class: title-slide <br><br><br> # Lecture 11 ## Subjective Expectations and Stated Preferences ### Tyler Ransom ### ECON 6343, University of Oklahoma --- # Plan for the Day 1. Discuss stated preferences 2. Estimating models using stated preference data 3. Discrete choice experiments 4. Stated probability experiments --- # Stated preferences (SP) vs. Revealed preferences (RP) - Up to now, we have been dealing with _revealed preference_ data - The data we use includes choices that were _actually_ made - In contrast, we can collect data on .hi[stated preferences] - This data would include choices that are .hi[hypothetically] made - See also: "If I had a million dollars" by the band Barenaked Ladies --- # What are stated preferences? - SP are derived from hypothetical situations - e.g. "which of these three trucks would you purchase?" - I've never purchased a truck before, so I wouldn't know which to choose - But if I _were_ to purchase a truck, I suppose I'd pick a Toyota Tundra - SP are tightly related to the counterfactuals we consider --- # Strengths of SP and weaknesses of RP .pull-left[ .center[.hi[RP]] - usually don't know the choice set - usually unable to observe important variables - might not have enough variation in important dimension - limited to settings that currently exist or have existed in the past - have to worry about equilibrium allocation mechanism - counterfactuals must be carefully undertaken ] .pull-right[ .center[.hi[SP]] - specify the complete choice set - specify (and observe) all relevant variables - govern how much variation is in the data - we can obtain preferences for as-yet unseen settings - can separate preferences from other parts of system - individuals report `\(y\)` across many counterfactuals ] --- # Cons of SP - They are hypothetical! As such, they may not be grounded in reality - If I had $1m, would I really buy a(nother) house? How much would I save? - Data collection can't necessarily be used for multiple purposes - May requires mastery of survey methodology --- # Collection of RP data - RP data is typically collected by governments - e.g. household surveys, administrative data, etc. - These data sources typically have many, many uses - NLSY has been used in .hi[thousands] of papers - Administrative data can be used for tax collection and economic research - These data sources are widely available and comparable across time and other contexts --- # Collection of SP data - SP data are collected under a much narrower scope - Individuals answer a series of hypothetical choice scenarios - The `\(X\)`'s in each scenario are randomized - Usually, the data can only be used for a limited number of research questions - Because of this, researchers typically collect their own data - This requires knowledge of best practices in survey methodology / experiments - It also requires money to fund survey participation - More work on the front end (survey development) but much easier to analyze --- # Example hypothetical choice scenarios What is the percent chance you would choose to live in each of these three locations given their characteristics below? .hi[Assume that the locations are otherwise identical.] .hi[Scenario 1] Option | Distance from current location | Family here | Income | Probability --------|---------|---------|---------|--------- A (not move) | 0 | No | 30% lower | B | 1000 miles | Yes | same | C | 1000 miles | No | 30% higher | .hi[Scenario 2] Option | Distance from current location | Family here | Income | Probability --------|---------|---------|---------|--------- A (not move) | 0 | Yes | 30% lower | B | 500 miles | Yes | 150% higher | C | 100 miles | No | 60% higher | --- # Guidelines for choice experiments - Try to keep things as short as possible (respondent fatigue) - Make sure no option in any scenario is strictly dominated - Number of options should not exceed 4 - Vary a small number of `\(X\)`'s at a time so as not to overload