Lecture 11

Spatial Models

Ivan Rudik AEM 7130

Roadmap

- 1. Spatial models: Armington
- 2. Exact hat algebra
- 3. Dynamic spatial models: Armington + migration
- 4. Dynamic hat algebra

So far we have been focusing on dynamics

So far we have been focusing on dynamics

Now we are going to look at the other dimension: space

So far we have been focusing on dynamics

Now we are going to look at the other dimension: space

To start, we will work with static models

So far we have been focusing on dynamics

Now we are going to look at the other dimension: space

To start, we will work with static models

But we will introduce multiple regions across space, and frictions inhibiting mobility of goods and factors of production

The Armington model

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of goods

Comparative advantage

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of goods

Comparative advantage

Empirical work has long used the gravity model:

$$X_{ij} = lpha rac{Y_i Y_j}{D_{ij}}$$

$$X_{ij} = lpha rac{Y_i Y_j}{D_{ij}}$$

 X_{ij} trade flow from i to j

 Y_i GDP of origin

 Y_j GDP of destination

 D_{ij} distance and other frictions affecting trade flows

$$X_{ij} = lpha rac{Y_i Y_j}{D_{ij}}$$

The gravity model is widely used and empirically matches the data, but no real theoretical foundation, can't do counterfactuals

$$X_{ij} = lpha rac{Y_i Y_j}{D_{ij}}$$

The gravity model is widely used and empirically matches the data, but no real theoretical foundation, can't do counterfactuals

The Armington model provides a simple theoretical foundation for gravity with two key ingredients:

- 1. Spatially differentiated products
- 2. Love-of-variety preferences

The set up:

N regions

The set up:

N regions

Each region produces a differentiated product

The set up:

N regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all locations

The set up:

N regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all locations

Trade frictions (e.g. distance) result in different prices offered by different producers

Armington: preferences

The representative household in region j has CES preferences across goods:

$$U_j = \left(\sum_{i \in N} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}}$$

 σ is the elasticity of substitution with $\sigma>1$

 a_{ij} is an exogenous taste parameter

 q_{ij} is the quantity of goods imported from i to j

Armington: demand

The consumer maximizes utility subject to a budget:

$$\max_{\{q_{ij}\}_{i\in N}} \left(\sum_{i\in N} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}} \quad ext{subject to:} \quad \sum_{i\in N} q_{ij} p_{ij} \leq Y_j$$

Armington: demand

The consumer maximizes utility subject to a budget:

$$\max_{\{q_{ij}\}_{i\in N}} \left(\sum_{i\in N} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}} \quad ext{subject to:} \quad \sum_{i\in N} q_{ij} p_{ij} \leq Y_j$$

Standard result gives demand for goods from i by j:

$$q_{ij} = a_{ij} p_{ij}^{-\sigma} Y_j P_j^{\sigma-1} \quad ext{where} \quad P_j = \left(\sum_{k \in N} a_{kj} p_{kj}^{1-\sigma}
ight)^{rac{1}{1-\sigma}}$$

 P_j is the usual Dixit-Stiglitz price index

Armington: demand

$$q_{ij} = a_{ij} p_{ij}^{-\sigma} Y_j P_j^{\sigma-1} \quad ext{where} \quad P_j = \left(\sum_{k \in N} a_{kj} p_{kj}^{1-\sigma}
ight)^{rac{1}{1-\sigma}}$$

Multiply by prices to get trade flows in dollar terms:

$$X_{ij}=q_{ij}p_{ij}=a_{ij}p_{ij}^{1-\sigma}Y_{j}P_{j}^{\sigma-1}$$

Trade flows decrease in bilateral prices, increase in the local price index, and increase in local size/GDP

Armington assumption: each region produces a distinct variety of a good

Armington assumption: each region produces a distinct variety of a good

There are iceberg trade costs $\tau_{ij} \geq 1$: for 1 unit of q_{ij} to arrive at j from i you need to ship τ_{ij} units

Armington assumption: each region produces a distinct variety of a good

There are iceberg trade costs $\tau_{ij} \geq 1$: for 1 unit of q_{ij} to arrive at j from i you need to ship τ_{ij} units

Market structure:

- Producers compete in perfect competition
- Regions are endowed with L_i workers supplying 1 unit of labor
- Each unit of labor can produce A_i units so total output is A_iL_i
- ullet Workers are paid a wage w_i so that $Y_i=w_iL_i$

