class: title-slide <br><br><br> # Lecture 5 ## GEV ### Tyler Ransom ### ECON 6343, University of Oklahoma --- # Attribution Many of these slides are based on slides written by Peter Arcidiacono. I use them with his permission. These slides also heavily follow Chapter 4 of Train (2009) --- # Plan for the day 1. Nested Logit - two-step estimation 2. Generalized Extreme Value Distributions - multinomial logit and nested logit as special cases 3. Bresnahan, Stern, and Trajtenberg (1997) - allows for correlations across multiple nests --- # Red bus / blue bus choice set - As we discussed last time, adding another bus results in odd substitution patterns - This is because of the IIA property of multinomial logit models <center>
</center> --- # Nesting the choice set - One way to get around IIA is to .hi[nest] the choice set - Nesting explicitly introduces correlation across alternatives within the same nest <center>
</center> --- # Other cases where nesting is useful - Red bus / blue bus came from the transportation economics literature - But nesting is used in all fields of economics - Elections - Suppose we have two candidates, A and B - If we introduce C, whose platform resembles B, what will new vote shares be? - (Primary elections are a kind of nesting) - Product markets - Nesting "branded" and "generic" products (e.g. branded vs. micro-brewed beer) - But some consumers won't purchase either type of the product - Ignoring non-buyers, will give misleading price elasticities of demand --- # Nested Logit - Coming back to the red bus/blue bus problem, we would like some way for the errors for the red bus to be correlated with the errors for the blue bus - The .hi[nested logit] allows a nest-specific error: .small[ `\begin{align*} U_{i,RedBus}&=u_{i,RedBus\phantom{e}}+\nu_{i,Bus}+\lambda\epsilon_{i,RedBus}\\ U_{i,BlueBus}&=u_{i,BlueBus}+\nu_{i,Bus}+\lambda\epsilon_{i,BlueBus}\\ U_{i,Car}&=u_{i,Car\phantom{eBus}}+\nu_{i,Car}+\lambda\epsilon_{i,Car} \end{align*}` ] where: 1. `\(\nu_{ik}+\lambda\epsilon_{ij}\)` is distributed Type I Extreme Value 2. The `\(\nu\)`'s and the `\(\epsilon\)`'s are independent 3. `\(\epsilon_{ij}\)` is distributed Type I extreme value 4. Distribution of `\(\nu_k\)`'s is derived in Theorem 2.1 of Cardell (1997) --- # Nested Logit 2 - Composite error term for car is independent from either the red bus error or the blue bus error - If we added a yellow bus, all errors in the bus nest would be independent conditional on choosing to take a bus (i.e. .hi[IIA within nest]) - But the bus nest errors are correlated from the viewpoint of the top level (i.e. before conditioning on nest choice) - Note: adding two extreme value errors does .hi[not] give back an extreme value error - But the difference between two T1EV errors is distributed logistic --- # Nested Logit 3 - More important than the exact error distribution is the choice probabilities: `\begin{align*} P_{iC}&=\frac{\exp(u_{iC})}{\left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda}+\exp(u_{iC})}\\ P_{iRB}&=\frac{\exp\left(\frac{u_{iRB}}{\lambda}\right)\left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda-1}}{\left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda}+\exp(u_{iC})} \end{align*}` - Not particularly intuitive, but can break it down into parts `\(P(B)P(RB|B)\)`: `\begin{align} P_{iRB}&=\left(\frac{\left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda}}{\left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda}+\exp(u_{iC})}\right)\times\label{eq:pbus}\\ &\phantom{\times\times}\left(\frac{\exp\left(\frac{u_{iRB}}{\lambda}\right)}{\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)}\right)\nonumber \end{align}` --- # Nested Logit Estimation The log likelihood can then be written as: .small[ `\begin{align*} \ell&=\sum_{i=1}^N\sum_{j\in J}(d_{ij}=1)\ln(P_{ij})\\ &= \sum_{i=1}^N\left[(d_{iC}=1)\ln(P_{iC})+\sum_{j\in J_B}(d_{ij}=1)\ln(P_{iB}P_{ij|B})\right]\\ &=\sum_{i=1}^N\left[(d_{iC}=1)\ln(P_{iC})+\sum_{j\in J_B}(d_{ij}=1)(\ln(P_{iB})+\ln(P_{ij|B}))\right]\\ &=\sum_{i=1}^N\Bigg[(d_{iC}=1)\ln(P_{iC})+(d_{iBB}=1+d_{iRB}=1)\ln(P_{iB})\\ &\qquad+\left.