


Staggered Timing

• Remember that in the canonical DiD model we had:
→ Two periods and a common treatment date
→ Identification from parallel trends and no anticipation
→ A large number of clusters for inference

• A very active recent literature has focused on relaxing the first assumption: what if there
are multiple periods and units adopt treatment at different times?

• This literature typically maintains the remaining ingredients: parallel trends and many
clusters
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Overview of Staggered Timing Literature

1. Negative results: TWFE OLS doesn’t give us what we want with treatment effect
heterogeneity

2. New estimators: perform better under treatment effect heterogeneity
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Staggered timing set-up

• Panel of observations for periods t = 1, ..., T

• Suppose units adopt a binary treatment at different dates Gi ∈ {1, ..., T} ∪∞
(where Gi = ∞ means “never-treated”)
→ Active literature considering cases with continuous treatment & treatments that turn on/off

(see Section 3.4 of review paper)

• Potential outcomes Yit(g) – depend on time and time you were first-treated
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Extending the Identifying Assumptions

• The key identifying assumptions from the canonical model are extended in the natural way

• Parallel trends: Intuitively, says that if treatment hadn’t happened, all “adoption cohorts”
would have parallel average outcomes in all periods

E[Yit(∞)− Yi,t−1(∞)|Gi = g] = E[Yit(∞)− Yi,t−1(∞)|Gi = g′] for all g, g′, t

Note: can impose slightly weaker versions (e.g. only require PT post-treatment)

• No anticipation: Intuitively, says that treatment has no impact before it is implemented

Yit(g) = Yit(∞) for all t < g

5 / 20



Negative results

• Suppose we again run the regression

Yit = αi + ϕt +Ditβ + ϵit,

where Dit = 1[t ≥ Gi] is a treatment indicator.

• Suppose we’re willing to assume no anticipation and parallel trends across all adoption
cohorts as described above

• Good news: If each unit has a constant treatment effect over time, Yit(g)− Yit(∞) ≡ τi,
get a weighted avg of τi

• Bad news: if treatment effects are heterogeneous (within unit over time), then β may put
negative weights on treatment effects for some units and time periods
→ E.g., if treatment effect depends on time since treatment, Yit(t− r)− Yit(∞) = τr , then some

τrs may get negative weight
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Where do these negative results come from?

• The intuition for these negative results is that the TWFE OLS specification combines two
sources of comparisons:

1. Clean comparisons: DiD’s between treated and not-yet-treated units

2. Forbidden comparisons: DiD’s between newly-treated and already-treated units

• These forbidden comparisons can lead to negative weights: the “control group” is already
treated, so we run into problems if their treatment effects change over time
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Some intuition for forbidden comparisons

• Consider the two period model, except suppose now that our two groups are
always-treated units (treated in both periods) and switchers (treated only in period 2)

• With two periods, the coefficient β from Yit = αi + ϕt +Ditβ + ϵit is the same as from the
first-differenced regression ∆Yi = α+∆Diβ + ui

• Observe that ∆Di is one for switchers and zero for stayers.
That is, the stayers function as the “control group”! Thus,

β̂ =
(
ȲSwitchers,2 − ȲSwitchers,1

)︸ ︷︷ ︸
Change for switchers

−
(
ȲAT,2 − ȲAT,1

)︸ ︷︷ ︸
Change for always treated

• Problem: if the effect for the always-treated grows over time, that will enter β̂ negatively!

• With staggered timing, units who are treated early are like “always-treated” in later pairs of
periods 8 / 20



Second Intuition for Negative Weights

• The Frisch-Waugh-Lovell theorem says that we can obtain the coefficient β in
Yit = αi + ϕt +Ditβ + ϵit by the following two-step procedure.

• First, regress the treatment indicator Dit on the FEs (a linear probability model):
Dit = α̃i + ϕ̃t + ϵ̃it

• Then run a univariate regression of Yit on Dit − D̂it to obtain β.

→ Thus, β = Cov(Yit,Dit−D̂it)

V ar(Dit−D̂it)
= E(Yit(Dit−D̂it))

V ar(Dit−D̂it)

• However, it’s well known that the linear probability model for Dit may have predictions
outside the unit interval. If D̂it > 1 even though unit i is treated in period t, then
Dit − D̂it < 0, and thus Yit gets negative weight.
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Not just negative but weird...

The literature has placed a lot of emphasis on the fact that some treatment effects may get
negative weights
• But even if the weights are non-negative, they might not give us the most intuitive

parameter

• For example, suppose each unit i has treatment effect τi in every period if they are treated
(no dynamics). Then β gives a weighted average of the τi where the weights are largest
for units treated closest to the middle of the panel

• It is not obvious that these weights are relevant for policy, even if they are all non-negative!
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Issues with dynamic TWFE

• Sun and Abraham (2021) show that similar issues arise with dynamic TWFE
specifications:

Yi,t = αi + λt +
∑
k ̸=0

γkD
k
i,t + εi,t,

where Dk
i,t = 1 {t−Gi = k} are “event-time” dummies.

