1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use crate::{
    engine::Engine,
    graphics::{ RendererMeshHandle }, 
    resources::{ ResourceStorage, Resource },
    ecs::{ DeferredUpdateManagerPointer, MeshRenderingComponent },
    config::*,
};

use pill_core::{ EngineError, PillSlotMapKey, PillTypeMap, PillTypeMapKey, Vector3f, PillStyle, get_type_name };

use std::path::{ Path, PathBuf };
use boolinator::Boolinator;
use cgmath::InnerSpace;
use tobj::LoadOptions;
use anyhow::{Result, Context, Error};


pill_core::define_new_pill_slotmap_key! { 
    pub struct MeshHandle;
}

#[readonly::make]
pub struct Mesh {
    #[readonly]
    pub name: String,
    #[readonly]
    pub path: PathBuf,
    pub(crate) renderer_resource_handle: Option<RendererMeshHandle>,
    mesh_data: Option<MeshData>,
}

impl Mesh {
    pub fn new(name: &str, path: PathBuf) -> Self {  
        Self { 
            name: name.to_string(),
            path,
            renderer_resource_handle: None,
            mesh_data: None,
        }
    }
}

impl PillTypeMapKey for Mesh {
    type Storage = ResourceStorage<Mesh>; 
}

impl Resource for Mesh {
    type Handle = MeshHandle;

    fn get_name(&self) -> String {
        self.name.clone()
    }

    fn initialize(&mut self, engine: &mut Engine) -> Result<()> { 
        let error_message = format!("Initializing {} {} failed", "Resource".gobj_style(), get_type_name::<Self>().sobj_style());
        
        // Check if path to asset is correct
        pill_core::validate_asset_path(&self.path, &["obj"]).context(error_message.clone())?;

        // Create mesh data
        let mesh_data = MeshData::new(&self.path).context(error_message.clone())?;
        self.mesh_data = Some(mesh_data);
  
        // Create new renderer mesh resource
        let renderer_resource_handle = engine.renderer.create_mesh(&self.name, &self.mesh_data.as_ref().unwrap()).context(error_message.clone())?;
        self.renderer_resource_handle = Some(renderer_resource_handle);

        Ok(())
    }

    fn destroy<H: PillSlotMapKey>(&mut self, engine: &mut Engine, self_handle: H) -> Result<()> {

        // Destroy renderer resource
        if let Some(v) = self.renderer_resource_handle {
            engine.renderer.destroy_mesh(v).unwrap();
        }

        // Find mesh rendering components that use this mesh and update them
        for (scene_handle, scene) in engine.scene_manager.scenes.iter_mut() {
            for (entity_handle, mesh_rendering_component) in scene.get_one_component_iterator_mut::<MeshRenderingComponent>()? {
                if let Some(mesh_handle) = mesh_rendering_component.mesh_handle {
                    // If mesh rendering component has handle to this mesh 
                    if mesh_handle.data() == self_handle.data() {
                        mesh_rendering_component.set_mesh_handle(Option::<MeshHandle>::None);
                        mesh_rendering_component.update_render_queue_key(&engine.resource_manager).unwrap();
                    }
                }
            }
        }

        Ok(())
    }
}

#[repr(C)]
// bytemuck::Pod indicates that Vertex is "Plain Old Data", and thus can be interpretted as a &[u8]
// bytemuck::Zeroable indicates that Vertex can be used with std::mem::zeroed()
#[derive(Copy, Clone, Debug, bytemuck::Pod, bytemuck::Zeroable)]
pub struct MeshVertex {
    position: [f32; 3],
    texture_coordinates: [f32; 2],
    normal: [f32; 3],
    tangent: [f32; 3],
    bitangent: [f32; 3],
}

pub struct MeshData {
    pub vertices: Vec<MeshVertex>,
    pub indices: Vec<u32>,
}

impl MeshData {
    pub fn new(path: &PathBuf) -> Result<Self> {  
        // Load model from path using tinyobjloader crate
        let load_options = LoadOptions {
            triangulate: true,
            single_index: true,
            ..Default::default()
        };

