Kubernetes. The
pod creation needs no more technology than what is required
for the creation of containers, as it is indeed a main container
(called the infrastructure or pause container) which hosts the
application container(s) (see Fig. [7). Since Kubernetes is a
declarative platform, to create pods, we instruct controllers,
such as ReplicaSet, Deployment, Job/CronJob, DaemonSet,
and StatefulSet through a pod template in their YAML files
to create and manage those pods on our behaliﬂ Fig. |8 shows
a typical pod’s lifecycle. Before scheduling, it is in the Pending
(or Pre-scheduled) state. Then, at the time of the creation of
the pause container and execution of the init containers, the
state is Initialized. Then, the main containers become ready
at the Containers-Ready state. After that, the pod is ready to
serve at the Ready state. In the case that all containers inside
the pod terminate successfully, the state changes to Succeed,
and otherwise, to Failed. Using the init containers which run
before the main ones, we can make sure that all prerequisites
are satisfied before starting the main containers. One usage of
this feature in the pod’s lifecycle is to enforce an order for the
execution of the pods.

b) Networking: Kubernetes’s model for pod networking
is flat, and all pods (logical hosts) are in the same subnet
(i.e., connected through a logical L2 switch). Pods inside a
single node are connected to the same bridge through virtual
Ethernet interface pairs. However, for pods on different nodes

4Filesystem namespaces of pod’s containers are different but they may have
access to shared volumes.

SDifferent controllers provide different functionalities, such as maintaining
the number of pods, creating a specific pod on each node, and managing the
pods during an application update.

Pending > Initialized COI;te?élyerS-
> Ready Succeeded
Failed

Fig. 8: Lifecycle of a pod

to communicate, we need to somehow connect the bridges on
different nodes to each other. As a result, providing Kubernetes
network abstraction for pods can be complex and is usually
achieved through an additional SDN layer on top of the actual
network (which uses encapsulation and Linux networking
tools such as iptables, routes, and IP-forwarding). Container
Network Interface (CNI) is a project to simplify networking
configurations in Kubernetes through the addition of plugins
such as Calico [27]], Flannel [28]], and Weave Net [29].

c) Volume and ConfigMap: By default, a pod’s filesystem
is the one defined in its image, and any file operation (e.g.,
creating a file or writing into a file) is ephemeral and will
be lost by pod termination/restart. In Kubernetes, we can use
different types of volume to have different levels of file per-
sistency. For example, emptyDir volume provides persistency
across container restarts during the pod’s lifetime. Moreover,
hostPath and nfs volumes provide higher persistency across
pod restarts in a node and across node change, respectively.
Similar to networking, storage consistency is complex in gen-
eral, and several Container Storage Interface (CSI) projects,
such as Cinder [30] and Cephfs [31]], have been developed to
accomplish the work as plugins.

A related topic to volumes is the ConfigMap, which is used
to pass arguments to containers by mounting configuration
files into containers through a special type of volume, not
surprisingly, called ConfigMap.

3) Mininet: In SDN-enabled networks, the control plane
handling management operations is logically centralized and
physically isolated from the data plane, which in turn en-
ables high network configurability and programmability. The
network programmability and the capability of optimizing
resource allocation and utilization in a centralized way, made
possible by the SDN paradigm, are expected to alleviate the
burden of the data onslaught expected from data-intensive
applications [|32]]. Mininet [[15]] is an emulation tool that allows
one to virtually emulate a complete SDN network scenario
comprising a number of virtual hosts, controllers, switches,
and links. It uses container-based virtualization to make a
single system act as a complete network.

III. CN2F OVERVIEW

The structure of CN2F aims to facilitate the building of
flexible network scenarios with various network topologies.
In this section, we describe the steps to construct the CN2F
alongside our best practices (i.e., the experimentally best-
realized solution to cope with a challenge) in each step. In

Master Node

’@ 0OpenSSH

7% OpenSSH

Worker Node

1% OpenSSH

Worker Node

»
?% OpenSSH

Worker Node

$ ansible-playbook -i remote-hosts main.yml --ask-become-pass --ask-pass

Fig. 9: Installing required packages and configuration on
cluster nodes using Ansible

addition, we present a detailed tutorial demonstrating how
to get from a portable network implemented with Docker
containers to a cloud-native network implemented on the Ku-
bernetes platform. The proposed structure of CN2F resembles
the flexible and hierarchical model of the modern cellular
network (Fig. [I).

Specifically, CN2F has been designed to demonstrate a net-
work with edge computing, cloud computing, RAN splitting,
and NFV capabilities. Two bridges (each emulating an IP
network) are incorporated in the CN2F structure; FH and TN.
The FH bridge sits between distributed RAN components, such
as RCC (or CU) and RRU (or DU), and therefore, it enables
the RAN splitting test cases. On the other hand, the TN bridge
may divide the structure into two parts; one close to RAN (or
UEs) and one far away. As a result, the distinction between
edge computing and cloud computing can be investigated.

Besides the bridges, the CN2F includes a cluster of four
machines. The cluster size is minimal as we need one machine
for the master node, two machines (i.e., two worker nodes)
to host different components of the distributed RAN, and one
machine (i.e., another worker node) to host the VNFs (such as
core network’s VNFs), which may reside in the data center in
reality. All nodes are connected to a Gigabit Ethernet switch.
One node is further connected to the USRP-B210 (via USB
3.0) that plays the role of radio head in our setup.

In order to automate the process of installing required
packages (e.g., Git, Python, Wireshark, and Docker), set
configurations regarding CPU states and the Linux kernel,
and copy some bash scripts (for enabling IP-forwarding, IP-
addressing, etc.), we first list all of these prerequisites in an
Ansible playbook file in the Ansible management node (in our
case a laptop with the SSH connection to the cluster nodes,
aware of their IP addresses, usernames, and passwords, which
has Ansible and openssh-client installed). In this way, after
installing the OS on bare-metal machines (cluster nodes), it
suffices to install openssh-server on them. Then, the Ansible
management node can perform all the required installations
and configurations specified in the playbook on all cluster
nodes using a single command as demonstrated in Fig. 0]

A. Challenges and Limitations

1) Our main focus in this work is how to set up the
CN2F framework regardless of the particular VNFs that
are used to realize the final prototype of a specific 4G/5G
network. Since the 4G/5G open-source projects are evolving
and have different stability levels, we resort to using OAI’s
(MAGMA MME-based) 4G implementation as it is claimed
to be “running for hours and days without any restart” [25].
Moreover, the 4G core network is still used in 5G Non-
Standalone (NSA) systems. However, CN2F is designed as
an extendable framework. One can replace VNFs with those
implemented for the next generations of cellular networks. We
explain how to use the general structure of CN2F with desired
modules (VNFs) to deploy a specific generation of cellular
networks in a cloud-native testbed.