Given a labor endowment L_i and productivity A_i the marginal cost of production is $\frac{w_i}{A_i}$

Given a labor endowment L_i and productivity A_i the marginal cost of production is $\frac{w_i}{A_i}$

Perfect competition means the factory-door price is marginal cost: $\frac{w_i}{A_i}$

Given a labor endowment L_i and productivity A_i the marginal cost of production is $\frac{w_i}{A_i}$

Perfect competition means the factory-door price is marginal cost: $\frac{w_i}{A_i}$

The price in j to buy a unit of the good from i is then:

$$p_{ij} = au_{ij} rac{w_i}{A_i}$$

Plug back into demand to get:

$$X_{ij} = a_{ij} au_{ij}^{1-\sigma}igg(rac{w_i}{A_i}igg)^{1-\sigma}Y_jP_j^{\sigma-1}$$

$$X_{ij} = a_{ij} au_{ij}^{1-\sigma}igg(rac{w_i}{A_i}igg)^{1-\sigma}Y_jP_j^{\sigma-1}$$

Define expenditure shares as the expenditures on i by j relative to js total expenditures:

$$\lambda_{ij} = rac{X_{ij}}{\sum_{k \in N} X_{kj}}$$

$$egin{aligned} \lambda_{ij} &= rac{X_{ij}}{\sum_{k \in N} X_{kj}} \ &= rac{a_{ij} au_{ij}^{1-\sigma}\left(rac{w_i}{A_i}
ight)^{1-\sigma}Y_jP_j^{\sigma-1}}{\sum_{k \in N} a_{kj} au_{kj}^{1-\sigma}\left(rac{w_k}{A_k}
ight)^{1-\sigma}Y_jP_j^{\sigma-1}} \ &= rac{a_{ij}\left(rac{ au_{ij}w_i}{A_i}
ight)^{1-\sigma}}{\sum_{k \in N} a_{kj}\left(rac{ au_{ij}w_k}{A_k}
ight)^{1-\sigma}} \end{aligned}$$

$$\lambda_{ij} = rac{a_{ij} \Big(rac{ au_{ij}w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_k}{A_k}\Big)^{1-\sigma}}$$

j spends more on i relative to other places if i has lower wages, higher productivity, or lower trade costs relative to other locations

In perfect competition the expenditures on inputs in j need to match the spending by other locations i on js goods:

$$w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

Perfect competition \rightarrow labor costs = revenues

Our equilibrium is then defined by two sets of equations:

$$\lambda_{ij} = rac{a_{ij} \Big(rac{ au_{ij}w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_k}{A_k}\Big)^{1-\sigma}} \qquad w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

where the endogenous variables are the $N^2 \, \lambda_{ij}$ terms and the $N \, w_j$ terms

$$\lambda_{ij} = rac{a_{ij} \left(rac{ au_{ij}w_i}{A_i}
ight)^{1-\sigma}}{\sum_{k \in N} a_{kj} \left(rac{ au_{kj}w_k}{A_k}
ight)^{1-\sigma}} \qquad w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

Given the exogenous parameters a_{ij} , τ_{ij} , A_i , L_i , σ , how do we solve for the equilibrium?

$$\lambda_{ij} = rac{a_{ij} \Big(rac{ au_{ij}w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_k}{A_k}\Big)^{1-\sigma}} \qquad w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

Given the exogenous parameters a_{ij} , τ_{ij} , A_i , L_i , σ , how do we solve for the equilibrium?

We can use function iteration after substituting in for λij in market clearing:

$$w_j L_j = \sum_{i \in N} rac{a_{ji} \left(rac{ au_{ji} w_j}{A_j}
ight)^{1-\sigma}}{\sum_{k \in N} a_{ki} \left(rac{ au_{ki} w_k}{A_k}
ight)^{1-\sigma}} w_i L_i$$

$$w_j L_j = \sum_{i \in N} rac{a_{ij} \Big(rac{ au_{ij} w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj} w_k}{A_k}\Big)^{1-\sigma}} w_i L_i$$

We have N market clearing conditions and N unknown w_i terms

$$w_j L_j = \sum_{i \in N} rac{a_{ij} \Big(rac{ au_{ij} w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj} w_k}{A_k}\Big)^{1-\sigma}} w_i L_i$$