\sum_{j\in J_B}(d_{ij}=1)\ln(P_{ij|B})\right] \end{align*}` ] --- # Nested Logit Estimation 2 - Could estimate a nested logit by straight maximum likelihood. An alternative follows from decomposing the nests into the product of two probabilities: `\(P(RB|B)P(B)\)` - In order to do this, however, first decompose `\(u_{RB}\)` into two parts: `\begin{align*} u_{iRB}&=u_{iB}+u_{iRB|B} \end{align*}` - We also need to choose normalizations: - `\(u_{iC} = 0\)` - `\(u_{iBB|B} = 0\)` - So we will estimate `\((\beta_{B},\beta_{RB}, \gamma,\lambda)\)` where `\(\gamma\)` corresponds to the `\(Z\)`'s (alt-specific) --- # Nested Logit Estimation 3 - Note that our normalizations imply the following observable components of utility `\begin{align*} u_{iC}&=0\\ u_{iBB}&=\beta_{B}X_{i}+\gamma (Z_{BB}-Z_{C})\\ u_{iRB}&=(\beta_{B}+\beta_{RB})X_{i}+\gamma (Z_{RB}-Z_{C}) \end{align*}` - Now estimate `\(\beta_{RB}\)` and `\(\gamma\)` in a 1st stage using only observations that chose bus, `\(N_B\)`: `\begin{align*} \ell_1&=\sum_{i=1}^{N_B}(d_{iRB}=1)(u_{iRB|B}/\lambda)+\ln\left(1+\exp(u_{iRB|B}/\lambda)\right) \end{align*}` - The `\(1\)` in the `\(\ln()\)` operator corresponds to `\(\exp(u_{iBB|B}/\lambda)\)` since `\(u_{iBB|B} = 0\)` --- # Nested Logit Estimation 4 - Now consider the term in the numerator of `\(P(B)\)` in \eqref{eq:pbus}. We can rewrite this as: `\begin{align*} \left[\exp\left(\frac{u_{iRB}}{\lambda}\right)+\exp\left(\frac{u_{iBB}}{\lambda}\right)\right]^{\lambda}&= \exp(u_{iBB})\left[\exp\left(\frac{u_{iRB|B}}{\lambda}\right)+1\right]^{\lambda}\\ &=\exp(u_{iBB}+\lambda I_{iB}) \end{align*}` where `\(I_{iB}\)` is called the .hi[inclusive value] and is given by: `\begin{align*} I_{iB}&=\ln\left(\exp\left(\frac{u_{iRB|B}}{\lambda}\right)+1\right) \end{align*}` Note: looks like `\(E\left(\text{utility}\right)\)` associated with a particular nest (minus Euler's constant) --- # Nested Logit Estimation 5 - Taking the estimates of `\(u_{iRB|B}\)` as given and calculating the inclusive value, we now estimate a second logit to get `\(\beta_B\)`: `\begin{align*} \ell_2&=\sum_i(d_{iB}=1)(u_{iBB}+\lambda I_{iB}-u_{iC})+\ln(1+\exp(u_{iBB}+\lambda I_{iB}-u_{iC})) \end{align*}` - Could do all this because log of the probabilities was additively separable. Consider the log likelihood contribution of someone who chose red bus: `\begin{align*} \ln(P_{iB}(\beta_{B},\beta_{RB},\gamma,\lambda))&+\ln(P_{iRB|B}(\beta_{RB},\gamma)) \end{align*}` - We get estimates of `\(\beta_{RB}\)` and `\(\gamma\)` only from the second part of log likelihood - Then we take these as given when estimating `\(\beta_{B}\)` and `\(\lambda\)` --- # The Nested Logit as a Dynamic Discrete Choice Model - Instead of having individuals know their full error, consider the case where the error is revealed in stages - First individuals choose whether or not to ride the bus and there is an extreme value error associated with both the bus and the car option - Individuals take into account that if they choose the bus option they will get to make a choice about which bus in the next period (option value) - With the errors in