2) The number of UEs and eNBs in CN2F is currently
constrained by the availability and capabilities of commer-
cially available hardware. Additionally, the state of the open-
source project we are utilizing imposes further restrictions on
scalability. In particular, we have tested CN2F with one eNB
and two COTS UE@ Additional eNBs and UEs may be added
to CN2F as the hardware and/or software capability evolves.
It is also worth noting that similar works in the field often face
the same limitations regarding the number of UEs and eNBs
due to these practical constraints [11]], [33]-[36].

3) One significant challenge in creating a testbed from
open source projects is the versioning issue, as different com-
ponents are continuously evolving. A testbed that functions
correctly may break after an update to one part. To address
this challenge and ensure the reproducibility of our testbed,
we have consolidated all configuration commands and image
versions into several files. These files are utilized by an
Ansible playbook to automate the installation of the necessary
packages, thereby maintaining version consistency across all
components.

B. Cluster Setup

In this section, we describe the steps to set up a Kubernetes
cluster. As explained in the background, a Kubernetes cluster
comprises a set of components, such as kube-proxy (for
managing network connectivity) and kubelet (for ensuring
the overall health and stability of containers in pods), which
should be installed and configured on each node. Also, in case
of restarting a node, cluster components need to be recovered.
Since manually installing these components is time-consuming
and error-prone, several tools are provided for the cluster
installation. We tested three tools, including Kubeadm [37]],
Kubesphere [38]], and Rancher Kubernetes Engine (RKE) [39]]
to install clusters. Among them, RKE is selected as this tool is
handier, more stable, and easier to configure. Furthermore, due
to the flexibility of RKE, we can configure multiple cluster
options in the rancher’s configuration file which is used to
deploy a cluster.

In our setup, we use the USRP-B210 without any external/GPS clock
and duplexer. Therefore, some COTS UEs face problems in detecting and
connecting to our network. Among different UEs that we have tested, the
Huawei-E5573-8739 and Huawei-Nova 3e can successfully connect to our
network (both using Qualcomm Snapdragon 680 chipset)

The Kubernetes networking model requires certain network
features but at the same time allows a degree of flexibility
regarding the implementation. As a result, various projects
have been released to address specific requirements. Container
Network Interface (CNI) is one of those projects supporting
plugin-based functionality to simplify networking in Kuber-
netes. The main purpose behind CNI is to provide enough
control to administrators for monitoring communication while
reducing the overhead of manually generating network con-
figurations. A main challenge when designing CN2F was to
pick up the best CNI for the framework. Among different CNI
providers, Calico [27] is used in the final structure of CN2F
as it enables us to assign a static IP to each deployed pod, and
this easy-to-deploy CNI provider is supported by RKE.

We deploy a Kubernetes cluster using four machines with
Intel Core 19-11900 CPU@3.5 GHz, 32 GB of RAM DDR4
memory, using an operating system Ubuntu 18.04 LTS, in-
terconnected by an L2/L.3 switch. This cluster consists of a
master node, three worker nodes, and two bridges (FH and
TN) as illustrated in Fig. [T}

C. Building Docker Images

Docker provides two ways to run a container using Docker
images. One is to pull the Docker image of the application
from a Docker registry (e.g., Docker Hub), and the other is to
build the Docker image of the application using Dockerfile. A
Dockerfile is defined as a recipe containing all the required
dependencies and some instructions in order to make the
application runnable inside the Docker container.

We used OAI’s LTE Evolved Packet Core (OAI-EPC) as the
virtual network functions in CN2F. OAI has a set of public
GitHub repositories, each of which provides the codebase of
the implementation for a specific core module [[17]]. OAI also
provides Docker images for the core modules in the Docker
Hub. Thus, for each module (e.g., MME, HSS, SPGWC,
SPGWU, etc.), we directly pulled the corresponding Docker
image from Docker Hub.

On the other hand, to build the RAN module, we take
Dockerfiles existing in EURECOM GitLab [40]. Specifically,
the final RAN image is built by a multi-stage Dockerfile build
process, which brings about a lightweight final image for the
RAN module and accelerates the process of image rebuilding.
It is worth mentioning that the Dockerfile written to build the
eNB image and those for RRU and RCC are being updated by
EURECOM periodically. Thus, we tested different versions to
find those working properly. This was one of our challenges
during the CN2F framework setup. We also pushed the final
images for both CN and RAN modules to the CN2F repository
with new tags. Thus, it is no longer required to build images
from scratch when setting up the framework.

D. Moving from Containers to Pods

As mentioned in the background section, a pod is a Ku-
bernetes object that encapsulates one or multiple containers.
The first step to deploy a module on Kubernetes is to create a
pod definition based on the docker-compose file, which is then
placed inside the pod template part of a deployment object.

All the needed configurations (e.g., environment variables and
volumes) must move properly and precisely from the docker-
compose file to the pod definition file. Here, we take the
MME definition file as an example since MME is the most
complex among OAI modules, and it covers all significant
issues for converting docker-compose file to the pod definition
file. Fig. [10| depicts how to write a pod definition based on a
provided docker-compose file.

A pod definition file consists of four sections;
apiVersion, kind, metadata, and spec. The spec
is the part under which an array of containers could be
configured and is worth concentrating on. There exists
a nodeSelector option, under the spec part, which
determines a specific node where each pod is deployed (see
line 76 in the MME definition file illustrated in Fig. [I0). This
option is one of the basic parts of a pod definition file. In
the following, different sections of the MME definition file
in Fig.|10| and their corresponding in the docker-compose file
are discussed.