We have N market clearing conditions and N unknown w_i terms

Write up a function solve_armington_eq(sigma, tau, A, L, a, tol, damp) that solves for the equilibrium wages and expenditure shares

```
function solve_armington_eq(\sigma, \tau, A, L, a, tol = 1e-5, damp = .1)
    w, \lambda = ones(size(A)), zeros(size(a))
    wage error = 1e5
    while wage_error > tol
        denominator, wL = zeros(size(A)), zeros(size(A))
        for k in eachindex(A)
             denominator .+= a[k,:] .* (\tau[k,:] * w[k] / A[k]).^(1 .- \sigma)
        end
        for i in eachindex(A)
             wL .+= a[:,i] .* (\tau[:,i] .* w ./ A).^(1 .- \sigma) .* w[i] .* L[i] ./ denominator[i]
        end
        wnew = wL \cdot / L
        wage_error = maximum(abs.(wnew .- w)./w)
        w = damp .* wnew .+ (1 - damp) .* w
    end
    for o in eachindex(A), d in eachindex(A)
        \lambda[o,d] = a[o,d] * (\tau[o,d] * w[o] / A[o])^(1 - \sigma) / sum(a[:,d] .* (\tau[:,d] .* w[:] ./ A[:])
    end
    return w, λ
end
```

Symmetric + cross-region trade costs of 5

```
\tau = [1. 5; 5. 1.];
  a = [1. 1.; 1. 1.];
 A = [1., 1.];
  L = [1., 1.];
 \sigma = 2.;
 w, \lambda = \text{solve\_armington\_eq}(\sigma, \tau, A, L, a);
 display(w)
## 2-element Vector{Float64}:
## 1.0
## 1.0
 display(\lambda)
## 2×2 Matrix{Float64}:
##
    0.833333 0.166667
    0.166667 0.833333
##
```

Productivity shock to region 1

```
\tau = [1. 5; 5. 1.];
  a = [1. 1.; 1. 1.];
 A = [10., 1.];
  L = [1., 1.];
 \sigma = 2.;
 w, \lambda = \text{solve\_armington\_eq}(\sigma, \tau, A, L, a);
  display(w)
## 2-element Vector{Float64}:
## 1.6143181095745787
## 0.38568189042542783
  display(\lambda)
## 2×2 Matrix{Float64}:
## 0.922754 0.323331
## 0.077246 0.676669
```

Increased labor supply in region 1

```
\tau = [1. 5; 5. 1.];
  a = [1. 1.; 1. 1.];
 A = [1., 1.];
  L = [5., 1.];
 \sigma = 2.;
 w, \lambda = \text{solve\_armington\_eq}(\sigma, \tau, A, L, a);
  display(w)
## 2-element Vector{Float64}:
## 0.8780637781792023
## 1.6096811091040044
  display(\lambda)
## 2×2 Matrix{Float64}:
##
    0.901634 0.26828
    0.0983663 0.73172
##
```

Return to autarky

```
\tau = [1. 1e9; 1e9 1.];
 a = [1. 1.; 1. 1.];
 A = [1., 1.];
 L = [1., 1.];
 \sigma = 2.;
 w, \lambda = solve_armington_eq(\sigma, \tau, A, L, a);
 display(w)
## 2-element Vector{Float64}:
## 1.0
## 1.0
 display(\lambda)
## 2×2 Matrix{Float64}:
## 1.0
        1.0e-9
## 1.0e-9 1.0
```

Free trade

```
\tau = [1. \ 1.0001; \ 1.0001 \ 1.];
  a = [1. 1.; 1. 1.];
 A = [1., 1.];
  L = [1., 1.];
 \sigma = 2.;
 w, \lambda = solve_armington_eq(\sigma, \tau, A, L, a);
  display(w)
## 2-element Vector{Float64}:
## 1.0
## 1.0
  display(\lambda)
## 2×2 Matrix{Float64}:
## 0.500025 0.499975
## 0.499975 0.500025
```

New trading partner

0.723812 0.246282

0.276188 0.563849

1.39504e-9 0.189869

0.117659

0.680311

0.20203

##

##

```
\tau = [1. 2. 3.; 3. 1. 2.; 1e9 5. 1.];
  a = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
 A = [1., 1., 1.];
  L = [1., 1., 1.];
 \sigma = 2.;
 w, \lambda = \text{solve\_armington\_eq}(\sigma, \tau, A, L, a);
  display(w)
## 3-element Vector{Float64}:
## 1.2539609132194725
## 1.095427131707213
##
    0.6506119550733213
 display(\lambda)
## 3×3 Matrix{Float64}:
```