the second choice also distributed Type I extreme value, independent from each other, and independent from the errors in the first period, the expectation on the value of the second period decision is `\(\lambda I_{iB}\)` plus Euler's constant. --- # Proposition 1 (McFadden, 1978) Let `\(Y_{j}=e^{u_{j}}\)`. Suppose we have a function `\(G(Y_{1},...,Y_{{J}})\)` that maps from `\(R^{{J}}\)` into `\(R^1\)` If `\(G\)` satisfies: 1. `\(G\geq 0\)` 2. `\(G\)` is homogeneous of some degree `\(k\)` 3. `\(G\rightarrow \infty\)` as `\(Y_{j}\rightarrow \infty\)` for any `\(j\)` 4. Cross partial derivatives weakly alternate in sign, beginning with `\(G_{i}\geq 0\)` --- # Proposition 1 (Continued) then: `\begin{align*} F(u_1,...,u_\mathcal{J})&=\exp\left[-G(Y_1,....,Y_{J})\right] \end{align*}` is the cumulative distribution of a multivariate extreme value function and: `\begin{align*} P_{i}&=\frac{Y_{i}G_{i}}{G} \end{align*}` where `\(G_i\)` denotes the derivative of `\(G\)` with respect to `\(Y_i\)` --- # Logit from GEV - Another way of thinking about the last statement is that: `\begin{align*} P_i&=\frac{\partial \ln(G)}{\partial u_i} \end{align*}` - For the multinomial logit case, the `\(G\)` function is: `\begin{align*} G&=\sum_{j=1}^{{J}}\exp(u_j) \end{align*}` with the derivative of the log of this giving multinomial logit probabilities - But `\(\ln(G)\)` (plus Euler's constant) is .hi[also] expected utility - In fact, for all GEV models `\(\ln(G)\)` is expected utility! --- # Nested Logit from GEV - Suppose a nested logit model with two nests `\((F,NF)\)` and a no-purchase option `\(N\)` - The `\(G\)` function is then: `\begin{align*} G&=\left(\sum_{j\in F}\exp(u_j/\lambda_F)\right)^{\lambda_F}+\left(\sum_{j\in NF}\exp(u_j/\lambda_{NF})\right)^{\lambda_{NF}}+\exp(u_N) \end{align*}` - Differentiating `\(\ln(G)\)` (the expected utility function) with respect to `\(u_j\)` where `\(k\in F\)` yields the probability `\(k\)` is chosen: `\begin{align*} P_k&=\frac{\exp(u_k/\lambda_F)\left(\sum_{j\in F}\exp(u_j/\lambda_F)\right)^{\lambda_F-1}}{\left(\sum_{j\in F}\exp(u_j/\lambda_F)\right)^{\lambda_F}+\left(\sum_{j\in NF}\exp(u_j/\lambda_{NF})\right)^{\lambda_{NF}}+\exp(u_N)} \end{align*}` --- # Overlapping nests (Bresnahan et al., 1997) - We can also come up with more general nesting structures - Bresnahan, Stern, and Trajtenberg (1997) model 4 overlapping nests for computers: 1. Branded but not Frontier `\(\{B,NF\}\)` 2. Generic but Frontier `\(\{NB,F\}\)` 3. Branded and Frontier `\(\{B,F\}\)` 4. Generic but not Frontier `\(\{NB,NF\}\)` - Use the model to understand market power in PC sector in late 1980s - Overlapping nests explain coexistence of imitative entry and innovative investment --- # Overlapping nests (Ishimaru, 2022) - Ishimaru (2022) allows for overlapping nests for colleges and universities in the US - His model allows for 4 combinations of overlapping nests: 1. All colleges 2. In- vs. Out-of-state 3. 2-year vs. 4-year 4. Public vs. Private - e.g. 2-yr in-state and 4-yr in-state would be irrelevant alternatives in a traditional nested logit model (where 2-yr/4-yr is the first level and in-/out-of-state is the second level), but they can be in the same nest here. --- # References .smaller[ Ackerberg, D. A. (2003). "Advertising, Learning, and Consumer Choice in Experience Good Markets: An Empirical Examination". In: _International Economic Review_ 44.3, pp. 1007-1040. DOI: [10.1111/1468-2354.t01-2-00098](https://doi.org/10.1111%2F1468-2354.t01-2-00098). Adams, R. P. (2018). _Model Selection and Cross Validation_. Lecture Notes. Princeton University. URL: [https://www.cs.princeton.edu/courses/archive/fall18/cos324/files/model-selection.pdf](https://www.cs.princeton.edu/courses/archive/fall18/cos324/files/model-selection.pdf). Ahlfeldt, G. M., S. J. Redding, D. M. Sturm, et al. (2015). "The Economics of Density: Evidence From the Berlin Wall". In: _Econometrica_ 83.6, pp. 2127-2189. DOI: [10.3982/ECTA10876](https://doi.org/10.3982%2FECTA10876). Altonji, J. G., T. E. Elder, and C. R. Taber (2005). "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools". In: _Journal of Political Economy_ 113.1, pp. 151-184. DOI: [10.1086/426036](https://doi.org/10.1086%2F426036). Altonji, J. G. and C. R. Pierret (2001). "Employer Learning and Statistical Discrimination". In: _Quarterly Journal of Economics_ 116.1, pp. 313-350. DOI: [10.1162/003355301556329](https://doi.org/10.1162%2F003355301556329). Angrist, J. D. and A. B. Krueger (1991). "Does Compulsory School Attendance Affect Schooling and Earnings?" In: _Quarterly Journal of Economics_ 106.4, pp. 979-1014. DOI: [10.2307/2937954](https://doi.org/10.2307%2F2937954). Angrist, J. D. and J. Pischke (2009). _Mostly Harmless Econometrics: An Empiricist's Companion_. Princeton University Press. ISBN: 0691120358. Arcidiacono, P. (2004). "Ability Sorting and the Returns to College Major". In: _Journal of Econometrics_ 121, pp. 343-375. DOI: [10.1016/j.jeconom.2003.10.010](https://doi.org/10.1016%2Fj.jeconom.2003.10.010). Arcidiacono, P., E. Aucejo, A. Maurel, et al. (2016). _College Attrition and the Dynamics of Information Revelation_. Working Paper. Duke University. URL: [https://tyleransom.github.io/research/CollegeDropout2016May31.pdf](https://tyleransom.github.io/research/CollegeDropout2016May31.pdf). Arcidiacono, P., E. Aucejo, A. Maurel, et al. (2025). "College Attrition and the Dynamics of Information Revelation". In: _Journal of Political Economy_ 133.1. DOI: [10.1086/732526](https://doi.org/10.1086%2F732526). Arcidiacono, P. and J. B. Jones (2003). "Finite Mixture Distributions, Sequential Likelihood and the EM Algorithm". In: _Econometrica_ 71.3, pp. 933-946. DOI: [10.1111/1468-0262.00431](https://doi.org/10.1111%2F1468-0262.00431). Arcidiacono, P., J. Kinsler, and T. Ransom (2022b). "Asian American Discrimination in Harvard Admissions". In: _European Economic Review_ 144, p. 104079. DOI: [10.1016/j.euroecorev.2022.104079](https://doi.org/10.1016%2Fj.euroecorev.2022.104079). Arcidiacono, P., J. Kinsler, and T. Ransom (2022a). "Legacy and Athlete Preferences at Harvard". In: _Journal of Labor Economics_ 40.1, pp. 133-156. DOI: [10.1086/713744](https://doi.org/10.1086%2F713744). Arcidiacono, P. and R. A. Miller (2011). "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity". In: _Econometrica_ 79.6, pp. 1823-1867. DOI: [10.3982/ECTA7743](https://doi.org/10.3982%2FECTA7743). Arroyo Marioli, F., F. Bullano, S. Kucinskas, et al. (2020). _Tracking R of COVID-19: A New Real-Time Estimation Using the Kalman Filter_. Working Paper. medRxiv. DOI: [10.1101/2020.04.19.20071886](https://doi.org/10.1101%2F2020.04.19.20071886). Ashworth, J., V. J. Hotz, A. Maurel, et al. (2021). "Changes across Cohorts in Wage Returns to Schooling and Early Work Experiences". In: _Journal of Labor Economics_ 39.4, pp. 931-964. DOI: [10.1086/711851](https://doi.org/10.1086%2F711851). Attanasio, O. P., C. Meghir, and A. Santiago (2011). "Education Choices in Mexico: Using a Structural Model and a Randomized Experiment to Evaluate PROGRESA". In: _Review of Economic Studies_ 79.1, pp. 37-66. DOI: [10.1093/restud/rdr015](https://doi.org/10.1093%2Frestud%2Frdr015). Aucejo, E. M. and J. James (2019). "Catching Up to