1) Networking: In Docker, we could create a bridge net-
work and assign a unique IP address to each container.
However, assigning static IP addresses to pods in Kubernetes
is challenging due to its architecture and purpose. On the other
hand, OAI software modules must bind to a specific IP. To this
end, we used Calico as a CNI so that each deployment object
is assigned a unique IP address in the range of the Calico
subnet (see).

2) Security: Similar to privileged: true in the
docker-compose file, we define a securityContext in
the pod definition file, which conducts Kubernetes to run the
containers in privileged mode. This is required for contain-
ers to have some capabilities, such as system administrator
(sysadmin), to operate as expected (see B3).

3) Data and Volumes: The volume section in the docker-
compose file can be translated into the hostPath and
mountPath sections. The hostPath is located on the node
that the nodeSelector option refers to. Also, we used
another type of volume named ConfigMap. There exist some
configuration files that should be converted into ConfigMap
in the Kubernetes cluster to be used as volume bindings in
the modules (see). Note that to configure the RAN module,
it is required to bind the /dev/bus/usb path to the eNB
container as we use a USRP board connected to the USB
3.0 port. Hence, we use the mountPath field in the eNB
definition file to bind the aforementioned path to the eNB
container.

4) Environment Variables: In Docker, environment vari-
ables can be set using either the environment attribute
or the env_file option. This can be represented as an
env section in the pod definition file, which allows to set
environment variables for containers by specifying a value
directly for each variable (see ©®).

5) Dependencies: The depends_on field in a docker-
compose file sets the order of container deployment. However,
in Kubernetes, we use initContainers to achieve the
same functionality. Init containers check if a specific port of
the container where they depend is open using the netcat
command. Once the init container successfully returns, the pod

1| apiVersion: apps/vl

2| kind: Deployment

3| metadata:

4| name: mme

5 namespace: ion

6| spec:

7 selector:

8 matchLabels:

9 app: mme

10 template:

11 metadata:

12 labels:

13 app: mme @

14 annotations:

15 "cni.projectcalico.org/ipAddrs™: "[\"10.233.0.130\"]"

16 spec:

17 hostname: mme @

18 containers: 1| magma_mme :

19 - name: magma-mme z . _ .

2 image: magma-mme:latest @ 2 image: magma-mme:master @
2t imagePullPolicy: Never 3 container_ name: magma-mme

2 resources: -

» limits: 4 hostname: mme)
% ’::":‘?ri,{éogg:ﬁ“ 5 privileged: true (3)
2 securityContext : @ 6 depends_on: [oai_hss] e
27 privileged: true 7 networks:

P ports: :

2 - containerPort: 3870 8 publ:_c_net: @
30 - containerPort: 5870 -

W _ containerPort: 2123 9 ipv4_address: 192.168.61.149

2 volumeMounts: 10 environment :

33 - mountPath: /magma-mme/etc/mme_fd.conf.tmplt q

. Bia- muevoloey g TZ: Europe/Paris ®
3 A g Al Eom o Epis @ 1 REALM: openairinterface.org

36 - mountPath: /magma-mme/etc/mme.conf R

p name: mnevolcty 13 PREFIX: /openair-mme/etc

38 subPath: mme.conf .

39 - mountPath: /magma-mme/scripts/mme-cfg.sh 14 HSS—HOSTM' hss L.

40 name: mmevolcfg 15 HSS_FQDN: hss.openalrlnterface.org

“ e, 16 HSS_REALM: openairinterface.org

“ - "bash" 17 MME_FQDN: mme.openairinterface.org

4 = = .

45 - "cd /magma-mme/scripts; ./mme-cfg.sh" 18 FEATURES : mme_oal

- - 19 volumes:

@ ~ name:

® Value: | FEurope/Paris? @ 20 - ./mme_fd.conf.tmplt:/magma-mme/etc/mme_fd.conf.tmplt @
o - ::’J‘.\\el;'R]EZ:;Znairlnterface - 21 — ./mme.conf:/magma-mme/etc/mme.conf

51 - name: PREFIX 22 - ./mme-cfg.sh:/magma-mme/scripts/mme-cfg.sh

52 value: "/openair-mme/etc" O 5 3 — " — g . —]
2 - e e 23 entrypoint: /bin/bash -c "cd /magma-mme/scripts; ./mme-cfg.sh
54 value: "hss" 24 healthcheck:
55 — name: HSS_FQDN . 2 — n 3 "

% value: "hss.openairinterface.org” 25 test: /bin/bash -c "pgrep oai_mme

57 - name: HSS_REALM 26 interval: 10s

58 value: "openairinterface.org" .

. _ name: MME_FQDN 27 timeout: 5s

60 value: "mme.openairinterface.org" 28 retries: 5

61 — name: FEATURES

62 value: "mme_oai"

63 initContainers:

64 - name: hsschecker @

65 image: subfuzion/netcat

66 imagePullPolicy: Never

67 command :

68 — 'sh'

69 = U=

70 - 'for i in {1..100}; do sleep 10; if nc -z 192.168.0.219 3868; then exit 0; fi; done; exit 1'

7 volumes:

2 - name: mmevolcfg

73 configMap: @

74 name: "mmecfg"

7 defaultMode: 0777

76 nodeSelector:

77 environment: cloud

Fig. 10: Docker compose file for MME module and its corresponding pod definition file

1| initContainers:

2 - name: dbchecker

3 image: subfuzion/netcat

4 imagePullPolicy: Never

5 command: ['sh', '-c¢', "for i in {1..100}; do sleep 10;
— if nc -z 192.168.0.170 9042; then exit 0; fi; done;
— exit 1"]

Fig. 11: Init container in HSS deployment file

will be deployed (see @ and dependency tree among different
VNFs as demonstrated in Fig. [12).

E. Deploying the Cellular Application

After installing the cluster and preparing deployment YAML
files, a few steps are required to deploy the whole application
and check the connectivity of modules to each other. Also, we
faced some challenges during the deployment phase, the most
important of which are elaborated on in the following.