respondents - but make sure respondents know to hold all else equal! - Need sufficient variation in the `\(X\)`'s of interest - Scenarios should match up with real life as much as possible - Should include a status-quo option if possible --- # Types of SP choice experiments - Discrete choice - Individuals select which of the `\(J\)` options they prefer - i.e. if `\(J=3\)` then the `\(y\)` vector will be `\([0,1,0]\)`, `\([1,0,0]\)`, or `\([0,0,1]\)` - Rank-ordered choice - Individuals provide their preference ordering of the `\(J\)` options - Probabilistic choice - Individuals provide choice probabilities of each of the `\(J\)` options - Each of these settings provides increasing amounts of information --- # Estimating discrete choice models - Estimation proceeds as if one has panel data on choices (Rust, 1987) - Each choice scenario is another observation in the individual's panel - Can estimate assuming multinomial logit, nested logit, mixed logit, etc. --- # Estimating rank-ordered choice models - Here, we use the .hi[exploded logit] model (Beggs, Cardell, and Hausman, 1981) - The "choice probability" is the joint event of a particular ranking of options - It's a product of logit `\(P\)`'s, where the choice set decreases as options are ranked: `\begin{align*} \Pr\left(\text{Ranking}=1,\ldots,J\right) &= \frac{\exp\left(Z_{i1}\gamma\right)}{\sum_{k=1}^J\exp\left(Z_{ik}\gamma\right)}\frac{\exp\left(Z_{i2}\gamma\right)}{\sum_{k=2}^J\exp\left(Z_{ik}\gamma\right)}\cdots\frac{\exp\left(Z_{iJ-1}\gamma\right)}{\sum_{k=J-1}^J\exp\left(Z_{ik}\gamma\right)} \end{align*}` - We can also add mixing to these probabilities to get a mixed exploded logit - Note that rank ordering provides more information than 0/1 choice data - We now know the relative preference of the `\(J-1\)` non-chosen options --- # Stated probabilistic choice models - Now, we observe a probability of choosing each alternative - What does this information represent? It represents the person's uncertainty - Specifically, it represents .hi[resolvable uncertainty:] uncertainty about unspecified attributes or states of the world in which choices ultimately will be made - e.g. Q. "Will you go for Mexican or Thai food on Friday night?" - A. "Well, I'm not sure what mood I'll be in that day, but probably Mexican" - Q. "What do you mean by 'probably'?" - A. "A 78% chance" - If the person thinks there is no such uncertainty, then they can report `\(p=0\)` or `\(p=1\)` --- # Estimating probabilistic choice models - How do we proceed with estimation when `\(y\)` is itself a probability (not 0/1)? - We invert the logit formula - Consider the binomial logit as an example `\begin{align*} P_{i1} &= \frac{\exp\left(\left(Z_{i1}-Z_{i2}\right)\gamma\right)}{1+\exp\left(\left(Z_{i1}-Z_{i2}\right)\gamma\right)} \end{align*}` - After some algebra, we get `\begin{align*} \ln\left(\frac{P_{i1}}{1-P_{i1}}\right) &= \left(Z_{i1}-Z_{i2}\right)\gamma \end{align*}` - Now we're in a world where we can use OLS to estimate `\(\gamma\)`! --- # Increasing amounts of information - Stated probabilities provide more information than discrete choice or rank ordering - Consider the following responses for an individual Option | Discrete Choice | Rank Ordering | Stated Probability 1 | Stated Probability 2 --------|---------|---------|---------|--------- 1 | 0 | 2 | 1 | 49 2 | 1 | 1 | 99 | 51 3 | 0 | 3 | 0 | 0 - The preference ordering is the same in each column - But the implied preference intensity is much different in the last two columns - A (0,1,0) discrete choice response corresponds to a (0,100,0) probability response --- # Measurement error - One concern with stated probabilities is measurement error - Rather than report 99.5%, someone may just write 100% - But if `\(p=0\)` or `\(p=1\)`, `\(\ln\left(\frac{P_{i1}}{1-P_{i1}}\right)\)` is undefined! - In this case, we have to recode 0s or 1s to be small values (e.g. .001, .999) - Then, to avoid cheating, we