
Problem Set 4

ECON 6343: Econometrics III
Prof. Tyler Ransom

University of Oklahoma

Due: September 24, 9:00 AM

Directions: Answer all questions. Each student must turn in their own copy, but you may work
in groups. You are encouraged to use any and all Artificial Intelligence resources available to you
to complete this problem set. Clearly label all answers. Show all of your code. Turn in jl-file(s),
output files and writeup via GitHub. Your writeup may simply consist of comments in jl-file(s). If
applicable, put the names of all group members at the top of your writeup or jl-file.

You may need to install the following package:

Distributions

You will need to load the following packages:

Optim

HTTP

GLM

LinearAlgebra

Random

Statistics

DataFrames

CSV

FreqTables

1. Estimate a multinomial logit (with alternative-specific covariates Z) on the following data set,
which is a panel form of the same data as Problem Set 3. You should be able to simply re-use
your code from Problem Set 3. However, I would ask that you use automatic differentiation
to speed up your estimation, and to obtain the standard errors of your estimates.

Note: this took my machine about 30 minutes to estimate using random starting values. You
might consider using the estimated values from Question 1 of PS3.
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using DataFrames

using CSV

using HTTP

url = "https://raw.githubusercontent.com/OU-PhD-Econometrics/fall-2024/

master/ProblemSets/PS4-mixture/nlsw88t.csv"

df = CSV.read(HTTP.get(url).body, DataFrame)

X = [df.age df.white df.collgrad]

Z = hcat(df.elnwage1, df.elnwage2, df.elnwage3, df.elnwage4,

df.elnwage5, df.elnwage6, df.elnwage7, df.elnwage8)

y = df.occ_code

The choice set is identical to that of Problem Set 3 and represents possible occupations and
is structured as follows.

1 Professional/Technical

2 Managers/Administrators

3 Sales

4 Clerical/Unskilled

5 Craftsmen

6 Operatives

7 Transport

8 Other

2. Does the estimated coefficient γ̂ make more sense now than in Problem Set 3?

3. Now we will estimate the mixed logit version of the model in Question 1, where γ is dis-
tributed N

(
γ̃,σ2

γ

)
. Following the notes, the formula for the choice probabilities will be

Pi jt =


∫ exp

(
Xitβ j + γ̃(Zit j −ZitJ)

)
1+∑

J−1
k=1 exp(Xitβk + γ̃(Zitk −ZitJ))

f (γ̃)dγ̃, j = 1, . . . ,J−1∫ 1
1+∑

J−1
k=1 exp(Xitβk + γ̃(Zitk −ZitJ))

f (γ̃)dγ̃, j = J

and the log likelihood function will be

`
(
X ,Z;β ,µγ ,σγ

)
=

N

∑
i=1

T

∑
t=1

log


∫

∏
j

[
exp
(
Xit
(
β j −βJ

)
+ γ̃
(
Zit j −ZitJ

))
∑k exp(Xit (βk −βJ)+ γ̃ (Zitk −ZitJ))

]dit j

f (γ̃)dγ̃


(1)

While this looks daunting, we can slightly modify the objective function from Question 1.
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The first step is to recognize that we will need to approximate the integral in (1). There are
many ways of doing this, but we will use something called Gauss-Legendre quadrature.1 We
can rewrite the integral in (1) as a (weighted) discrete summation:

`
(
X ,Z;β ,µγ ,σγ

)
=

N

∑
i=1

T

∑
t=1

log

∑
r

ωr ∏
j

[
exp
(
Xit
(
β j −βJ

)
+ξr

(
Zit j −ZitJ

))
∑k exp(Xit (βk −βJ)+ξr (Zitk −ZitJ))

]dit j

f (ξr)


(2)

where ωr are the quadrature weights and ξr are the quadrature points. γ̃ and σγ are parame-
ters of the distribution function f (·).

(a) Before we dive in, let’s learn how to use quadrature. In the folder where this problem
set is posted on GitHub, there is a file called lgwt.jl. This is a function that returns
the ω’s and ξ ’s for a given choice of K (number of quadrature points) and bounds of
integration [a,b].
Let’s practice doing quadrature using the density of the Normal distribution.

using Distributions

include("lgwt.jl") # make sure the function gets read in

# define distribution

d = Normal(0,1) # mean=0, standard deviation=1

Once we have the distribution defined, we can do things like evaluate its density or
probability, take draws from it, etc.
We want to verify that

∫
φ(x)dx is equal to 1 (i.e. integrating over the density of the

support equals 1). We also want to verify that
∫

xφ(x)dx is equal to µ (which for the
distribution above is 0).
When using quadrature, we should try to pick a number of points and bounds that
will minimize computational resources, but still give us a good approximation to the
integral. For Normal distributions, ±4σ will get us there.

# get quadrature nodes and weights for 7 grid points

nodes, weights = lgwt(7,-4,4)

# now compute the integral over the density and verify it's 1

sum(weights.*pdf.(d,nodes))

# now compute the expectation and verify it's 0

sum(weights.*nodes.*pdf.(d,nodes))

(b) To get some more practice, I’d like you to use quadrature to compute the following
integrals:

1Another popular method of approximating the integral is by simulation.
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•
∫ 5σ

−5σ
x2 f (x)dx where f (·) is the pdf of a N (0,2) distribution using 7 quadrature

points
• The same as above, but with 10 quadrature points
• The above integrals are the variance of the distribution f . Comment on how well

the quadrature approximates the true value.

(c) An alternative to quadrature is Monte Carlo integration. Under this approach, we ap-
proximate the integral of f by averaging over a function of many random numbers.
Formally, we have that

∫ b

a
f (x)dx ≈ (b−a)

1
D

D

∑
i=1

f (Xi) (3)

where D is the number of random draws and where each Xi is drawn from a U [a,b]
interval

• With D = 1,000,000, use the formula in (3) to approximate
∫ 5σ

−5σ
x2 f (x)dx where

f (·) is the pdf of a N (0,2) and verify that it is (very) close to 4

• Do the same for
∫ 5σ

−5σ
x f (x)dx where f (·) and verify that it is very close to 0

• Do the same for
∫ 5σ

−5σ
f (x)dx and verify that it is very close to 1

• Comment on how well the simulated integral approximates the true value when
D = 1,000 compared to when D = 1,000,000.

(d) Note the similarity between quadrature and Monte Carlo. With quadrature, we approx-

imate the integral with

∫ b

a
f (x)dx ≈ ωi

D

∑
i=1

f (ξi)

where ωi is the quadrature weight and ξi the quadrature node.

With Monte Carlo, we approximate the integral with

∫ b

a
f (x)dx ≈ (b−a)

D

D

∑
i=1

f (Xi)

So the “quadrature weight” in Monte Carlo integration is the same (b−a)
D at each node,

and the “quadrature node” is a U [a,b] random number

4. Try to modify (but not run!) your code from Question 1 to optimize the likelihood function
in (2)

(This took about 4 hours to estimate on my machine, given the multinomial logit starting
values. “Don’t try this at home,” as they say.)
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5. Try to modify (but not run!) your code from Question 1 to optimize the likelihood function
in (1), where the integral is approximated by Monte Carlo. Your program will take basically
the same form as under Quadrature, but the weights will be slightly different.

(This takes even longer because, instead of 7 quadrature points, we need to use many, many
simulation draws.)

6. Wrap all of your code above into a function and then call that function at the very bottom of
your script. Make sure you add println() statements after obtaining each set of estimates
so that you can read them.

7. Have an AI write unit tests for each of the functions you’ve created (or components of each)
and run them to verify that they work as expected.
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