1) Database and HSS: The HSS needs to connect to a
database server to store and retrieve subscribers’ profile data
(e.g., IMSI, APN, and secret keys). In our setup, we used
Cassandra as the database server and ran a procedure to
create some specific empty tables for the HSS to access. In
Docker deployment, a db_init container creates those tables.
However, in Kubernetes, those (empty) tables could be created
using an init container that executes the db_init instructions.
Therefore, in our setup, we first deploy the Cassandra with an
init container. Then, the HSS module is deployed, which fills
the aforementioned empty tables in the database. Fig. [IT]shows
the implementation of the HSS’s dependency on Cassandra
using the init container primitive.

2) MME, SPGWC, and SPGWU: As depicted in Fig. @
MME should be deployed with its ConfigMap after the deploy-
ment of the HSS. The HSS will log STATE_OPEN once the
MME is up and running. After the MME, the SPGWC and the
SPGWU can be deployed, respectively. These modules send

b/ eNB
l’ -~
e A l eNB-cfg
-
.
-

FlexRAN

10.233.0.200:2210]
SPGWC » MME P HSS

10.233.0.15:9081 10.233.0.130:3870) 10.233.0.219:3868

A
1
1
1

. 0:9042
Initializing database tables

Fig. 12: Dependency tree of the VNFs

some heartbeat packets to each other which can be observed
on their container logs as a health check procedure.

3) FlexRAN: FlexRAN [41] is a flexible and programmable
platform that separates the RAN control and data planes and
supports the design of real-time RAN control applications
(such as defining multiple RAN slices with different Recourse
Blocks (RBs) and assigning each UE to a specific slice). It
listens on two different ports, one for the eNB agent and
one for API requests which we use to interact with this
module. There is a NETWORK_CONTROLLER section in the
eNB (or RCC) configuration file in which we can specify
if we want to connect to a FlexRAN agent by setting the
FLEXRAN_ENABLED option to yes or no. It is worth noting
that FlexRAN deployment does not depend on any module in
our application, and therefore, it can be deployed at any stage
before the eNB (or RCC).

4) eNB: According to Fig. the last step in the applica-
tion setup is to run the eNB deployment. The eNB deployment
refers to a ConfigMap object (the eNB-cfg in the Fig. [12)
which defines all eNB parameters, such as MNC, MCC, and
MME IP address, and therefore, it should be deployed first.
The eNB VNF needs to be deployed on a system with low-
latency Linux kernel and all CPU cores in the CO state
(checked with the 17z utility). On the other hand, the eNB
module uses an image-downloader script to download the
FPGA image of the USRP. This program itself downloads the
required UHD image based on the USRP type, which is set as
an environment variable. In order to speed up the procedure,
one can download the suitable image according to the board
type which is referenced as a hostPath volume (placed in the
worker node hosting the eNB).

In a scenario with distributed RAN which uses RCC and
RRU, the last step is to run their deployment files. These
modules significantly depend on the kernel and OS settings
as well. Therefore, we must consider items, such as low-
latency kernel and power management settings in the BIOS
and Grub in their worker nodes. One of the challenges in
this part is using the most compatible version of the low-
latency kernel which is “4.15.0-206” based on our experience.
To have a working RCC and RRU pair, they should run based

on the same Docker image (using different configurations).
Again, finding the best candidate among different image files
is a crucial step and the result of our investigation is the one
included in the CN2F Docker Hub.

F. Mininet Bridges

In this framework, we address the effect of the distance
between different components in a real network by utilizing
SDN tools and the Mininet emulator and creating virtual
networks between our devices. We name these virtual networks
Mininet Bridge (MB). In this part, we present how an MB is
created and what it consists of.

1) Mininet: To create an MB, we require a tool capable
of emulating real-world computer networks. Mininet is a
lightweight network emulator able to set up virtual networks
containing virtual hosts, switches, controllers, and links on
an OS. Mininet takes advantage of Linux namespaces instead
of virtualization, resulting in a lighter emulation compared
to Virtual Machines (VMs). Mininet’s straightforward Python
API enables the creation of complex and real-world topologies.
Moreover, Mininet has a Command Line Interface (CLI) by
which users can manage, configure, and interact with the
created virtual network. Mininet can also utilize an SDN
controller to emulate SDN networks. In a virtual SDN net-
work created by Mininet, the switches are virtual OpenFlow
switches capable of communicating with controllers using the
OpenFlow protocol.

2) SDN controllers: There exist many SDN controllers with
different capabilities (e.g., POX, Floodlight, and RYU) to serve
as controllers connected to the virtual SDN network. In this
framework, we used ONOS [42] and RYU [43] as the SDN
controller of the MBs. ONOS and RYU are both popular open-
source SDN controllers that support the OpenFlow protocol
and have a large community backed by the Linux Foundation.
RYU is Python-based, making it easier to set up and use, which
results in more popularity among developers. ONOS is written
in Java and is more complex compared to RYU, but it has
more features and can handle large-scale networks. Moreover,
ONOS is a part of the Open Networking Foundation which
is supported by many major vendors and leading companies
in the telecommunication industry. It is worth mentioning
that ONOS is more suitable for our framework as is more
compatible with large-scale telecommunication.

3) Bridge: To create an MB, we need a Linux OS with
Mininet and ONOS/RYU installed on it. We create our topol-
ogy with Mininet’s Python API without hosts, and using Open
vSwitch (OVS) commands, we connect the Network Interface
Cards (NICs) of the device to the virtual switches. The use
of MBs makes our framework more realistic and more similar
to real-world communication networks. Moreover, MBs are
considered transparent and are useful components in time of
network management, measurement, and manipulation.

IV. EVALUATION

In this section, we use the CN2F framework to investigate
the importance of VNF placement and RAN slicing as two
cellular network capabilities. The details on how to deploy test

Fig. 13: CN2F setup for the VNF placement evaluation

NGINX_| |
MME
SPGW

Sw1tch

‘Worker Node 2

Varlable QoS ‘Worker Node 3

37

Soﬁware Radio

Variable Bandwith
Worker Node 1

(a) Cloud computing

MME
HSS

Swnch

Worker Node 2 Worker Node 3

I\ 0 effect on QoS

Variable Bandwith

I!IZI

Software Radlo

‘Worker Node 1

(b) Edge computing

Fig. 14: Test cases for the VNF placement

cases along with the required scripts to reproduce the results
are available on the CN2F GitHub repository.