need to use LAD instead of OLS. New equation: `\begin{align*} \ln\left(\frac{\tilde{P}_{i1}}{1-\tilde{P}_{i1}}\right) &= \left(Z_{i1}-Z_{i2}\right)\gamma + \eta_{i1} \end{align*}` where `\(\tilde{P}\)` is the recoded probability and `\(\eta_{i1}\)` is the difference in measurement errors --- # Estimation with `\(J>2\)` - The above is the equation for a 2-option choice set - With more than 2 options, we have more observations per scenario - If `\(J=3\)`, we have `\begin{align*} \ln\left(\frac{\tilde{P}_{i1}}{\tilde{P}_{i2}}\right) &= \left(Z_{i1}-Z_{i2}\right)\gamma + \eta_{i1}\\ \ln\left(\frac{\tilde{P}_{i3}}{\tilde{P}_{i2}}\right) &= \left(Z_{i3}-Z_{i2}\right)\gamma + \eta_{i3} \end{align*}` - If we see `\(N\)` people each making `\(T\)` choices, then our data has `\(NT(J-1)\)` rows --- # Preference Heterogeneity - Major advantage of elicited probabilities: handling unobserved heterogeneity - We can say more because we have more information about preferences - Stated probabilities contain more information than 0/1 or rank ordering - Rather than assuming a normal distribution in a mixed logit, - We can instead trace out the mixing distribution nonparametrically - We simply estimate individual-specific `\(\gamma\)`'s - Resulting distribution is almost never normal (i.e. it's skewed, etc.) --- # Example from Kosar et al. (2022) .center[] - The WTP distribution is highly skewed - Some people _really_ like living close to family - Some people prefer to be apart from family (negative WTP) --- # Follow-on studies to link to RP data - Stated probabilistic choice experiments are not a silver bullet - You're still reduced to the SP vs. RP conundrum - Will people actually do what they told you they would do? - To resolve this, most studies have to conduct follow-on surveys - Rationale: in between survey waves, people make actual choices - You can then see how well their SP compares to their RP - I've never seen SP diverge from RP, but that could be due to publication bias --- # Papers that use stated probability experiments - Blass, Lach, and Manski (2010) - Delavande and Manski (2015) - Wiswall and Zafar (2018) - Delavande and Zafar (2019) - Kosar, Ransom, and van der Klaauw (2022) - Many others --- # How to estimate probabilstic choice models in Julia - We can read in data from Kosar, Ransom, and van der Klaauw (2022) - Each pair of adjacent rows is a choice scenario - `ratio` is the log of ratio of the probabilities .scroll-box-12[ ``` julia using DataFrames, HTTP, CSV, GLM, QuantileRegressions url = "https://raw.githubusercontent.com/OU-PhD-Econometrics/fall-2021/master/LectureNotes/11-SubjExp/SCEmobilityExample.csv" df = CSV.read(HTTP.get(url).body) println(head(df)) │ Row │ scuid │ ratio │ dist │ crime │ income │ moved │ scennum │ altnum │ wave │ mvcost │ family │ norms │ homecost │ size │ taxes │ schqual │ withincitymove │ copyhome │ blkscen │ │ │ Int64 │ Float64 │ Float64 │ Float64 │ Float64 │ Int64 │ Int64 │ Int64 │ Int64 │ Int64 │ Int64 │ Int64 │ Float64 │ Float64 │ Int64 │ Int64 │ Int64 │ Int64 │ Int64 │ ├─────┼────────┼──────────┼─────────┼───────────┼────────────┼───────┼─────────┼────────┼───────┼────────┼────────┼───────┼──────────┼─────────┼───────┼─────────┼────────────────┼──────────┼─────────┤ │ 1 │ 119007 │ 6.85646 │ -5.0 │ -0.693147 │ -0.182322 │ -1 │ 1 │ 1 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 25 │ │ 2 │ 119007 │ 3.91202 │ 5.0 │ -1.38629 │ -0.0870114 │ 0 │ 1 │ 3 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 25 │ │ 3 │ 119007 │ 6.85646 │ -5.0 │ 0.0 │ -0.0487902 │ -1 │ 2 │ 1 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 26 │ │ 4 │ 119007 │ 3.91202 │ 0.0 │ -0.693147 │ -0.0487902 │ 0 │ 2 │ 3 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 26 │ │ 5 │ 119007 │ 2.94444 │ -5.0 │ 0.693147 │ -0.0571584 │ -1 │ 3 │ 1 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 27 │ │ 6 │ 119007 │ -3.91202 │ 5.0 │ 1.38629 │ 0.154151 │ 0 │ 3 │ 3 │ 1 │ 0 │ 