• Like for the static spec, γk may be a non-convex weighted average of the dynamic
treatment effect k periods after treatment

• SA also show that γk may be “contaminated” by treatment effects at lags k′ ̸= k
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Dynamic TWFE - Continued

• The results in SA suggest that interpreting the γ̂k for k = 1, 2, ... as estimates of the
dynamic effects of treatment may be misleading

• These results also imply that pre-trends tests of the γk for k < 0 may be misleading –
could be non-zero even if parallel trends holds, since they may be “contaminated” by
post-treatment effects!

• The issues discussed in SA arise if dynamic path of treatment effects is heterogeneous
across adoption cohorts
→ Biases may be less severe than for “static” specs if dynamic patterns are similar across

cohorts
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New estimators (and estimands!)

• Several new (closely-related) estimators have been proposed to try to address these
negative weighting issues

• The key components of all of these are:

1. Be precise about the target parameter (estimand) – i.e., how do we want to aggregate
treatment effects across time/units

2. Estimate the target parameter using only “clean-comparisons”

13 / 20



Example – Callaway and Sant’Anna (2020)

• Define ATT (g, t) to be ATT in period t for units first treated at period g,

ATT (g, t) = E[Yit(g)− Yit(∞)|Gi = g]

• Under PT and No Anticipation, ATT (g, t) is identified as

ATT (g, t) = E[Yit − Yi,g−1|Gi = g]︸ ︷︷ ︸
Change for cohort g

−E[Yit − Yi,g−1|Gi = ∞]︸ ︷︷ ︸
Change for never-treated units

• Why? This is a two-group two-period comparison, so the argument is the same as in the
canonical case!
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Proof of Identification Argument

• Start with
E[Yit − Yi,g−1|Gi = g]− E[Yit − Yi,g−1|Gi = ∞]

• Apply definition of POs to obtain:

E[Yit(g)− Yi,g−1(g)|Gi = g]− E[Yig(∞)− Yi,g−1(∞)|Gi = ∞]

• Use No Anticipation to substitute Yi,g−1(∞) for Yi,g−1(g):

E[Yit(g)− Yi,g−1(∞)|Gi = g]− E[Yig(∞)− Yi,g−1(∞)|Gi = ∞]

• Add and subtract E[Yit(∞)|Gi = g] to obtain:

E[Yit(g)− Yit(∞)|Gi = g]+

[E[Yit(∞)− Yi,g−1(∞)|Gi = g]− E[Yig(∞)− Yi,g−1(∞)|Gi = ∞]]

• Cancel the last term using PT to get E[Yit(g)− Yit(∞)|Gi = g] = ATT (g, t)
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− Ê[Yit − Yi,g−1|Gi = ∞]︸ ︷︷ ︸
Sample change for never-treated
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Aggregation schemes

• If have a large number of observations and relatively few groups/periods, can report
ÂTT (g, t)’s directly.

• If there are many groups/periods, the ÂTT (g, t) may be very imprecisely estimated
and/or too numerous to report concisely
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Aggregation schemes

• In these cases, it is often desirable to report sensible averages of the ÂTT (g, t)’s.

• One of the most useful is to report event-study parameters which aggregate ÂTT (g, t)’s
at a particular lag since treatment
→ E.g. θ̂k =

∑
g ÂTT (g, t+ k) aggregates effects for cohorts in the kth period after treatment

→ Can also construct for k < 0 to estimate “pre-trends”

• C&S discuss other sensible aggregations too – e.g., if interested in whether treatment
effects differ across good/bad economies, may want to “calendar averages” that pool the
ÂTT (t, g) for the same year
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Comparisons of new estimators

• Callaway and Sant’Anna also propose an analogous estimator using not-yet-treated units
as the control rather than never-treated units. This is generally more efficient.

• Sun and Abraham (2021) propose a similar estimator but with different comparisons
groups (e.g. using last-to-be treated rather than not-yet-treated)

• Borusyak et al. (2024), Wooldridge (2021), Gardner (2021) propose “imputation” estimators
that estimate the counterfactual Ŷit(0) using a TWFE model that is fit using only
pre-treatment data: Yit(0) = λt + γi + ϵit

→ Main difference from C&S is that this uses more pre-treatment periods, not just period g − 1

→ This can sometimes be more efficient (if outcome not too serially correlated), but also relies
on a stronger PT assumption that may be more susceptible to bias

• Roth and Sant’Anna (2023) show that you can get even more precise estimates if you’re
willing to assume treatment timing is “as good as random”
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Personal advice

• Don’t freak out about this new literature!

• In most cases, using the “new” DiD methods will not lead to a big change in your results
(empirically, TE heterogeneity is not that large in most cases)
→ The exceptions are cases where there are periods where almost all units are treated – this is

when “forbidden comparisons” get the most weight

• The most important thing is to be precise about who you want the comparison group to
be and to choose a method that only uses these “clean comparisons”

• In my experience, the difference between the new estimators is typically not that large –
can report multiple new methods for robustness (to make your referees happy!) although
in my view this is not strictly necessary
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