A. VNF Placement

Fig. shows the CN2F setup to demonstrate the impact
of VNF placement. Specifically, the test cases incorporate
two scenarios which are schematically represented in Fig. [T4]
In scenario 1 (Fig. [I4a), the multimedia server (an NGINX
stream module) is placed on worker node 3 which also hosts
the core network’s components. On the other hand, the client
is inside the UE. Therefore, the data path between the client
and server passes through the RRU (in worker node 1), the
backhaul bridge (or TN), and the SPGW (in worker node 3).
This scenario can be considered as a Cloud Computing (CC)
scenario, because, in reality, worker node 3 may be placed in
a data center accessed through an IP network (emulated by the
backhaul bridge in this scenario). On the other hand, scenario
2 (Fig. [T4b) depicts the case where the (NGINX) server and
the SPGW are moved to worker node 1 beside the eNB. As a
result, this scenario resembles Edge Computing (EC).

Table [[] shows the performance of the network in terms of
the achievable bit rate (using the wget utility in the UE to
download an MP4 video from the NGNIX server) for different
settings of the bridge. It is observed that the parameters of
the transport network highly affect the performance of the
system in the CC scenario. For instance, the bit rate is almost
halved when the bandwidth is reduced from 10 Mb/s to 5
Mb/s. However, in the EC scenario, the bit rate is independent
of variations in the transport network. Furthermore, Table [II]

TABLE I: The effect of TN’s bandwidth on the bit rate in
different VNF placement scenarios

Transport Network Parameters Scenario 1 (CC) | Scenario 2 (EC)
Bandwidth (Mb/s) | Delay (ms) | Bit Rate (Mb/s) Bit Rate (Mb/s)
10 0 1.9 1.9
5 0 0.52 1.9

TABLE 1II: The effect of TN’s delay on the RTT in VNF
placement scenarios

Transport Network Parameters Scenario 1 (CC) | Scenario 2 (EC)
Bandwidth (Mb/s) | Delay (ms) RTT (ms) RTT (ms)
10 0 120 120
10 50 340 120

represents the Round Trip Time (RTT) to an external server
(i.e., Google’s DNS server at “8.8.8.8”) for both CC and EC
scenarios. In this experiment, the Ethernet switch is connected
to the Internet. Therefore, in the EC scenario, ICMP packets
to Google’s DNS server do not go across the TN bridge, and
subsequently, the delay applied to this bridge does not affect
the RTT. Although additional delay contributes to the overall
RTT in the CC scenario, the relationship between delay and
RTT is not flat due to the instability of the external network.

It is worth noting that the LTE bandwidth in our setup is
constrained by the USRP bandwidth, which acts as a limiting
factor that affects the results in this paper.

RB=5 RB=20

Switch

‘Worker Node 2 FH
UE1L
- T
2 S ftw R: d
u ottware Radio Worker Node 1

Fig. 15: Test case for the RAN slicing

Worker Node 3

B. RAN Slicing

The idea of RAN slicing is to assign different numbers of
Resource Blocks (RBs) to different network slices in order to
comply with their corresponding Service-Level Agreements
(SLAs) relevant to the access network. Using FlexRAN along
with eNB, we can test the effect of RAN slicing on the
performance of the system (Fig. [I3)). In particular, Table
shows the result when we have two slices and one UE in
each slice. The total number of RBs is 25 which is divided
between slice 1 (UE 1) and slice 2 (UE 2). As expected,
by allocating more RBs to each slice, the bit rate of its UE
increases. Specifically, the bit rate of UE 1 is 1.05 Mb/s when
slice 1 has 5 RBs, and it climbs up to 3 Mb/s as the number
of RBs increases to 15.

V. RELATED WORK

Testbed-based evaluation in wireless networks is a prevalent
approach used to assess realistic scenarios [44]. The impor-
tance of testbeds even grows when we come to 5G/B5G mobile
networks due to the complexity and different requirements of
these networks. This section briefly mentions cellular network
testbeds previously developed and their capabilities.

Rostami et al. [45] focused on the orchestration of the
TN and RAN by suggesting a hierarchical cross-domain or-
chestrator that offers network programmability and flexibility.
This orchestrator monitors the radio resources at the network
access edge level, the transport resources at the access and
aggregation levels across multiple domains, and the cloud
resources at the network core level to make decisions. The
authors demonstrated the advantages and feasibility of their
proposed orchestration by implementing two use cases of
SDN-based transport and RAN orchestration in a testbed.
The first use case presents the sharing of joint RAN-transport
resources between two Service Providers (SPs), and the second
one demonstrates how an SP can customize its own slice.

Muiioz et al. [46] presented the architecture and results of
the ADRENALINE as a testbed, which is an SDN/NFV pack-
et/optical transport network and edge/core cloud platform for
end-to-end 5G and IoT services, deployed with open-source
software and Commercial Off The Shelf (COTS) hardware.
Similarly, Fichera et al. [47] provided an experimental setup
of a convergent 5G service scenario involving IoT, cloud,
and edge networks, all featured by SDN capabilities. The
implemented testbed also includes an SDN-based orchestrator
able to dynamically adapt data delivery paths based on the
current load of network switches and links. Another testbed
presented by Ramantas et al. [48], which employs COTS

TABLE III: RAN slicing results

Scenario .
No. | Resource Blocks | Device Bit Rate (Mb/s)
| 5 UE 1 1.05
20 UE 2 2.85
2 10 UE 1 1.40
15 UE 2 1.95
3 15 UE 1 3.00
10 UE 2 0.50

components to embody an end-to-end 5G platform based on
the C-RAN architecture, with a fully virtualized RAN, an
optical/wireless fronthaul, and a cloud-based backend. These
approaches do not offer a complete end-to-end network slicing
and the source codes needed to deploy the testbeds are not
publicly available.

A group of testbeds concentrates on Management and Or-
chestration (MANO) implementation. For example, BlueArch
[49]] is a 5G testbed providing a hybrid platform for conducting
various experiments with different modes of tests, including
simulation, emulation, and interaction with the physical net-
work and remote testbed platforms. BlueArch supports ETSI
MANO orchestration. The Open MANO and RIFT.io orches-
trators are hosted as VMs within a XEN environment. Simula
testbed [35]] also implements a mobile network based on OAI-
EPC deployed as a VNF using Open-Source MANO (OSM),
which is integrated with C-RAN architecture with functional
split capability for BBU processing functions. Likewise, Vittal
et al. [34] proposed an emulation framework for zero-touch
5G core network slicing management and orchestration that
features closed-loop automation. Their framework relies on
the use of OSM for NFV MANO functions with NFV orches-
tration and VNF management functionalities communicating
with different Virtual Infrastructure Management (VIM)s.