0 │ 0 │ 0.0 │ 0.0 │ 0 │ 0 │ 0 │ 0 │ 27 │ estimates = qreg(@formula(ratio ~ income + crime + dist + mvcost + family + norms + homecost + size + taxes + schqual + withincitymove + copyhome + moved), df, .5) Coefficients: ──────────────────────────────────────────────────────────── Quantile Estimate Std.Error t value ──────────────────────────────────────────────────────────── (Intercept) 0.5 -0.0338533 0.0133281 -2.53999 income 0.5 3.75781 0.0364599 103.067 crime 0.5 -0.640542 0.020861 -30.7053 dist 0.5 -0.0549714 0.00358389 -15.3385 mvcost 0.5 -0.0397001 0.001884 -21.0722 family 0.5 2.13173 0.0259934 82.0105 norms 0.5 0.154355 0.0155282 9.94031 homecost 0.5 -0.798607 0.0800967 -9.97054 size 0.5 0.635994 0.043953 14.4699 taxes 0.5 -0.0403194 0.00424806 -9.49124 schqual 0.5 0.238732 0.0167284 14.271 withincitymove 0.5 1.69741 0.0287623 59.0151 copyhome 0.5 0.110198 0.0288403 3.82097 moved 0.5 -2.57907 0.0253557 -101.715 ──────────────────────────────────────────────────────────── ``` ] --- # Other details for estimation - You need to bootstrap to get appropriate standard errors - This is because you have panel data - Cluster (at individual level) robust inference won't be enough - To get individual-specific preference estimates, `qreg` at individual level --- # References .tiny[ Ackerberg, D. A. (2003). "Advertising, Learning, and Consumer Choice in Experience Good Markets: An Empirical Examination". In: _International Economic Review_ 44.3, pp. 1007-1040. DOI: [10.1111/1468-2354.t01-2-00098](https://doi.org/10.1111%2F1468-2354.t01-2-00098). Adams, R. P. (2018). _Model Selection and Cross Validation_. Lecture Notes. Princeton University. URL: [https://www.cs.princeton.edu/courses/archive/fall18/cos324/files/model-selection.pdf](https://www.cs.princeton.edu/courses/archive/fall18/cos324/files/model-selection.pdf). Ahlfeldt, G. M., S. J. Redding, D. M. Sturm, et al. (2015). "The Economics of Density: Evidence From the Berlin Wall". In: _Econometrica_ 83.6, pp. 2127-2189. DOI: [10.3982/ECTA10876](https://doi.org/10.3982%2FECTA10876). Altonji, J. G., T. E. Elder, and C. R. Taber (2005). "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools". In: _Journal of Political Economy_ 113.1, pp. 151-184. DOI: [10.1086/426036](https://doi.org/10.1086%2F426036). Altonji, J. G. and C. R. Pierret (2001). "Employer Learning and Statistical Discrimination". In: _Quarterly Journal of Economics_ 116.1, pp. 313-350. DOI: [10.1162/003355301556329](https://doi.org/10.1162%2F003355301556329). Angrist, J. D. and A. B. Krueger (1991). "Does Compulsory School Attendance Affect Schooling and Earnings?" In: _Quarterly Journal of Economics_ 106.4, pp. 979-1014. DOI: [10.2307/2937954](https://doi.org/10.2307%2F2937954). Angrist, J. D. and J. Pischke (2009). _Mostly Harmless Econometrics: An Empiricist's Companion_. Princeton University Press. ISBN: 0691120358. Arcidiacono, P. (2004). "Ability Sorting and the Returns to College Major". In: _Journal of Econometrics_ 121, pp. 343-375. DOI: [10.1016/j.jeconom.2003.10.010](https://doi.org/10.1016%2Fj.jeconom.2003.10.010). Arcidiacono, P., E. Aucejo, A. Maurel, et al. (2016). _College Attrition and the Dynamics of Information Revelation_. Working Paper. Duke University. URL: [https://tyleransom.github.io/research/CollegeDropout2016May31.pdf](https://tyleransom.github.io/research/CollegeDropout2016May31.pdf). Arcidiacono, P., E. Aucejo, A. Maurel, et al. (2025). "College Attrition and the Dynamics of Information Revelation". In: _Journal of Political Economy_ 133.1. DOI: [10.1086/732526](https://doi.org/10.1086%2F732526). Arcidiacono, P. and J. B. Jones (2003). "Finite Mixture Distributions, Sequential Likelihood and the EM Algorithm". In: _Econometrica_ 71.3, pp. 933-946. DOI: [10.1111/1468-0262.00431](https://doi.org/10.1111%2F1468-0262.00431). Arcidiacono, P., J. Kinsler, and T. Ransom (2022b). "Asian American Discrimination in Harvard Admissions". In: _European