Solving Armington

We solved for the Armington equilibrium

Solving Armington

We solved for the Armington equilibrium

If we have values for all the exogenous parameters, we can then perform counterfactuals where we explore the equilibrium effects of changes in trade costs, productivity, etc

Solving Armington

We solved for the Armington equilibrium

If we have values for all the exogenous parameters, we can then perform counterfactuals where we explore the equilibrium effects of changes in trade costs, productivity, etc

This is a bit unsatisfying: we'd like to not have to take a stand on numerous region-specific and bilateral parameters

A workhorse method for solving for counterfactual is **exact hat algebra**, you can think of it as a structural differences estimator

A workhorse method for solving for counterfactual is **exact hat algebra**, you can think of it as a structural differences estimator

There are two key pieces to it:

- 1. Real world data (wages, trade flows) are essentially sufficient statistics for unobservable parameters (productivity, trade costs)
- 2. Spatial models are built in a way where we can express a counterfactual equilibrium in terms of changes relative to the factual

A workhorse method for solving for counterfactual is **exact hat algebra**, you can think of it as a structural differences estimator

There are two key pieces to it:

- 1. Real world data (wages, trade flows) are essentially sufficient statistics for unobservable parameters (productivity, trade costs)
- 2. Spatial models are built in a way where we can express a counterfactual equilibrium in terms of changes relative to the factual

Going forward, primes will indicate counterfactual quantities (w_i') , hats will indicate relative quantities $(\hat{w}_i = \frac{w_i'}{w_i})$

In our working example, our factual equilibrium will be the real world

In our working example, our factual equilibrium will be the real world

We observe the data for this equilibrium (wages, trade flows, etc)

In our working example, our factual equilibrium will be the real world

We observe the data for this equilibrium (wages, trade flows, etc)

We want to understand the equilibrium effects of some arbitrary changes in the distribution of productivity: $\{\hat{A}_1, \hat{A}_2, \ldots\}$

In our working example, our factual equilibrium will be the real world

We observe the data for this equilibrium (wages, trade flows, etc)

We want to understand the equilibrium effects of some arbitrary changes in the distribution of productivity: $\{\hat{A}_1, \hat{A}_2, \ldots\}$

Assume no other exogenous variables are changing:

$$\hat{ au}_{ij}=1,\hat{a}_{ij}=1,\hat{\sigma}=1,\hat{L}=1$$

Recall our equilibrium conditions were:

$$\lambda_{ij} = rac{a_{ij} \left(rac{ au_{ij}w_i}{A_i}
ight)^{1-\sigma}}{\sum_{k \in N} a_{kj} \left(rac{ au_{kj}w_k}{A_k}
ight)^{1-\sigma}} \qquad w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

Let's start by manipulating the market clearing condition which holds in the factual and counterfactual equilibria:

Recall our equilibrium conditions were:

$$\lambda_{ij} = rac{a_{ij} \Big(rac{ au_{ij}w_i}{A_i}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_k}{A_k}\Big)^{1-\sigma}} \qquad w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i$$

Let's start by manipulating the market clearing condition which holds in the factual and counterfactual equilibria:

$$w_j L_j = \sum_{i \in N} \lambda_{ji} w_i L_i \qquad w_j' L_j' = \sum_{i \in N} \lambda_{ji}' w_i' L_i'$$

First by definition: $\lambda_{ji}w_iL_i=X_{ji}$ so that

$$w_j'L_j' = \sum_{i \in N} \lambda_{ji}' w_i' L_i' = \sum_{i \in N} X_{ji}'$$

First by definition: $\lambda_{ji}w_iL_i=X_{ji}$ so that

$$w_j'L_j' = \sum_{i \in N} \lambda_{ji}' w_i'L_i' = \sum_{i \in N} X_{ji}'$$

Next, put the left hand side into hat form by dividing both sides by w_jL_j :

$$\hat{w}_j \underbrace{\hat{L}_j}_{=1} = \sum_{i \in N} rac{X'_{ji}}{w_j L_j}$$

$$\hat{w}_j = \sum_{i \in N} rac{X'_{ji}}{w_j L_j}$$

Multiply and divide the right and side by X_{ji} to put it into hat form:

$$\hat{w}_j = \sum_{i \in N} rac{X_{ji}}{w_j L_j} \hat{X}_{ji}$$

Finally, we know that $X_{ji}=\lambda_{ji}w_iL_i$ so that $\hat{X}_{ji}=\hat{\lambda}_{ji}\hat{w}_i\hat{L}_i$ and

$$\hat{w}_j = \sum_{i \in N} rac{X_{ji}}{w_j L_j} \hat{\lambda}_{ji} \hat{w}_i$$

The change in wages depends on the change in endogenous wages and expenditure shares, and the observed factual bilateral expenditures, wages, and labor