Girls: Understanding the Gender Imbalance in Educational Attainment Within Race". In: _Journal of Applied Econometrics_ 34.4, pp. 502-525. DOI: [10.1002/jae.2699](https://doi.org/10.1002%2Fjae.2699). Baragatti, M., A. Grimaud, and D. Pommeret (2013). "Likelihood-free Parallel Tempering". In: _Statistics and Computing_ 23.4, pp. 535-549. DOI: [ 10.1007/s11222-012-9328-6](https://doi.org/%2010.1007%2Fs11222-012-9328-6). Bayer, P., R. McMillan, A. Murphy, et al. (2016). "A Dynamic Model of Demand for Houses and Neighborhoods". In: _Econometrica_ 84.3, pp. 893-942. DOI: [10.3982/ECTA10170](https://doi.org/10.3982%2FECTA10170). Begg, C. B. and R. Gray (1984). "Calculation of Polychotomous Logistic Regression Parameters Using Individualized Regressions". In: _Biometrika_ 71.1, pp. 11-18. DOI: [10.1093/biomet/71.1.11](https://doi.org/10.1093%2Fbiomet%2F71.1.11). Beggs, S. D., N. S. Cardell, and J. Hausman (1981). "Assessing the Potential Demand for Electric Cars". In: _Journal of Econometrics_ 17.1, pp. 1-19. DOI: [10.1016/0304-4076(81)90056-7](https://doi.org/10.1016%2F0304-4076%2881%2990056-7). Berry, S., J. Levinsohn, and A. Pakes (1995). "Automobile Prices in Market Equilibrium". In: _Econometrica_ 63.4, pp. 841-890. URL: [http://www.jstor.org/stable/2171802](http://www.jstor.org/stable/2171802). Blass, A. A., S. Lach, and C. F. Manski (2010). "Using Elicited Choice Probabilities to Estimate Random Utility Models: Preferences for Electricity Reliability". In: _International Economic Review_ 51.2, pp. 421-440. DOI: [10.1111/j.1468-2354.2010.00586.x](https://doi.org/10.1111%2Fj.1468-2354.2010.00586.x). Blundell, R. (2010). "Comments on: ``Structural vs. Atheoretic Approaches to Econometrics'' by Michael Keane". In: _Journal of Econometrics_ 156.1, pp. 25-26. DOI: [10.1016/j.jeconom.2009.09.005](https://doi.org/10.1016%2Fj.jeconom.2009.09.005). Bresnahan, T. F., S. Stern, and M. Trajtenberg (1997). "Market Segmentation and the Sources of Rents from Innovation: Personal Computers in the Late 1980s". In: _The RAND Journal of Economics_ 28.0, pp. S17-S44. DOI: [10.2307/3087454](https://doi.org/10.2307%2F3087454). Brien, M. J., L. A. Lillard, and S. Stern (2006). "Cohabitation, Marriage, and Divorce in a Model of Match Quality". In: _International Economic Review_ 47.2, pp. 451-494. DOI: [10.1111/j.1468-2354.2006.00385.x](https://doi.org/10.1111%2Fj.1468-2354.2006.00385.x). Card, D. (1995). "Using Geographic Variation in College Proximity to Estimate the Return to Schooling". In: _Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp_. Ed. by L. N. Christofides, E. K. Grant and R. Swidinsky. Toronto: University of Toronto Press. Cardell, N. S. (1997). "Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity". In: _Econometric Theory_ 13.2, pp. 185-213. URL: [https://www.jstor.org/stable/3532724](https://www.jstor.org/stable/3532724). Caucutt, E. M., L. Lochner, J. Mullins, et al. (2020). _Child Skill Production: Accounting for Parental and Market-Based Time and Goods Investments_. Working Paper 27838. National Bureau of Economic Research. DOI: [10.3386/w27838](https://doi.org/10.3386%2Fw27838). Chen, X., H. Hong, and D. Nekipelov (2011). "Nonlinear Models of Measurement Errors". In: _Journal of Economic Literature_ 49.4, pp. 901-937. DOI: [10.1257/jel.49.4.901](https://doi.org/10.1257%2Fjel.49.4.901). Chintagunta, P. K. (1992). "Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments". In: _Marketing Science_ 11.4, pp. 386-407. DOI: [10.1287/mksc.11.4.386](https://doi.org/10.1287%2Fmksc.11.4.386). Cinelli, C. and C. Hazlett (2020). "Making Sense of Sensitivity: Extending Omitted Variable Bias". In: _Journal of the Royal Statistical Society: Series B (Statistical Methodology)_ 82.1, pp. 39-67. DOI: [10.1111/rssb.12348](https://doi.org/10.1111%2Frssb.12348). Coate, P. and K. Mangum (2019). _Fast Locations and Slowing Labor Mobility_. Working Paper 19-49. Federal Reserve Bank of Philadelphia. Cunha, F., J. J. Heckman, and S. M. Schennach (2010). "Estimating the Technology of Cognitive and Noncognitive Skill Formation". In: _Econometrica_ 78.3, pp. 883-931. DOI: [10.3982/ECTA6551](https://doi.org/10.3982%2FECTA6551). Cunningham, S. (2021). _Causal Inference: The Mixtape_. Yale University Press. URL: [https://www.scunning.com/causalinference_norap.pdf](https://www.scunning.com/causalinference_norap.pdf). Delavande, A. and C. F. Manski (2015). "Using Elicited Choice Probabilities in Hypothetical Elections to Study Decisions to Vote". In: _Electoral Studies_ 38, pp. 28-37. DOI: [10.1016/j.electstud.2015.01.006](https://doi.org/10.1016%2Fj.electstud.2015.01.006). Delavande, A. and B. Zafar (2019). "University Choice: The Role of Expected Earnings, Nonpecuniary Outcomes, and Financial Constraints". In: _Journal of Political Economy_ 127.5, pp. 2343-2393. DOI: [10.1086/701808](https://doi.org/10.1086%2F701808). Diegert, P., M. A. Masten, and A. Poirier (2025). _Assessing Omitted Variable Bias when the Controls are Endogenous_. arXiv. DOI: [10.48550/ARXIV.2206.02303](https://doi.org/10.48550%2FARXIV.2206.02303). Erdem, T. and M. P. Keane (1996). "Decision-Making under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets". In: _Marketing Science_ 15.1, pp. 1-20. DOI: [10.1287/mksc.15.1.1](https://doi.org/10.1287%2Fmksc.15.1.1). Evans, R. W. (2018). _Simulated Method of Moments (SMM) Estimation_. QuantEcon Note. University of Chicago. URL: [https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93](https://notes.quantecon.org/submission/5b3db2ceb9eab00015b89f93). Farber, H. S. and R. Gibbons (1996). "Learning and Wage Dynamics". In: _Quarterly Journal of Economics_ 111.4, pp. 1007-1047. DOI: [10.2307/2946706](https://doi.org/10.2307%2F2946706). Fu, C., N. Grau, and J. Rivera (2020). _Wandering Astray: Teenagers' Choices of Schooling and Crime_. Working Paper. University of Wisconsin-Madison. URL: [https://www.ssc.wisc.edu/~cfu/wander.pdf](https://www.ssc.wisc.edu/~cfu/wander.pdf). Gillingham, K., F. Iskhakov, A. Munk-Nielsen, et al. (2022). "Equilibrium Trade in Automobiles". In: _Journal of Political Economy_. DOI: [10.1086/720463](https://doi.org/10.1086%2F720463). Haile, P. (2019). _``Structural vs. Reduced Form'' Language and Models in Empirical Economics_. Lecture Slides. Yale University. URL: [http://www.econ.yale.edu/~pah29/intro.pdf](http://www.econ.yale.edu/~pah29/intro.pdf). Haile, P. (2024). _Models, Measurement, and the Language of Empirical Economics_. Lecture Slides. Yale University. URL: [https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf](https://www.dropbox.com/s/8kwtwn30dyac18s/intro.pdf). Heckman, J. J., J. Stixrud, and S. Urzua (2006). "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior". In: _Journal of Labor Economics_ 24.3, pp. 411-482. DOI: [10.1086/504455](https://doi.org/10.1086%2F504455). Hotz, V. J. and R. A. Miller (1993). "Conditional Choice Probabilities and the Estimation of Dynamic Models". In: _The Review of Economic Studies_ 60.3, pp. 497-529. DOI: [10.2307/2298122](https://doi.org/10.2307%2F2298122). Hurwicz, L. (1950). "Generalization of the Concept of Identification". In: _Statistical Inference in Dynamic Economic Models_. Hoboken, NJ: John Wiley and Sons, pp. 