Economic Review_ 144, p. 104079. DOI: [10.1016/j.euroecorev.2022.104079](https://doi.org/10.1016%2Fj.euroecorev.2022.104079). Arcidiacono, P., J. Kinsler, and T. Ransom (2022a). "Legacy and Athlete Preferences at Harvard". In: _Journal of Labor Economics_ 40.1, pp. 133-156. DOI: [10.1086/713744](https://doi.org/10.1086%2F713744). Arcidiacono, P. and R. A. Miller (2011). "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity". In: _Econometrica_ 79.6, pp. 1823-1867. DOI: [10.3982/ECTA7743](https://doi.org/10.3982%2FECTA7743). Arroyo Marioli, F., F. Bullano, S. Kucinskas, et al. (2020). _Tracking R of COVID-19: A New Real-Time Estimation Using the Kalman Filter_. Working Paper. medRxiv. DOI: [10.1101/2020.04.19.20071886](https://doi.org/10.1101%2F2020.04.19.20071886). Ashworth, J., V. J. Hotz, A. Maurel, et al. (2021). "Changes across Cohorts in Wage Returns to Schooling and Early Work Experiences". In: _Journal of Labor Economics_ 39.4, pp. 931-964. DOI: [10.1086/711851](https://doi.org/10.1086%2F711851). Attanasio, O. P., C. Meghir, and A. Santiago (2011). "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA". In: _Review of Economic Studies_ 79.1, pp. 37-66. DOI: [10.1093/restud/rdr015](https://doi.org/10.1093%2Frestud%2Frdr015). Aucejo, E. M. and J. James (2019). "Catching Up to Girls: Understanding the Gender Imbalance in Educational Attainment Within Race". In: _Journal of Applied Econometrics_ 34.4, pp. 502-525. DOI: [10.1002/jae.2699](https://doi.org/10.1002%2Fjae.2699). Baragatti, M., A. Grimaud, and D. Pommeret (2013). "Likelihood-free Parallel Tempering". In: _Statistics and Computing_ 23.4, pp. 535-549. DOI: [ 10.1007/s11222-012-9328-6](https://doi.org/%2010.1007%2Fs11222-012-9328-6). Bayer, P., R. McMillan, A. Murphy, et al. (2016). "A Dynamic Model of Demand for Houses and Neighborhoods". In: _Econometrica_ 84.3, pp. 893-942. DOI: [10.3982/ECTA10170](https://doi.org/10.3982%2FECTA10170). Begg, C. B. and R. Gray (1984). "Calculation of Polychotomous Logistic Regression Parameters Using Individualized Regressions". In: _Biometrika_ 71.1, pp. 11-18. DOI: [10.1093/biomet/71.1.11](https://doi.org/10.1093%2Fbiomet%2F71.1.11). Beggs, S. D., N. S. Cardell, and J. Hausman (1981). "Assessing the Potential Demand for Electric Cars". In: _Journal of Econometrics_ 17.1, pp. 1-19. DOI: [10.1016/0304-4076(81)90056-7](https://doi.org/10.1016%2F0304-4076%2881%2990056-7). Berry, S., J. Levinsohn, and A. Pakes (1995). "Automobile Prices in Market Equilibrium". In: _Econometrica_ 63.4, pp. 841-890. URL: [http://www.jstor.org/stable/2171802](http://www.jstor.org/stable/2171802). Blass, A. A., S. Lach, and C. F. Manski (2010). "Using Elicited Choice Probabilities to Estimate Random Utility Models: Preferences for Electricity Reliability". In: _International Economic Review_ 51.2, pp. 421-440. DOI: [10.1111/j.1468-2354.2010.00586.x](https://doi.org/10.1111%2Fj.1468-2354.2010.00586.x). Blundell, R. (2010). "Comments on: ``Structural vs. Atheoretic Approaches to Econometrics'' by Michael Keane". In: _Journal of Econometrics_ 156.1, pp. 25-26. DOI: [10.1016/j.jeconom.2009.09.005](https://doi.org/10.1016%2Fj.jeconom.2009.09.005). Bresnahan, T. F., S. Stern, and M. Trajtenberg (1997). "Market Segmentation and the Sources of Rents from Innovation: Personal Computers in the Late 1980s". In: _The RAND Journal of Economics_ 28.0, pp. S17-S44. DOI: [10.2307/3087454](https://doi.org/10.2307%2F3087454). Brien, M. J., L. A. Lillard, and S. Stern (2006). "Cohabitation, Marriage, and Divorce in a Model of Match Quality". In: _International Economic Review_ 47.2, pp. 451-494. DOI: [10.1111/j.1468-2354.2006.00385.x](https://doi.org/10.1111%2Fj.1468-2354.2006.00385.x). Card, D. (1995). "Using Geographic Variation in College Proximity to Estimate the Return to Schooling". In: _Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp_. Ed. by L. N. Christofides, E. K. Grant and R. Swidinsky. Toronto: University