        // Load data
        let (models, _materials) = tobj::load_obj(path.as_path(), &load_options)?;

        // Check data validity
        if models.len() > 1 {
            return Err(Error::new(EngineError::InvalidModelFileMultipleMeshes(path.clone().into_os_string().into_string().unwrap())));
        }

        if models.len() < 1 {
            return Err(Error::new(EngineError::InvalidModelFile(path.clone().into_os_string().into_string().unwrap())));
        }

        // Load vertex data from model
        let mesh = &models[0].mesh;

        // Read vertices
        let mut vertices = Vec::new();
        for i in 0..mesh.positions.len() / 3 {
            vertices.push(MeshVertex {
                position: [
                    mesh.positions[i * 3],
                    mesh.positions[i * 3 + 1],
                    mesh.positions[i * 3 + 2],
                ],
                texture_coordinates: [
                    *mesh.texcoords.get(i * 2).unwrap_or(&0.0),
                    *mesh.texcoords.get(i * 2 + 1).unwrap_or(&0.0),
                ],
                normal: [
                    mesh.normals[i * 3],
                    mesh.normals[i * 3 + 1],
                    mesh.normals[i * 3 + 2],
                ],
                tangent: [0.0; 3].into(),
                bitangent: [0.0; 3].into(),
            });
        }

        // Read indices
        let indices = &mesh.indices;
        let mut triangles_included = (0..vertices.len()).collect::<Vec<_>>();

        // Calculate tangents and bitangets
        for c in indices.chunks(3) {
            let v0 = vertices[c[0] as usize];
            let v1 = vertices[c[1] as usize];
            let v2 = vertices[c[2] as usize];

            let pos0: cgmath::Vector3<_> = v0.position.into();
            let pos1: cgmath::Vector3<_> = v1.position.into();
            let pos2: cgmath::Vector3<_> = v2.position.into();

            let uv0: cgmath::Vector2<_> = v0.texture_coordinates.into();
            let uv1: cgmath::Vector2<_> = v1.texture_coordinates.into();
            let uv2: cgmath::Vector2<_> = v2.texture_coordinates.into();

            // Calculate the edges of the triangle
            let delta_pos1 = pos1 - pos0;
            let delta_pos2 = pos2 - pos0;

            // Calculate the direction needed to calculate the tangent and bitangent
            let delta_uv1 = uv1 - uv0;
            let delta_uv2 = uv2 - uv0;

            // Calculate tangent and bitangent       
            let r = 1.0 / (delta_uv1.x * delta_uv2.y - delta_uv1.y * delta_uv2.x);
            let tangent = (delta_pos1 * delta_uv2.y - delta_pos2 * delta_uv1.y) * r;
            let bitangent = (delta_pos2 * delta_uv1.x - delta_pos1 * delta_uv2.x) * r;

            // Assign same tangent/bitangent to each vertex in the triangle
            vertices[c[0] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[0] as usize].tangent)).into();
            vertices[c[1] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[1] as usize].tangent)).into();
            vertices[c[2] as usize].tangent = (tangent + cgmath::Vector3::from(vertices[c[2] as usize].tangent)).into();
            vertices[c[0] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[0] as usize].bitangent)).into();
            vertices[c[1] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[1] as usize].bitangent)).into();
            vertices[c[2] as usize].bitangent = (bitangent + cgmath::Vector3::from(vertices[c[2] as usize].bitangent)).into();

            // Prepare data for averaging tangents and bitangents
            triangles_included[c[0] as usize] += 1;
            triangles_included[c[1] as usize] += 1;
            triangles_included[c[2] as usize] += 1;
        }

        // Average the tangents and bitangents
        for (i, n) in triangles_included.into_iter().enumerate() {
            let denom = 1.0 / n as f32;
            let mut v = &mut vertices[i];
            v.tangent = (Vector3f::from(v.tangent) * denom).normalize().into();
            v.bitangent = (Vector3f::from(v.bitangent) * denom).normalize().into();
        }

        let mesh_data = MeshData {
            vertices: vertices,
            indices: mesh.indices.clone(),
        };

        Ok(mesh_data)
    }    
}