
Problem Set 6

ECON 6343: Econometrics III
Prof. Tyler Ransom

University of Oklahoma

Due: October 8, 9:00 AM

Directions: Answer all questions. Each student must turn in their own copy, but you may work
in groups. You are encouraged to use any and all Artificial Intelligence resources available to you
to complete this problem set. Clearly label all answers. Show all of your code. Turn in jl-file(s),
output files and writeup via GitHub. Your writeup may simply consist of comments in jl-file(s). If
applicable, put the names of all group members at the top of your writeup or jl-file.

You will need to load the following previously installed packages:

Optim

HTTP

GLM

LinearAlgebra

Random

Statistics

DataFrames

DataFramesMeta

CSV

1

In this problem set, we will repeat the estimation of the simplified version of the Rust (1987,
Econometrica) bus engine replacement model. Rather than solve the model by backwards recur-
sion, we will exploit the renewal property of the replacement decision and estimate the model using
conditional choice probabilities (CCPs).

1. Follow the directions from PS5 to read in the data (the second CSV file you read in as part
of PS5) and reshape to “long” panel format, calling your long dataset df long.

2. Estimate a flexible logit model where the dependent variable is the replacement decision and
the right hand side is a fully interacted set of the following variables:

• Mileage

• Mileage2

• Route Usage

• Route Usage2

• Branded

• Time period

• Time period2

Hint: “Fully interacted” means that all terms from 1st order to 7th order (e.g. Odometer2×
RouteUsage2× Branded × time2.

Hint: Julia’s GLM package allows you to easily accomplish this by specifying the interacted
variables with asterisks in between them. e.g. Odometer * RouteUsage estimates a model
that includes Odometer, Route Usage and the product of the two.

Dynamic estimation with CCPs

We will use the flexible logit parameters to generate CCPs which we can use to compute the future
value term as alternative to the backwards recursion we did in PS5.

Recall the model from PS5, where the differenced conditional value function for running the
bus (relative to replacing it) was

v1t (xt ,b)− v0t (xt ,b) = θ0 +θ1x1t +θ2b+β

∫
Vt+1 (xt+1,b)dF (xt+1|xt) (1)

and where Vt+1 is the value function and the integral is over transitions in the mileage states xt .
By exploiting the renewal property of the decision property, we can express Vt+1 instead as

v0t+1− log p0t+1. And since v0t+1 corresponds to the renewal action, we know that it is equivalent
to

Thus, our value function formulation can be simplified to

v1t (xt ,b)− v0t (xt ,b) = θ0 +θ1x1t +θ2b−β

∫
log p0t+1 (xt+1,b)dF (xt+1|xt) (2)

2

and by discretizing the integral, we can simplify this even further to be

v1t (xt ,b)− v0t (xt ,b) = θ0 +θ1x1t +θ2b−
β ∑

x1,t+1

log p0t+1 (xt+1,b) [f1 (x1,t+1|x1,t ,x2)− f0 (x1,t+1|x1,t ,x2)] (3)

where the f j’s are defined identically as in PS5.

3. Estimate the θ ’s using (3) and assuming a discount factor of β = 0.9. I will walk you through
specific steps for how to do this:

(a) Construct the state transition matrices using the exact same code as in this step of
PS5.

(b) Compute the future value terms for all possible states of the model. Basically, what
we want is − log p0t+1 evaluated at every possible state of the model (t,b,x1,t ,x2). The
easiest way to do this is to adjust the data that we feed into a predict() function using
the flexible logit coefficients from question number 2.

• First, create a data frame that has four variables:
– Odometer reading (equals kron(ones(zbin),xval))
– Route usage (equals kron(ones(xbin),zval))
– Branded (equals 0s of the same size as Odometer and Route usage)
– time (equals 0s of the same size as Branded)

• Now write a function that reads in this data frame, the flexible logit estimates, and
the other state variables (Xstate, Zstate, xtran, etc.)

• Initialize the future value array, which should be a 3-dimensional array of zeros.
The size of the first dimension should be the total number of grid points (i.e. the
number of rows of xtran). The second dimension should be 2, which is the pos-
sible outcomes of :Branded. The third dimension should be T +1. Note that the
number of rows of the future value array should equal the number of rows of the
state data frame.

• Now write two nested for loops:
– Loop over t from 2 to T
– Loop over the two possible brand states {0,1}

• Inside all of the for loops, make the following calculations
– Update your state data frame so that the :time variable takes on the value of
t and the :Branded variable takes on the value of b

– Compute p0 using the predict() function applied to your updated data frame
and the flexible logit estimates

– Store in the FV array the value of −β log p0. Remember that every row of the
data frame corresponds to the rows in the state transition matrix, so you can
vectorize this calculation.

3

• Now multiply the state transitions by the future value term. This requires writing
another for loop that goes over the rows in the original data frame (the one that
you read in at the very beginning of this problem set). In other words, loop over
i and t. To get the actual rows of the state transition matrix (since we don’t need
to use all possible rows), you should re-use the similar code from PS5; something
like this:

FVT1[i,t] = (xtran[row1,:].-xtran[row0,:])'*

FV[row0:row0+xbin-1,B[i]+1,t+1]

The purpose of this loop is to map the CCPs from the each-possible-state-is-a-row
data frame to the actual data frame we used to estimate the flexible logit in question
2.

• Your function should return FVT1 in “long panel” format. I used FVT1’[:] to
make this conversion, but you should double check that your i and t indexing of
your original data frame matches.

(c) Estimate the structural parameters.
• Add the output of your future value function as a new column in the original “long

panel” data frame. The easiest way to do this is df long = @transform(df long,

fv = fvt1)

• Now use the GLM package to estimate the structural model. Make use of the “offset”
function to add the future value term as another regressor whose coefficient is
restricted to be 1. That is:

theta_hat_ccp_glm = glm(@formula(Y ~ Odometer + Branded),

df_long, Binomial(), LogitLink(),

offset=df_long.fv)

(d) Optionally, you can write your own function to estimate a binary logit where you re-
strict the offset term to have a coefficient of 1. (I will include this code in my solutions.)

(e) Wrap all of your code in an empty function as you’ve done with other problem sets.
Prepend your wrapper function call (at the very end of the script) with @time so that
you can time how long everything takes. (On my machine, everything took under 20
seconds.)

(f) Glory in the power of CCPs!

4. Have an AI write unit tests for each of the functions you’ve created (or components of each)
and run them to verify that they work as expected.

4