of Toronto Press. Cardell, N. S. (1997). "Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity". In: _Econometric Theory_ 13.2, pp. 185-213. URL: [https://www.jstor.org/stable/3532724](https://www.jstor.org/stable/3532724). Caucutt, E. M., L. Lochner, J. Mullins, et al. (2020). _Child Skill Production: Accounting for Parental and Market-Based Time and Goods Investments_. Working Paper 27838. National Bureau of Economic Research. DOI: [10.3386/w27838](https://doi.org/10.3386%2Fw27838). Chen, X., H. Hong, and D. Nekipelov (2011). "Nonlinear Models of Measurement Errors". In: _Journal of Economic Literature_ 49.4, pp. 901-937. DOI: [10.1257/jel.49.4.901](https://doi.org/10.1257%2Fjel.49.4.901). Chintagunta, P. K. (1992). "Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments". In: _Marketing Science_ 11.4, pp. 386-407. DOI: [10.1287/mksc.11.4.386](https://doi.org/10.1287%2Fmksc.11.4.386). Cinelli, C. and C. Hazlett (2020). "Making Sense of Sensitivity: Extending Omitted Variable Bias". In: _Journal of the Royal Statistical Society: Series B (Statistical Methodology)_ 82.1, pp. 39-67. DOI: [10.1111/rssb.12348](https://doi.org/10.1111%2Frssb.12348). Coate, P. and K. Mangum (2019). _Fast Locations and Slowing Labor Mobility_. Working Paper 19-49. Federal Reserve Bank of Philadelphia. Cunha, F., J. J. Heckman, and S. M. Schennach (2010). "Estimating the Technology of Cognitive and Noncognitive Skill Formation". In: _Econometrica_ 78.3, pp. 883-931. DOI: [10.3982/ECTA6551](https://doi.org/10.3982%2FECTA6551). Cunningham, S. (2021). _Causal Inference: The Mixtape_. Yale University Press. URL: [https://www.scunning.com/causalinference_norap.pdf](https://www.scunning.com/causalinference_norap.pdf). Delavande, A. and C. F. Manski (2015). "Using Elicited Choice Probabilities in Hypothetical Elections to Study Decisions to Vote". In: _Electoral Studies_ 38, pp. 28-37. DOI: [10.1016/j.electstud.2015.01.006](https://doi.org/10.1016%2Fj.electstud.2015.01.006). Delavande, A. and B. Zafar (2019). "University Choice: The Role of Expected Earnings, Nonpecuniary Outcomes, and Financial Constraints". In: _Journal of Political Economy_ 127.5, pp. 2343-2393. DOI: [10.1086/701808](https://doi.org/10.1086%2F701808). Diegert, P., M. A. Masten, and A. Poirier (2025). _Assessing Omitted Variable Bias when the Controls are Endogenous_. arXiv. DOI: [10.48550/ARXIV.2206.02303](https://doi.org/10.48550%2FARXIV.2206.02303). Erdem, T. and M. P. Keane (1996). "Decision-Making under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets". In: _Marketing Science_ 15.1, pp. 1-20. DOI: [10.1287/mksc.15.1.1](https://doi.org/10.1287%2Fmksc.15.1.1). Evans, R. W. (2018). _Simulated Method of Moments (SMM) Estimation_. QuantEcon Note. University of Chicago. URL: [https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93](https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93). Farber, H. S. and R. Gibbons (1996). "Learning and Wage Dynamics". In: _Quarterly Journal of Economics_ 111.4, pp. 1007-1047. DOI: [10.2307/2946706](https://doi.org/10.2307%2F2946706). Fu, C., N. Grau, and J. Rivera (2020). _Wandering Astray: Teenagers' Choices of Schooling and Crime_. Working Paper. University of Wisconsin-Madison. URL: [https://www.ssc.wisc.edu/~cfu/wander.pdf](https://www.ssc.wisc.edu/~cfu/wander.pdf). Gillingham, K., F. Iskhakov, A. Munk-Nielsen, et al. (2022). "Equilibrium Trade in Automobiles". In: _Journal of Political Economy_. DOI: [10.1086/720463](https://doi.org/10.1086%2F720463). Haile, P. (2019). _``Structural vs. Reduced Form'' Language and Models in Empirical Economics_. Lecture Slides. Yale University. URL: [http://www.econ.yale.edu/~pah29/intro.pdf](http://www.econ.yale.edu/~pah29/intro.pdf). Haile, P. (2024). _Models, Measurement, and the Language of Empirical Economics_. Lecture Slides. Yale University. URL: [https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf](https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf). Heckman, J. J., J. Stixrud, and