Now let's go to the gravity equation:

$$\lambda_{ij}' = rac{a_{ij} {\left(rac{ au_{ij}w_i'}{A_i'}
ight)}^{1-\sigma}}{\sum_{k \in N} a_{kj} {\left(rac{ au_{kj}w_k'}{A_k'}
ight)}^{1-\sigma}}$$

Now let's go to the gravity equation:

$$\lambda_{ij}' = rac{a_{ij} \Big(rac{ au_{ij}w_i'}{A_i'}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_k'}{A_k'}\Big)^{1-\sigma}}$$

Put this into hat form:

$$\lambda_{ij}'/\lambda_{ij} = \left[rac{a_{ij} \left(rac{ au_{ij}w_i'}{A_i'}
ight)^{1-\sigma}}{\sum_{k \in N} a_{kj} \left(rac{ au_{kj}w_k'}{A_k'}
ight)^{1-\sigma}}
ight] igg/ \left[rac{a_{ij} \left(rac{ au_{ij}w_i}{A_i}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj} \left(rac{ au_{lj}w_l}{A_l}
ight)^{1-\sigma}}
ight]$$

The numerator goes into hats easily, the denominator is trickier:

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\left[rac{\sum_{k \in N} a_{kj} \left(rac{ au_{kj}w_k'}{A_k'}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj} \left(rac{ au_{lj}w_l}{A_l}
ight)^{1-\sigma}}
ight]}$$

Next, bring the bottom sum inside the top sum since it is a function of j and does not depend on k

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\sum_{k \in N} \left[rac{a_{kj}\left(rac{ au_{kj}w_k'}{A_k'}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj}\left(rac{ au_{lj}w_l}{A_l}
ight)^{1-\sigma}}
ight]}$$

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\sum_{k \in N} \left[rac{a_{kj}\left(rac{ au_{kj}w_k'}{A_k'}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj}\left(rac{ au_{lj}w_l}{A_l}
ight)^{1-\sigma}}
ight]}$$

Inside the square brackets, multiply and divide by $a_{kj}\Big(rac{ au_{kj}w_k}{A_k}\Big)^{1-\sigma}$

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\sum_{k \in N} \left[rac{a_{kj}\left(rac{ au_{kj}w_k'}{A_k'}
ight)^{1-\sigma}}{a_{kj}\left(rac{ au_{kj}w_k}{A_k}
ight)^{1-\sigma}} rac{a_{kj}\left(rac{ au_{kj}w_k}{A_k}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj}\left(rac{ au_{lj}w_l}{A_l}
ight)^{1-\sigma}}
ight)^{1-\sigma}} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}{\left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}
ight)^{1-\sigma}}$$

This finally gives us that:

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{kj} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

The change in expenditure shares depends on the change in exogenous productivity, endogenous wages, and the observed factual expenditure shares

We now have our two equilibrium conditions in changes:

$$\hat{\lambda}_{ij} = rac{\left(rac{\hat{w}_i}{\hat{A}_i}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{kj} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}} \qquad \hat{w}_j = \sum_{i \in N} rac{X_{ji}}{w_j L_j} \hat{\lambda}_{ji} \hat{w}_i$$

and can combine them into a single equilibrium condition in changes:

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}}$$

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} \left(rac{\hat{w}_j}{\hat{A}_j}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

Notice that it does not depend on any structural parameters except for σ

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} \left(rac{\hat{w}_j}{\hat{A}_j}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

 $\lambda_{ij}, X_{ij}, w_i, L_i$ are all observable data:

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}}$$

 $\lambda_{ij}, X_{ij}, w_i, L_i$ are all observable data:

 \hat{A}_i is a chosen counterfactual

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}}$$

 $\lambda_{ij}, X_{ij}, w_i, L_i$ are all observable data:

 \hat{A}_i is a chosen counterfactual

 \hat{w}_i are unknown but can be solved through function iteration

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}}$$

 $\lambda_{ij}, X_{ij}, w_i, L_i$ are all observable data:

 \hat{A}_i is a chosen counterfactual

 \hat{w}_i are unknown but can be solved through function iteration

We also will want to solve for \hat{P}_i to understand how the price index is changing