245-257. Ishimaru, S. (2022). _Geographic Mobility of Youth and Spatial Gaps in Local College and Labor Market Opportunities_. Working Paper. Hitotsubashi University. James, J. (2011). _Ability Matching and Occupational Choice_. Working Paper 11-25. Federal Reserve Bank of Cleveland. James, J. (2017). "MM Algorithm for General Mixed Multinomial Logit Models". In: _Journal of Applied Econometrics_ 32.4, pp. 841-857. DOI: [10.1002/jae.2532](https://doi.org/10.1002%2Fjae.2532). Jin, H. and H. Shen (2020). "Foreign Asset Accumulation Among Emerging Market Economies: A Case for Coordination". In: _Review of Economic Dynamics_ 35.1, pp. 54-73. DOI: [10.1016/j.red.2019.04.006](https://doi.org/10.1016%2Fj.red.2019.04.006). Keane, M. P. (2010). "Structural vs. Atheoretic Approaches to Econometrics". In: _Journal of Econometrics_ 156.1, pp. 3-20. DOI: [10.1016/j.jeconom.2009.09.003](https://doi.org/10.1016%2Fj.jeconom.2009.09.003). Keane, M. P. and K. I. Wolpin (1997). "The Career Decisions of Young Men". In: _Journal of Political Economy_ 105.3, pp. 473-522. DOI: [10.1086/262080](https://doi.org/10.1086%2F262080). Koopmans, T. C. and O. Reiersol (1950). "The Identification of Structural Characteristics". In: _The Annals of Mathematical Statistics_ 21.2, pp. 165-181. URL: [http://www.jstor.org/stable/2236899](http://www.jstor.org/stable/2236899). Kosar, G., T. Ransom, and W. van der Klaauw (2022). "Understanding Migration Aversion Using Elicited Counterfactual Choice Probabilities". In: _Journal of Econometrics_ 231.1, pp. 123-147. DOI: [10.1016/j.jeconom.2020.07.056](https://doi.org/10.1016%2Fj.jeconom.2020.07.056). Krauth, B. (2016). "Bounding a Linear Causal Effect Using Relative Correlation Restrictions". In: _Journal of Econometric Methods_ 5.1, pp. 117-141. DOI: [10.1515/jem-2013-0013](https://doi.org/10.1515%2Fjem-2013-0013). Lang, K. and M. D. Palacios (2018). _The Determinants of Teachers' Occupational Choice_. Working Paper 24883. National Bureau of Economic Research. DOI: [10.3386/w24883](https://doi.org/10.3386%2Fw24883). Lee, D. S., J. McCrary, M. J. Moreira, et al. (2020). _Valid t-ratio Inference for IV_. Working Paper. arXiv. URL: [https://arxiv.org/abs/2010.05058](https://arxiv.org/abs/2010.05058). Lewbel, A. (2019). "The Identification Zoo: Meanings of Identification in Econometrics". In: _Journal of Economic Literature_ 57.4, pp. 835-903. DOI: [10.1257/jel.20181361](https://doi.org/10.1257%2Fjel.20181361). Mahoney, N. (2022). "Principles for Combining Descriptive and Model-Based Analysis in Applied Microeconomics Research". In: _Journal of Economic Perspectives_ 36.3, pp. 211-22. DOI: [10.1257/jep.36.3.211](https://doi.org/10.1257%2Fjep.36.3.211). McFadden, D. (1978). "Modelling the Choice of Residential Location". In: _Spatial Interaction Theory and Planning Models_. Ed. by A. Karlqvist, L. Lundqvist, F. Snickers and J. W. Weibull. Amsterdam: North Holland, pp. 75-96. McFadden, D. (1989). "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration". In: _Econometrica_ 57.5, pp. 995-1026. DOI: [10.2307/1913621](https://doi.org/10.2307%2F1913621). URL: [http://www.jstor.org/stable/1913621](http://www.jstor.org/stable/1913621). Mellon, J. (2020). _Rain, Rain, Go Away: 137 Potential Exclusion-Restriction Violations for Studies Using Weather as an Instrumental Variable_. Working Paper. University of Manchester. URL: [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715610](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3715610). Miller, R. A. (1984). "Job Matching and Occupational Choice". In: _Journal of Political Economy_ 92.6, pp. 1086-1120. DOI: [10.1086/261276](https://doi.org/10.1086%2F261276). Mincer, J. (1974). _Schooling, Experience and Earnings_. New York: Columbia University Press for National Bureau of Economic Research. Ost, B., W. Pan, and D. Webber (2018). "The Returns to College Persistence for Marginal Students: Regression Discontinuity Evidence from University Dismissal Policies". In: _Journal of Labor Economics_ 36.3, pp. 779-805. DOI: [10.1086/696204](https://doi.org/10.1086%2F696204). Oster, E. (2019). "Unobservable Selection and Coefficient Stability: Theory and Evidence". In: _Journal of Business & Economic Statistics_ 37.2, pp. 187-204. DOI: [10.1080/07350015.2016.1227711](https://doi.org/10.1080%2F07350015.2016.1227711). Pischke, S. (2007). _Lecture Notes on Measurement Error_. Lecture Notes. London School of Economics. URL: [http://econ.lse.ac.uk/staff/spischke/ec524/Merr_new.pdf](http://econ.lse.ac.uk/staff/spischke/ec524/Merr_new.pdf). Ransom, M. R. and T. Ransom (2018). "Do High School Sports Build or Reveal Character? Bounding Causal Estimates of Sports Participation". In: _Economics of Education Review_ 64, pp. 75-89. DOI: [10.1016/j.econedurev.2018.04.002](https://doi.org/10.1016%2Fj.econedurev.2018.04.002). Ransom, T. (2022). "Labor Market Frictions and Moving Costs of the Employed and Unemployed". In: _Journal of Human Resources_ 57.S, pp. S137-S166. DOI: [10.3368/jhr.monopsony.0219-10013R2](https://doi.org/10.3368%2Fjhr.monopsony.0219-10013R2). Rudik, I. (2020). "Optimal Climate Policy When Damages Are Unknown". In: _American Economic Journal: Economic Policy_ 12.2, pp. 340-373. DOI: [10.1257/pol.20160541](https://doi.org/10.1257%2Fpol.20160541). Rust, J. (1987). "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher". In: _Econometrica_ 55.5, pp. 999-1033. URL: [http://www.jstor.org/stable/1911259](http://www.jstor.org/stable/1911259). Shalizi, C. R. (2019). _Advanced Data Analysis from an Elementary Point of View_. Cambridge University Press. URL: [http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf). Smith Jr., A. A. (2008). "Indirect Inference". In: _The New Palgrave Dictionary of Economics_. Ed. by S. N. Durlauf and L. E. Blume. Vol. 1-8. London: Palgrave Macmillan. DOI: [10.1007/978-1-349-58802-2](https://doi.org/10.1007%2F978-1-349-58802-2). URL: [http://www.econ.yale.edu/smith/palgrave7.pdf](http://www.econ.yale.edu/smith/palgrave7.pdf). Stinebrickner, R. and T. Stinebrickner (2014a). "Academic Performance and College Dropout: Using Longitudinal Expectations Data to Estimate a Learning Model". In: _Journal of Labor Economics_ 32.3, pp. 601-644. DOI: [10.1086/675308](https://doi.org/10.1086%2F675308). Stinebrickner, R. and T. R. Stinebrickner (2014b). "A Major in Science? Initial Beliefs and Final Outcomes for College Major and Dropout". In: _Review of Economic Studies_ 81.1, pp. 426-472. DOI: [10.1093/restud/rdt025](https://doi.org/10.1093%2Frestud%2Frdt025). Su, C. and K. L. Judd (2012). "Constrained Optimization Approaches to Estimation of Structural Models". In: _Econometrica_ 80.5, pp. 2213-2230. DOI: [10.3982/ECTA7925](https://doi.org/10.3982%2FECTA7925). Train, K. (2009). _Discrete Choice Methods with Simulation_. 2nd ed. Cambridge; New York: Cambridge University Press. ISBN: 9780521766555. Wiswall, M. and B. Zafar (2018). "Preference for the Workplace, Investment in Human Capital, and Gender". In: _Quarterly Journal of Economics_ 133.1, pp. 457-507. DOI: [10.1093/qje/qjx035](https://doi.org/10.1093%2Fqje%2Fqjx035). Young, A. (2020). _Consistency without Inference: Instrumental Variables in Practical Application_. Working Paper. London School of Economics. ]