S. Urzua (2006). "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior". In: _Journal of Labor Economics_ 24.3, pp. 411-482. DOI: [10.1086/504455](https://doi.org/10.1086%2F504455). Hotz, V. J. and R. A. Miller (1993). "Conditional Choice Probabilities and the Estimation of Dynamic Models". In: _The Review of Economic Studies_ 60.3, pp. 497-529. DOI: [10.2307/2298122](https://doi.org/10.2307%2F2298122). Hurwicz, L. (1950). "Generalization of the Concept of Identification". In: _Statistical Inference in Dynamic Economic Models_. Hoboken, NJ: John Wiley and Sons, pp. 245-257. Ishimaru, S. (2022). _Geographic Mobility of Youth and Spatial Gaps in Local College and Labor Market Opportunities_. Working Paper. Hitotsubashi University. James, J. (2011). _Ability Matching and Occupational Choice_. Working Paper 11-25. Federal Reserve Bank of Cleveland. James, J. (2017). "MM Algorithm for General Mixed Multinomial Logit Models". In: _Journal of Applied Econometrics_ 32.4, pp. 841-857. DOI: [10.1002/jae.2532](https://doi.org/10.1002%2Fjae.2532). Jin, H. and H. Shen (2020). "Foreign Asset Accumulation Among Emerging Market Economies: A Case for Coordination". In: _Review of Economic Dynamics_ 35.1, pp. 54-73. DOI: [10.1016/j.red.2019.04.006](https://doi.org/10.1016%2Fj.red.2019.04.006). Keane, M. P. (2010). "Structural vs. Atheoretic Approaches to Econometrics". In: _Journal of Econometrics_ 156.1, pp. 3-20. DOI: [10.1016/j.jeconom.2009.09.003](https://doi.org/10.1016%2Fj.jeconom.2009.09.003). Keane, M. P. and K. I. Wolpin (1997). "The Career Decisions of Young Men". In: _Journal of Political Economy_ 105.3, pp. 473-522. DOI: [10.1086/262080](https://doi.org/10.1086%2F262080). Koopmans, T. C. and O. Reiersol (1950). "The Identification of Structural Characteristics". In: _The Annals of Mathematical Statistics_ 21.2, pp. 165-181. URL: [http://www.jstor.org/stable/2236899](http://www.jstor.org/stable/2236899). Kosar, G., T. Ransom, and W. van der Klaauw (2022). "Understanding Migration Aversion Using Elicited Counterfactual Choice Probabilities". In: _Journal of Econometrics_ 231.1, pp. 123-147. DOI: [10.1016/j.jeconom.2020.07.056](https://doi.org/10.1016%2Fj.jeconom.2020.07.056). Krauth, B. (2016). "Bounding a Linear Causal Effect Using Relative Correlation Restrictions". In: _Journal of Econometric Methods_ 5.1, pp. 117-141. DOI: [10.1515/jem-2013-0013](https://doi.org/10.1515%2Fjem-2013-0013). Lang, K. and M. D. Palacios (2018). _The Determinants of Teachers' Occupational Choice_. Working Paper 24883. National Bureau of Economic Research. DOI: [10.3386/w24883](https://doi.org/10.3386%2Fw24883). Lee, D. S., J. McCrary, M. J. Moreira, et al. (2020). _Valid t-ratio Inference for IV_. Working Paper. arXiv. URL: [https://arxiv.org/abs/2010.05058](https://arxiv.org/abs/2010.05058). Lewbel, A. (2019). "The Identification Zoo: Meanings of Identification in Econometrics". In: _Journal of Economic Literature_ 57.4, pp. 835-903. DOI: [10.1257/jel.20181361](https://doi.org/10.1257%2Fjel.20181361). Mahoney, N. (2022). "Principles for Combining Descriptive and Model-Based Analysis in Applied Microeconomics Research". In: _Journal of Economic Perspectives_ 36.3, pp. 211-22. DOI: [10.1257/jep.36.3.211](https://doi.org/10.1257%2Fjep.36.3.211). McFadden, D. (1978). "Modelling the Choice of Residential Location". In: _Spatial Interaction Theory and Planning Models_. Ed. by A. Karlqvist, L. Lundqvist, F. Snickers and J. W. Weibull. Amsterdam: North Holland, pp. 75-96. McFadden, D. (1989). "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration". In: _Econometrica_ 57.5, pp. 995-1026. DOI: [10.2307/1913621](https://doi.org/10.2307%2F1913621). URL: [http://www.jstor.org/stable/1913621](http://www.jstor.org/stable/1913621). Mellon, J. (2020). _Rain, Rain, Go Away: 137 Potential Exclusion-Restriction Violations for Studies Using Weather as an