On the other hand, the testbed proposed by Shorov et al.
[50] implements end-to-end network slicing. However, it does
not offer MANO capability, multi-RATs, and multi-tenancy
facilities in the architecture. This testbed utilizes OAI for both
RAN and CN domains. There are two CNs that share the radio
resources of a single eNB in the RAN. The testbed has been
appraised for connection establishment for both normal LTE
UE and the one with an implemented Network Slice Selection
Assistance Information (NSSAI).

A few works also provide testbed prototypes for research
and development activities. ComNetsEmu [51] is built as a
standalone virtual machine that combines an SDN network
emulator (Mininet) with an NFV infrastructure (NFVI) solu-
tion (docker) into an integrated framework. However, this is a
prototype-only testbed in which deploying any realistic VNFs
is left to users.

Some other testbeds are presented by researchers with
the objective of Al workload orchestration to facilitate the
deployment of Al agents into the testbed. In [11]], Connected
Al (CAI) is presented as a 5G mobile network testbed with
a virtualized and orchestrated structure using containers. CAI
focuses on integrating Artificial Intelligence (AI) applications
using the Kubeflow tool, albeit it implements partial network
slicing and does not incorporate MANO components. It also

TABLE 1V: Cellular network testbeds and frameworks

Testbed SDN | NFV | EZ2E Slicing | MANO | Open-Source | ML-Enabled
RAN-transport orchestration testbed [45]] v 4 X X X X
ADRENALINE testbed [46] v v X X X X
5G Operating Platform [47] v v X X X X
C-RAN based 5G platform [48] v v X X X X
CAI testbed [11] v/ 4 X X v v/
BlueArch [49] v v X v X X
SimulaMet OAI EPC testbed [35]] v v X v v X
The 5G testbed [50] X v/ 4 X v/ X
Zero-touch emulation framework [34] X v v v X X
ComNetsEmu [51]) v v X X v X
Our testbed (CN2F) v v X X v X

presents an emulated TN enabling the deployment of any
network topology on fronthaul and backhaul, without needing
access to actual transport network topologies.

In this paper, we presented CN2F as an end-to-end, cloud-
native cellular network framework, alongside a detailed de-
scription of how to build it. In addition, we provided a
GitHub repository along with an Ansible playbook, which
helps researchers and the industrial community to set up
CN2F on their systems to test and evaluate realistic network
scenarios. We implemented VNF placement to showcase two
different scenarios, EC and CC. RAN slicing has been also
implemented as another use case for new-generation cellular
networks to demonstrate how efficient allocation of resources
can improve the QoS for applications based on their demands.
This framework takes advantage of SDN and NFV capabilities,
and as a key feature, its main structure is independent of
specific VNFs. We provided readers with the required steps
for creating a Kubernetes cluster over which the whole cellular
network is deployed. Thus, one can create proper definition
files for customized VNFs (e.g., 5G SBA core) to deploy our
cloud-native testbed for an intended cellular generation. To
summarize, Table [[V| provides a comparison between cellular
network testbeds in the wild.

VI. CONCLUSION

Cellular networks have evolved into fully virtualized and
programmable networks. As a result, an innovative solution
can find its path into operation as easily as some software
updates in the network’s components. The same virtualization
nature of the modern cellular networks also enables building
laboratory testbeds for the research and development teams
to discover new services/products in isolated, yet close-to-
field, environments. In this paper, we shared our findings and
best practices in building such a testbed, called CN2F, for
modern cellular networks using state-of-the-art technologies,
such as Docker, Kubernetes, ONOS, and Mininet. We espe-
cially focused on how to set up a cluster of nodes hosting
the cellular network’s VNFs and the management entities,
and bridges emulating the intermediate IP networks between
different parts of a real-world cellular network. Thereby,
CN2F is capable of deploying and testing various scenarios,
such as RAN splitting/slicing, edge computing, and VNF
placement. Moreover, for a particular open-source project, we
walked through the process of installing the required packages,

building Docker images and containers, creating pods, setting
the configuration files, and deploying the cellular network’s
core and RAN VNFs on the CN2F. Finally, the performance
of the deployed network was further measured under various
test case scenarios to evaluate the benefits of edge computing
and RAN slicing.

Author Contributions. Conceptualization: Mohammad Reza
Heidarpour, Zeinab Zali, Ali Rakhshan, Mahsa Faraji Shoyari;
Methodology: Sepehr Ganji, Shirin Behnaminia, Ali Ahangar-
pour, Erfan Mazaheri, Mohammad Reza Heidarpour, Zeinab
Zali; Formal analysis and investigation: Sepehr Ganji, Shirin
Behnaminia, Ali Ahangarpour, Erfan Mazaheri, Mohammad
Reza Heidarpour, Zeinab Zali; Writing - original draft prepa-
ration: Sara Baradaran, Sepehr Ganji, Shirin Behnaminia, Ali
Ahangarpour, Mohammad Reza Heidarpour; Writing - review
and editing: Sara Baradaran, Shirin Behnaminia, Sepehr Ganji,
Mohammad Reza Heidarpour, Zeinab Zali, Ali Rakhshan,
Mabhsa Faraji Shoyari; Supervision: Mohammad Reza Heidar-
pour, Zeinab Zali, Ali Rakhshan, Mahsa Faraji Shoyari.
Funding. This study is funded by Mobile Communications
Company Research and Development Center, Tehran, Iran.
Data and Code Availability. The source codes alongside
scripts to set up the framework and execute the use cases are
publicly available on our GitHub repository as referenced in
the paper.

DECLARATIONS

Conflict of Interest. The authors declare that they have no
conflict of interest.
Ethical Approval. Not applicable.

REFERENCES

[1] C. Bouras, A. Kollia, and A. Papazois, “SDN & NFV in 5G: Ad-
vancements and challenges,” in 2017 20th Conference on Innovations
in Clouds, Internet and Networks (ICIN), 2017, pp. 107-111.