Recall:

$$P_j = \left(\sum_{k \in N} a_{kj} p_{kj}^{1-\sigma}
ight)^{rac{1}{1-\sigma}} = \left(\sum_{k \in N} a_{kj} igg(au_{kj} rac{w_k}{A_k}igg)^{1-\sigma}igg)^{rac{1}{1-\sigma}}$$

$$\hat{P}_{j}^{1-\sigma} = rac{\sum_{k \in N} a_{kj} \Big(au_{kj} rac{w_k'}{A_k'}\Big)^{1-\sigma}}{\sum_{l \in N} a_{lj} \Big(au_{lj} rac{w_l}{A_l}\Big)^{1-\sigma}}$$

Like before, bring the denominator inside the numerator sum

$$\hat{P}_{j}^{1-\sigma} = \sum_{k \in N} rac{a_{kj} \Big(au_{kj} rac{w_k'}{A_k'}\Big)^{1-\sigma}}{\sum_{l \in N} a_{lj} \Big(au_{lj} rac{w_l}{A_l}\Big)^{1-\sigma}}$$

multiply and divide by $a_{kj} \Big(au_{kj} rac{w_k}{A_k} \Big)^{1-\sigma}$ to get:

$$\hat{P}_j^{1-\sigma} = \sum_{k \in N} rac{a_{kj} \Big(au_{kj} rac{w_k'}{A_k'}\Big)^{1-\sigma}}{a_{kj} \Big(au_{kj} rac{w_k}{A_k}\Big)^{1-\sigma}} rac{a_{kj} \Big(au_{kj} rac{w_k}{A_k}\Big)^{1-\sigma}}{\sum_{l \in N} a_{lj} \Big(au_{lj} rac{w_l}{A_l}\Big)^{1-\sigma}}$$

$$\hat{P}_{j}^{1-\sigma} = \sum_{k \in N} \left(rac{\hat{w}_{k}}{\hat{A}_{k}}
ight)^{1-\sigma} \underbrace{rac{a_{kj} \left(au_{kj} rac{w_{k}}{A_{k}}
ight)^{1-\sigma}}{\sum_{l \in N} a_{lj} \left(au_{lj} rac{w_{l}}{A_{l}}
ight)^{1-\sigma}}}_{\lambda_{kj}}$$

$$\hat{P}_j = \left(\sum_{k \in N} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma} \lambda_{kj}
ight)^{rac{1}{1-\sigma}}$$

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} \left(rac{\hat{w}_j}{\hat{A}_j}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

We have N market clearing conditions and N unknown \hat{w}_i terms

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} \left(rac{\hat{w}_j}{\hat{A}_j}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

We have N market clearing conditions and N unknown \hat{w}_i terms

Write up a function solve_armington_exact_hat(X, lambda, w, L, Ahat, sigma, tol, damp) that solves for the new equilibrium in changes

$$\hat{w}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} \left(rac{\hat{w}_j}{\hat{A}_j}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} \left(rac{\hat{w}_k}{\hat{A}_k}
ight)^{1-\sigma}}$$

We have N market clearing conditions and N unknown \hat{w}_i terms

Write up a function solve_armington_exact_hat(X, lambda, w, L, Ahat, sigma, tol, damp) that solves for the new equilibrium in changes

Key thing to keep in mind: we haven't defined a numeraire yet, use the consumption price index

Here are the data to use:

```
w = [1., 1.];
L = [1., 1.];
\lambda = [.8 .2; .2 .8];
X = (w .* L)' .* \lambda;
Ahat = [10., 1.];
\sigma = 2.;
```

Columns of λ should sum to 1, X is generated to be consistent with w, L, λ

```
function solve_armington_exact_hat(X, \lambda, w, L, Ahat, \sigma, tol = 1e-5, damp = .1)
     what = ones(size(Ahat))
    wage error = 1e5
     while wage_error > tol
          denominator, what_new = zeros(size(Ahat)), zeros(size(Ahat))
          for k in eachindex(Ahat)
               denominator \cdot += \lambda \lceil k, : \rceil \cdot \star \text{ (what} \lceil k \rceil / \text{Ahat} \lceil k \rceil) \cdot \wedge (1 \cdot - \sigma)
          end
          for i in eachindex(Ahat)
              what_new .+= (X[:,i] ./ (w .* L)) .* (what ./ Ahat).^(1 .- \sigma) .* what[i] ./ denomination
          end
          wage_error = maximum(abs.(what_new .- what)./what)
          what = damp .* what_new .+ (1 - damp) .* what
     end
    \lambda hat = (what ./ Ahat).^{(1 .- \sigma)} ./ sum(\lambda .* (what ./ Ahat).^{(1 .- \sigma)}, dims = 1)
     Phat = vec((sum(\lambda .* (what ./ Ahat).^(1 .- \sigma), dims = 1)).^(1 ./ (1 .- \sigma)))
     return what, λhat, Phat
end
```

```
Ahat = [10., 1.];
what, λhat, Phat = solve_armington_exact_hat(X, λ, w, L, Ahat, σ);
what ./ Phat

## 2-element Vector{Float64}:
## 8.817954095849839
## 1.289024997893565
```