Instrumental Variable_. Working Paper. University of Manchester. URL: [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715610](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715610). Miller, R. A. (1984). "Job Matching and Occupational Choice". In: _Journal of Political Economy_ 92.6, pp. 1086-1120. DOI: [10.1086/261276](https://doi.org/10.1086%2F261276). Mincer, J. (1974). _Schooling, Experience and Earnings_. New York: Columbia University Press for National Bureau of Economic Research. Ost, B., W. Pan, and D. Webber (2018). "The Returns to College Persistence for Marginal Students: Regression Discontinuity Evidence from University Dismissal Policies". In: _Journal of Labor Economics_ 36.3, pp. 779-805. DOI: [10.1086/696204](https://doi.org/10.1086%2F696204). Oster, E. (2019). "Unobservable Selection and Coefficient Stability: Theory and Evidence". In: _Journal of Business & Economic Statistics_ 37.2, pp. 187-204. DOI: [10.1080/07350015.2016.1227711](https://doi.org/10.1080%2F07350015.2016.1227711). Pischke, S. (2007). _Lecture Notes on Measurement Error_. Lecture Notes. London School of Economics. URL: [http://econ.lse.ac.uk/staff/spischke/ec524/Merr_new.pdf](http://econ.lse.ac.uk/staff/spischke/ec524/Merr_new.pdf). Ransom, M. R. and T. Ransom (2018). "Do High School Sports Build or Reveal Character? Bounding Causal Estimates of Sports Participation". In: _Economics of Education Review_ 64, pp. 75-89. DOI: [10.1016/j.econedurev.2018.04.002](https://doi.org/10.1016%2Fj.econedurev.2018.04.002). Ransom, T. (2022). "Labor Market Frictions and Moving Costs of the Employed and Unemployed". In: _Journal of Human Resources_ 57.S, pp. S137-S166. DOI: [10.3368/jhr.monopsony.0219-10013R2](https://doi.org/10.3368%2Fjhr.monopsony.0219-10013R2). Rudik, I. (2020). "Optimal Climate Policy When Damages Are Unknown". In: _American Economic Journal: Economic Policy_ 12.2, pp. 340-373. DOI: [10.1257/pol.20160541](https://doi.org/10.1257%2Fpol.20160541). Rust, J. (1987). "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher". In: _Econometrica_ 55.5, pp. 999-1033. URL: [http://www.jstor.org/stable/1911259](http://www.jstor.org/stable/1911259). Shalizi, C. R. (2019). _Advanced Data Analysis from an Elementary Point of View_. Cambridge University Press. URL: [http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf). Smith Jr., A. A. (2008). "Indirect Inference". In: _The New Palgrave Dictionary of Economics_. Ed. by S. N. Durlauf and L. E. Blume. Vol. 1-8. London: Palgrave Macmillan. DOI: [10.1007/978-1-349-58802-2](https://doi.org/10.1007%2F978-1-349-58802-2). URL: [http://www.econ.yale.edu/smith/palgrave7.pdf](http://www.econ.yale.edu/smith/palgrave7.pdf). Stinebrickner, R. and T. Stinebrickner (2014a). "Academic Performance and College Dropout: Using Longitudinal Expectations Data to Estimate a Learning Model". In: _Journal of Labor Economics_ 32.3, pp. 601-644. DOI: [10.1086/675308](https://doi.org/10.1086%2F675308). Stinebrickner, R. and T. R. Stinebrickner (2014b). "A Major in Science? Initial Beliefs and Final Outcomes for College Major and Dropout". In: _Review of Economic Studies_ 81.1, pp. 426-472. DOI: [10.1093/restud/rdt025](https://doi.org/10.1093%2Frestud%2Frdt025). Su, C. and K. L. Judd (2012). "Constrained Optimization Approaches to Estimation of Structural Models". In: _Econometrica_ 80.5, pp. 2213-2230. DOI: [10.3982/ECTA7925](https://doi.org/10.3982%2FECTA7925). Train, K. (2009). _Discrete Choice Methods with Simulation_. 2nd ed. Cambridge; New York: Cambridge University Press. ISBN: 9780521766555. Wiswall, M. and B. Zafar (2018). "Preference for the Workplace, Investment in Human Capital, and Gender". In: _Quarterly Journal of Economics_ 133.1, pp. 457-507. DOI: [10.1093/qje/qjx035](https://doi.org/10.1093%2Fqje%2Fqjx035). Young, A. (2020). _Consistency without Inference: Instrumental Variables in Practical Application_. Working Paper. London School of Economics. ]