[2] C. Benzaid and T. Taleb, “Al-Driven Zero Touch Network and Service
Management in 5G and Beyond: Challenges and Research Directions,”
IEEE Network, vol. 34, no. 2, pp. 186-194, 2020.

[3] A. Thantharate, R. Paropkari, V. Walunj, and C. Beard, “DeepSlice: A
Deep Learning Approach towards an Efficient and Reliable Network
Slicing in 5G Networks,” in 2019 IEEE 10th Annual Ubiquitous Com-
puting, Electronics & Mobile Communication Conference (UEMCON),
2019, pp. 0762-0767.

[4] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Machine Learning for
5G/B5G Mobile and Wireless Communications: Potential, Limitations,
and Future Directions,” IEEE Access, vol. 7, pp. 137 184-137 206, 2019.

[51 R. Li, Z. Zhao, X. Zhou, G. Ding, Y. Chen, Z. Wang, and H. Zhang,
“Intelligent 5G: When Cellular Networks Meet Artificial Intelligence,”
IEEE Wireless Communications, vol. 24, no. 5, pp. 175-183, 2017.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

T. E. Bogale, X. Wang, and L. B. Le, “Machine Intelligence Techniques
for Next-Generation Context-Aware Wireless Networks,” ArXiv, vol.
abs/1801.04223, 2018.

A. Stoltidis, K. Choumas, and T. Korakis, “Active Queue Management
in Disaggregated 5G and Beyond Cellular Networks Using Machine
Learning,” in 2024 19th Wireless On-Demand Network Systems and
Services Conference (WONS), 2024, pp. 113-120.

T. P. Fowdur and B. Doorgakant, “A review of machine learning
techniques for enhanced energy efficient 5G and 6G communications,”
Engineering Applications of Artificial Intelligence, vol. 122, p. 106032,
2023.

M. Amini, R. Stanica, and C. Rosenberg, “Where Are the (Cellular)
Data?” ACM Comput. Surv., vol. 56, no. 2, sep 2023.

Y. Wang, A. Gorski, and A. P. da Silva, “Development of a Data-
Driven Mobile 5G Testbed: Platform for Experimental Research,” in
2021 IEEE International Mediterranean Conference on Communications
and Networking (MeditCom), 2021, pp. 324-329.

C. V. Nahum, L. De Névoa Martins Pinto, V. B. Tavares, P. Batista,
S. Lins, N. Linder, and A. Klautau, “Testbed for 5G Connected Artificial
Intelligence on Virtualized Networks,” IEEE Access, vol. 8, pp. 223 202—
223213, 2020.

M. Manalastas, M. Nabeel, A. [jaz, S. M. A. Zaidi, U. Masood,
H. N. Qureshi, H. Refai, and A. Imran, “Design Considerations and
Deployment Challenges for TurboRAN 5G and Beyond Testbed,” IEEE
Access, vol. 10, pp. 39 810-39 824, 2022.

B. Bashari Rad, H. Bhatti, and M. Ahmadi, “An Introduction to Docker
and Analysis of its Performance,” IJCSNS International Journal of
Computer Science and Network Security, vol. 173, p. 8, 03 2017.

E. A. Brewer, “Kubernetes and the Path to Cloud Native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SOCC ’15.
Association for Computing Machinery, 2015, p. 167.

“Mininet: An Instant Virtual Network on your Laptop (or other PC),”
last accessed 1 April 2023. [Online]. Available: http:/mininet.org

“3G UMTS Data Radio Access Network Node,” last accessed 2
march 2024. [Online]. Available: https://github.com/RangeNetworks/
OpenBTS-UMTS

“OenAirInterface 4G CN: An implementation of the Evolved Packet
Core network.” last accessed 2 April 2023. [Online]. Available:
https://github.com/OPENAIRINTERFACE/openair-epc-fed

“The srsRAN 4G software suite,” last accessed 2 march 2024. [Online].
Available: https://www.srsran.com/4g

J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong,
and J. C. Zhang, “What will 5G be?” IEEE Journal on selected areas
in communications, vol. 32, no. 6, pp. 1065-1082, 2014.
“OpenAirInterface 5G Core Network,” last accessed 2 march 2024.
[Online]. Available: https://openairinterface.org/oai-5g-core-network-
project/

“The srsRAN 5G software suite,” last accessed 2 march 2024. [Online].
Available: https://www.srslte.com/5g

“freeSGC Project,” last accessed 2 march 2024. [Online]. Available:
https://freeSgc.org

“Open5GS Project,” last accessed 2 march 2024. [Online]. Available:
https://open5gs.org

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5G networks: State-of-the-art and the
road ahead,” Computer Networks, vol. 182, p. 107516, 2020.

“OpenAirInterface Core Network: MAGMA MME-based De-
ployment,” last accessed 16 April 2023. [Online]. Avail-
able: https://github.com/OPENAIRINTERFACE/openair-epc-fed/blob/

master/docs/DEPLOY HOME MAGMA MME.md

M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, interfaces, algorithms, security, and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 25,
no. 2, pp. 1376-1411, 2023.

“Project Calico,” last accessed 2 April 2023. [Online]. Available:
https://www.tigera.io/project-calico

“Flannel,” last accessed 2 April 2023. [Online]. Available: https:
//github.com/flannel-io/flannel

“Weave Net,” last accessed 2 April 2023. [Online]. Available:
https://www.weave.works/oss/net

“Cinder CSI” last accessed 2 April 2023. [Online].

Available: https://github.com/kubernetes/cloud-provider-openstack/tree/
master/docs/cinder-csi-plugin

“Ceph CSL” last accessed 2 April 2023.
https://github.com/ceph/ceph-csi

[Online]. Awvailable:

(32]

(33]

[34]

[35]

[36]

[37]
(38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

K. Ramantas, E. Kartsakli, M. Irazabal, A. Antonopoulos, and C. Verik-
oukis, “Implementation of an SDN-Enabled 5G Experimental Platform
for Core and Radio Access Network Support,” in Interactive Mobile
Communication Technologies and Learning. Springer International
Publishing, 2018, pp. 791-796.

