MMiDS 7.3: Self-Assessment Quiz

Which of the following is the correct condition for a probability distribution π=(πi)i=1n to be a stationary distribution of a Markov chain with transition matrix P=(pi,j)i,j=1n?

Which of the following is the matrix form of the condition for a probability distribution π to be a stationary distribution of a Markov chain with transition matrix P?

Consider a Markov chain with the following transition matrix:

P=(1/21/21/32/3)

Which of the following is a stationary distribution for this Markov chain?

A Markov chain is irreducible if:

Consider the following transition graph of a Markov chain:

G = nx.DiGraph()
G.add_edges_from([(0, 1), (1, 2), (2, 0), (1, 1)])

Is this Markov chain irreducible?

Consider the following transition graph of a Markov chain:

G = nx.DiGraph()
G.add_edges_from([(1, 2), (2, 1), (2, 3), (3, 3)])

Is this Markov chain irreducible?

According to the Existence of Stationary Distribution Theorem, an irreducible Markov chain on a finite state space:

In an irreducible Markov chain, the left and right eigenvectors corresponding to eigenvalue 1 are:

For an irreducible Markov chain, which of the following statements is true?

Given the transition matrix P of a Markov chain, which method can be used to numerically find the stationary distribution?