When region 1 becomes more productive: their real wages increase > 800%, region 2's real wages increase 30%

λhat

```
## 2×2 Matrix{Float64}:
## 1.13405 1.89688
## 0.4638 0.77578
```

Both region's expenditures tilt toward region 1

There was nothing special about productivity here

There was nothing special about productivity here

We could have looked at changes in trade costs, preference parameters, labor endowments, or any combination of them

Armington with dynamic migration

Introducing meaningful dynamics in spatial models is difficult

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space grows dramatically

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space grows dramatically

This is then exacerbated by introducing meaningful notions of time

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space grows dramatically

This is then exacerbated by introducing meaningful notions of time

How can we begin to introduce some dynamics into spatial models?

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space grows dramatically

This is then exacerbated by introducing meaningful notions of time

How can we begin to introduce some dynamics into spatial models?

One way is to essentially layer a separate, tractable dynamic model onto our static Armington model

How we will do this is by introducing dynamic migration decisions of households

How we will do this is by introducing dynamic migration decisions of households

First we will introduce static migration to get a sense of how it works

The set up:

N regions with a measure L=1 total households across all regions

The set up:

N regions with a measure L=1 total households across all regions

Each region produces a differentiated product

The set up:

N regions with a measure L=1 total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all locations

The set up:

N regions with a measure L=1 total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all locations

Trade frictions result in different prices offered by different producers

The set up:

N regions with a measure L=1 total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all locations

Trade frictions result in different prices offered by different producers

Households frictionlessly choose where to live to maximize their utility

The household makes two choices:

- 1. Which region *j* to live in subject
- 2. How to allocate their budget across the menu of possible N goods

The household makes two choices:

- 1. Which region *j* to live in subject
- 2. How to allocate their budget across the menu of possible N goods

We make two additional tweaks to the model:

- 1. Adding a **type 1 extreme value**, destination-specific idiosyncratic shock ε_j observed by the households
- 2. Adding log utility over the CES aggregator

The consumer maximizes utility subject to their wage w_j :

$$\max_{\{q_{ij}\}_{i\in N}} \log \left\lceil \left(\sum_{i\in N} a_{ij}^{rac{1}{\sigma}} q_{ij}^{rac{\sigma-1}{\sigma}}
ight)^{rac{\sigma}{\sigma-1}}
ight
ceil + arepsilon_j \quad ext{subject to:} \quad \sum_{i\in N} q_{ij} p_{ij} \leq w_j$$

We get the standard result for their real wage C_j under CES preferences:

$$C_j = w_j/P_j \quad ext{where} \quad P_j = \left(\sum_{k \in N} a_{kj} p_{kj}^{1-\sigma}
ight)^{rac{1}{1-\sigma}}$$

 P_j is the usual Dixit-Stiglitz price index

We get the standard result for their real wage C_j under CES preferences:

$$C_j = w_j/P_j \quad ext{where} \quad P_j = \left(\sum_{k \in N} a_{kj} p_{kj}^{1-\sigma}
ight)^{rac{1}{1-\sigma}}$$

 P_i is the usual Dixit-Stiglitz price index

We now have the households' real wage conditional on choosing j, we can now solve for the households' optimal choice of j:

$$\max_{j \in N} \log C_j + arepsilon_j$$

$$\max_{j \in N} \log C_j + arepsilon_j$$

The household just chooses the location with the highest combination of real wages \mathcal{C}_j

$$\max_{j \in N} \log C_j + arepsilon_j$$

The household just chooses the location with the highest combination of real wages \mathcal{C}_j

How many households choose each location? The Frechet assumption on ε_j buys us a closed form solution (see any treatment on discrete choice models)