J. Palomares, E. Coronado, D. Rincén, and M. S. Siddiqui, “Design and
evaluation of a k8s-based system for distributed open-source cellular
networks,” in 2023 International Wireless Communications and Mobile
Computing (IWCMC), 2023, pp. 7-12.

S. Vittal, S. Sarkar, P. P S, and A. F. A, “A Zero Touch Emulation
Framework for Network Slicing Management in a 5G Core Testbed,” in
2021 17th International Conference on Network and Service Manage-
ment (CNSM), 2021, pp. 521-523.

T. Dreibholz, “Flexible 4G/5G Testbed Setup for Mobile Edge Com-
puting Using OpenAirlnterface and Open Source MANO,” in Web,
Artificial Intelligence and Network Applications. Springer International
Publishing, 2020, pp. 1143-1153.

G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs, “Posens:
A practical open source solution for end-to-end network slicing,” IEEE
Wireless Communications, vol. 25, no. 5, pp. 30-37, 2018.
“Kubeadm,” last accessed 2 April 2023. [Online]. Available: https:
//github.com/kubernetes/kubeadm
“KubeSphere,” last accessed 2 April
https://github.com/kubesphere/kubesphere
“Rancher Kubernetes Engine (RKE),” last accessed 2 April 2023.
[Online]. Available: https://github.com/rancher/rke

“URECOM GitLab,” last accessed 2 April 2023. [Online]. Available:
https://gitlab.eurecom.fr/mosaicSg/mosaic5g

X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRAN: A Flexible and Programmable Platform for Software-
Defined Radio Access Networks,” in Proceedings of the 12th Inter-
national on Conference on Emerging Networking EXperiments and
Technologies, ser. CONEXT *16. Association for Computing Machinery,
2016, p. 427-441.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. Association for Computing Machinery, 2014, p. 1-6.

S. Asadollahi, B. Goswami, and M. Sameer, “Ryu controller’s scalability
experiment on software defined networks,” in 2018 IEEE International
Conference on Current Trends in Advanced Computing (ICCTAC), 2018,
pp. 1-5.

A. Esmaeily and K. Kralevska, “Small-scale 5G testbeds for network
slicing deployment: A systematic review,” Wireless Communications and
Mobile Computing, vol. 2021, pp. 1-26, 2021.

A. Rostami, P. Ohlen, K. Wang, Z. Ghebretensae, B. Skubic, M. Santos,
and A. Vidal, “Orchestration of RAN and Transport Networks for 5G:
An SDN Approach,” IEEE Communications Magazine, vol. 55, no. 4,
pp. 64-70, 2017.

R. Muiioz, L. Nadal, R. Casellas, M. S. Moreolo, R. Vilalta,
J. M. Fabrega, R. Martinez, A. Mayoral, and F. J. Vilchez, “The
ADRENALINE testbed: An SDN/NFV packet/optical transport network
and edge/core cloud platform for end-to-end 5G and IoT services,” in
2017 European Conference on Networks and Communications (EuCNC),
2017, pp. 1-5.

S. Fichera, M. Gharbaoui, P. Castoldi, B. Martini, and A. Manzalini,
“On experimenting 5G: Testbed set-up for SDN orchestration across
network cloud and IoT domains,” in 2017 IEEE Conference on Network
Softwarization (NetSoft), 2017, pp. 1-6.

K. Ramantas, A. Antonopoulos, E. Kartsakli, P.-V. Mekikis, J. Var-
dakas, and C. Verikoukis, “A C-RAN Based 5G Platform with a Fully
Virtualized, SDN Controlled Optical/Wireless Fronthaul,” in 2018 20th
International Conference on Transparent Optical Networks (ICTON),
2018, pp. 1-4.

S. Ghosh, E. E. Ugwuanyi, T. Dagiuklas, and M. Igbal, “BlueArch-An
Implementation of 5G Testbed,” J. Commun., vol. 14, pp. 1110-1118,
2019.

A. Shorov, “5G Testbed Development for Network Slicing Evaluation,”
in 2019 IEEE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus), 2019, pp. 39—44.

Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling, and F. H. P. Fitzek,
“An Open Source Testbed for Virtualized Communication Networks,”
Comm. Mag., vol. 59, no. 2, p. 77-83, 2021.

2023. [Online]. Available:

http://mininet.org
https://github.com/RangeNetworks/OpenBTS-UMTS
https://github.com/RangeNetworks/OpenBTS-UMTS
https://github.com/OPENAIRINTERFACE/openair-epc-fed
https://www.srsran.com/4g
https://openairinterface.org/oai-5g-core-network-project/
https://openairinterface.org/oai-5g-core-network-project/
https://www.srslte.com/5g
https://free5gc.org
https://open5gs.org
https://github.com/OPENAIRINTERFACE/openair-epc-fed/blob/master/docs/DEPLOY_HOME_MAGMA_MME.md
https://github.com/OPENAIRINTERFACE/openair-epc-fed/blob/master/docs/DEPLOY_HOME_MAGMA_MME.md
https://www.tigera.io/project-calico
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://www.weave.works/oss/net
https://github.com/kubernetes/cloud-provider-openstack/tree/master/docs/cinder-csi-plugin
https://github.com/kubernetes/cloud-provider-openstack/tree/master/docs/cinder-csi-plugin
https://github.com/ceph/ceph-csi
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kubeadm
https://github.com/kubesphere/kubesphere
https://github.com/rancher/rke
https://gitlab.eurecom.fr/mosaic5g/mosaic5g

	Introduction
	Background
	Cellular Network Concepts
	Cellular Generations and Open-Source Projects
	RAN Splitting

	Cloud-Native Applications and Infrastructure
	Container and Docker
	Kubernetes
	Mininet

	CN2F Overview
	Challenges and Limitations
	Cluster Setup
	Building Docker Images
	Moving from Containers to Pods
	Networking
	Security
	Data and Volumes
	Environment Variables
	Dependencies

	Deploying the Cellular Application
	Database and HSS
	MME, SPGWC, and SPGWU
	FlexRAN
	eNB

	Mininet Bridges
	Mininet
	SDN controllers
	Bridge

	Evaluation
	VNF Placement
	RAN Slicing

	Related Work
	Conclusion
	References

