
An Elementary Proof of Stirling’s Formula

Stirling’s formula n! ∼
√
2πnnne−n is a powerful asymptotic approximation of

the factorial function. Many well-known proofs of this formula are grounded
in integral calculus. In this paper we present an alternative proof of Stirling’s
formula using only limits and the Wallis product.

Proposition 1. The sequence an :=
n!√

nnne−n
converges to a positive number.

Proof. First we will show, that the sequence (an) is decreasing and then prove,
that it is bounded from below by a positive number. To begin, note that
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Now define bn := ln(an). Then
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Next we introduce a new variable, k, such that n+1
n

= 1+k
1−k

. This choice of k
proves useful, as it allows us to utilize a Taylor series expansion. To satisfy this
condition we set k := 1

2n+1
, leading to the following:
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Using a Taylor series expansion, we get
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Now we have
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Therefore, the sequence (bn) is decreasing; the natural logarithm is a monotonic
function and so (an) is decreasing as well. In order to show that it is bounded
from bellow, we resume the calculation, noting that 0 < k < 1:
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Hence
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We see that the sequence
(
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is increasing, therefore
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⇒ an > e0.75,

bounding (an) from bellow. This completes the proof.

k

We have shown, that n! grows up to a constant multiple as does
√
nnne−n.

We will need the following lemma to find this constant.

Definition 1. Define (2n)!! := 2 ·4 ·6 · · · (2n) and (2n−1)!! := 1 ·3 ·5 · · · (2n−1).

Observation. It holds, that (2n)!!(2n− 1)!! = (2n)! and (2n)!! = 2n n!.
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=
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Proof. Rewrite the famous Wallis product
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2
as a limit:
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By expanding the fraction and simplifying the double factorials, we obtain
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After taking the square root, we get
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Theorem 3. A := lim
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Proof. We start with the limit derived in the preceding lemma. We have

√
π = lim

n→∞

4n n!2√
n (2n)!

= lim
n→∞

4n
(

n!√
nnne−n

)2(√
nnne−n

)2
√
n

(2n)!√
2n (2n)2ne−2n

√
2n (2n)2ne−2n

=

= lim
n→∞

4n A2 nn2ne−2n

√
nA

√
2n (2n)2ne−2n

= lim
n→∞

A√
2
.

Therefore A =
√
2π.
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Corollary. Thus, we obtain Stirling’s formula n! ∼
√
2πn

(n
e

)n

.
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