
Problem Set 2

ECON 6343: Econometrics III
Prof. Tyler Ransom

University of Oklahoma

Due: September 10, 9:00 AM

Directions: Answer all questions. Each student must turn in their own copy, but you may work
in groups. You are encouraged to use any and all Artificial Intelligence resources available to you
to complete this problem set. Clearly label all answers. Show all of your code. Turn in jl-file(s),
output files and writeup via GitHub. Your writeup may simply consist of comments in jl-file(s). If
applicable, put the names of all group members at the top of your writeup or jl-file.

Before starting, you will need to install and the following packages:

Optim

HTTP

GLM

You will also need to load the following packages:

LinearAlgebra

Random

Statistics

DataFrames

CSV

FreqTables

On Github there is a file called PS2 starter.jl that has the code blocks below already cre-
ated.

1. Basic optimization in Julia. We’ll start by finding the value of x that maximizes the function

f (x) =−x4 −10x3 −2x2 −3x−2.

In more formal math terms, our objective is

max
x

f (x) =−x4 −10x3 −2x2 −3x−2.
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While we could probably solve this by hand, the goal of today’s problem set is to introduce
you to Julia’s nonlinear optimization tools.

We will use Julia’s Optim package, which is a function minimizer. Thus, if we want to find
the maximum of f (x), we need to minimize − f (x).

The Optim package provides a function called optimize(). This function requires three
inputs: the objective function, a starting value, and an optimization algorithm. We will not
get too deep into optimization algorithms in this course, but for now just use LBFGS().

Below is some code that shows how we can solve the objective function written above. You
should copy and paste this code into your Julia script for this problem set. You should also
copy, paste and run it in the REPL.

using Optim

f(x) = -x[1]^4-10x[1]^3-2x[1]^2-3x[1]-2

negf(x) = x[1]^4+10x[1]^3+2x[1]^2+3x[1]+2

startval = rand(1) # random number as starting value

result = optimize(negf, startval, LBFGS())

The output printed in the REPL will be something like (but not exactly, since starting values
may differ)

* Status: success (objective increased between iterations)

* Candidate solution

Final objective value: -9.643134e+02

* Found with

Algorithm: BFGS

* Convergence measures

|x - x'| = 1.81e-11 > 0.0e+00

|x - x'|/|x'| = 2.45e-12 > 0.0e+00

|f(x) - f(x')| = 3.41e-13 > 0.0e+00

|f(x) - f(x')|/|f(x')| = 3.54e-16 > 0.0e+00

|g(x)| = 8.91e-09 < 1.0e-08

* Work counters

Seconds run: 0 (vs limit Inf)

Iterations: 6

f(x) calls: 27

Nablaf(x) calls: 27

And we can see the maximum is -
(
-9.643×102)= 964.3. To get the optimizer, we have to

issue a call at the REPL:
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julia> println(result.minimizer)

[-7.378243405529116]

which shows that the argmax is at ≈-7.38.

2. Now that we’re familiar with how Optim’s optimize() function works, lets try it on some
real-world data.

Specifically, let’s use Optim to compute OLS estimates of a simple linear regression using
actual data. The process for passing data to Optim can be tricky, so it will be helpful to go
through this example.

First, let’s import and set up the data. Note that you will need to put the URL all on one line
when executing this code in Julia.

using DataFrames

using CSV

using HTTP

url = "https://raw.githubusercontent.com/OU-PhD-Econometrics/fall-2024/

master/ProblemSets/PS1-julia-intro/nlsw88.csv"

df = CSV.read(HTTP.get(url).body, DataFrame)

X = [ones(size(df,1),1) df.age df.race.==1 df.collgrad.==1]

y = df.married.==1

Now let’s use Optim to solve our objective function:

min
β

∑
i
(yi −Xiβ )
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This estimates the linear probability model

marriedi = β0 +β1agei +β21[racei = 1]+β31[collgradi = 1]+ui

A tricky thing with using Optim is that it requires something called a closure to be able to
pass data into the function.

function ols(beta, X, y)

ssr = (y.-X*beta)'*(y.-X*beta)

return ssr

end

beta_hat_ols = optimize(b -> ols(b, X, y), rand(size(X,2)), LBFGS(),

Optim.Options(g_tol=1e-6, iterations=100_000,

show_trace=true))

println(beta_hat_ols.minimizer)

We can check that this worked in a few different ways:
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using GLM

bols = inv(X'*X)*X'*y

df.white = df.race.==1

bols_lm = lm(@formula(married ~ age + white + collgrad), df)

Indeed, all three ways give the same estimates.

3. Use Optim to estimate the logit likelihood. Some things to keep in mind:

• To maximize the likelihood, you will need to pass Optim the negative of the likelihood
function, since Optim is a minimizer

• The likelihood function is included in the Lecture 4 slides

4. Use the glm() function from the GLM package to check your answer. (Example code for how
to do this is in the Lecture 3 slides.)

5. Use Optim to estimate a multinomial logit model where the dependent variable is occupation
and the covariates are the same as above.

Before doing this, clean the data to remove rows where occupation is missing. We also
need to aggregate some of the occupation categories or else we won’t be able to estimate our
multinomial logit model:

using FreqTables

freqtable(df, :occupation) # note small number of obs in some occupations

df = dropmissing(df, :occupation)

df[df.occupation.==8 ,:occupation] .= 7

df[df.occupation.==9 ,:occupation] .= 7

df[df.occupation.==10,:occupation] .= 7

df[df.occupation.==11,:occupation] .= 7

df[df.occupation.==12,:occupation] .= 7

df[df.occupation.==13,:occupation] .= 7

freqtable(df, :occupation) # problem solved

Since we changed the number of rows of df, we also need to re-define our X and y objects:

X = [ones(size(df,1),1) df.age df.race.==1 df.collgrad.==1]

y = df.occupation

Hints:

• With 7 choice alternatives, you will have K · 6 coefficients, where K is the number of
covariates in X . It may help to transform the parameter vector into a K ×6 matrix (to
more easily reference the α j’s for each j)

• You should reset the tolerance of the gradient (g tol) to be 10−5. This will help the
estimation converge more quickly, without losing too much precision
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• You may need to try different sets of starting values. Some candidates to consider are:

– a vector of 0s
– a vector of U [0,1] random numbers
– a vector of U [−1,1] random numbers
– the estimated values from Stata or R (see below)

Notes:

• If you have access to Stata, you can check your answers with the following code:

webuse nlsw88

drop if mi(occupation)

recode occupation (8 9 10 11 12 13 = 7)

gen white = race==1

mlogit occupation age white collgrad, base(7)

• In general it is a good strategy to run your model(s) through a more user-friendly inter-
face like Stata or R before trying to implement them in Julia. But you might ask, “Why
don’t we just use Stata or R, then?” The reason is because the models we will get to
later in the course are much more difficult to implement in those languages, because
they can’t just be taken off the shelf.

6. Wrap all of your code above into a function and then call that function at the very bottom of
your script. Make sure you add println() statements after obtaining each set of estimates
so that you can read them.

7. Have an AI write unit tests for each of the functions you’ve created (or components of each)
and run them to verify that they work as expected.
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