If $\varepsilon_j \sim T1EV$, with mean 0 variance 1, the share of the L=1 households choosing to live in region j is:

$$L_j = rac{\exp \log C_j}{\sum_{k \in N} \exp \log C_k} = rac{rac{w_j}{P_j}}{\sum_{k \in N} rac{w_k}{P_k}}$$

where $\sum_{j \in N} L_j = 1$

If $\varepsilon_j \sim T1EV$, with mean 0 variance 1, the share of the L=1 households choosing to live in region j is:

$$L_j = rac{\exp \log C_j}{\sum_{k \in N} \exp \log C_k} = rac{rac{w_j}{P_j}}{\sum_{k \in N} rac{w_k}{P_k}}$$

where $\sum_{j \in N} L_j = 1$

This is essentially our extensive margin of labor supply

If $\varepsilon_j \sim T1EV$, with mean 0 variance 1, the share of the L=1 households choosing to live in region j is:

$$L_j = rac{\exp \log C_j}{\sum_{k \in N} \exp \log C_k} = rac{rac{w_j}{P_j}}{\sum_{k \in N} rac{w_k}{P_k}}$$

where $\sum_{j \in N} L_j = 1$

This is essentially our extensive margin of labor supply

Higher wages or lower prices in j relative to other locations attracts more workers

Armington + migration: equilibrium

We now have two equilibrium conditions, labor supply and joint market clearing:

$$L_j = rac{\exprac{w_j}{P_j}}{\sum_{k\in N}\exprac{w_k}{P_k}} \qquad w_jL_j = \sum_{i\in N}rac{a_{ij}ig(rac{ au_{ij}w_i}{A_i}ig)^{1-\sigma}}{\sum_{k\in N}a_{kj}ig(rac{ au_{kj}w_k}{A_k}ig)^{1-\sigma}}w_iL_i$$

where:

$$ullet P_j = \left(\sum_{k \in N} a_{kj} \Big(au_{kj} rac{w_k}{A_k}\Big)^{1-\sigma}
ight)^{rac{1}{1-\sigma}}$$

$$\bullet \sum_{j \in N} L_j = 1$$

Now let's solve the model using exact hat algebra

Now let's solve the model using exact hat algebra

Since labor is endogenous, we now need to account for it in the market clearing condition:

$$\hat{w}_j \hat{L}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}}$$

You can prove to yourself that this is the correct expression

Next we need to put labor supply in hat terms:

$$L_j = rac{rac{w_j}{P_j}}{\sum_{k \in N} rac{w_k}{P_k}}$$

$$\hat{L}_j = rac{rac{\hat{w}_j}{\hat{P}_j}}{rac{\sum_{k \in N} rac{w_k'}{P_k'}}{\sum_{l \in N} rac{w_l}{P_l}}}$$

Next, use a similar multiply and divide by $\frac{w_j}{P_j}$ trick as for λ

$$\hat{L}_{j} = rac{rac{\hat{w}_{j}}{\hat{P}_{j}}}{\left[rac{\sum_{k \in N} rac{w_{k}'}{P_{k}'} rac{w_{k}}{P_{k}'}}{\sum_{l \in N} rac{\hat{w}_{j}}{P_{k}}}
ight]} = rac{rac{\hat{w}_{j}}{\hat{P}_{j}}}{\left[rac{\sum_{k \in N} rac{\hat{w}_{k}}{\hat{P}_{k}} rac{w_{k}}{P_{k}}}{\sum_{l \in N} rac{w_{l}}{P_{l}}}
ight]} = rac{\frac{\hat{w}_{j}}{\hat{P}_{j}}}{\sum_{k \in N} rac{\hat{w}_{k}}{\hat{P}_{k}}}$$
 $\hat{L}_{j} = rac{rac{\hat{w}_{j}}{\hat{P}_{j}}}{\sum_{k \in N} \hat{L}_{k} rac{\hat{w}_{k}}{\hat{P}_{k}}}$

The change in labor depends on the change in real wages but also the initial labor allocation

$$\hat{w}_j \hat{L}_j = \sum_{i \in N} rac{rac{X_{ji}}{w_j L_j} igg(rac{\hat{w}_j}{\hat{A}_j}igg)^{1-\sigma}}{\sum_{k \in N} \lambda_{ki} igg(rac{\hat{w}_k}{\hat{A}_k}igg)^{1-\sigma}} \qquad \hat{L}_j = rac{rac{\hat{w}_j}{\hat{P}_j}}{\sum_{k \in N} L_k rac{\hat{w}_k}{\hat{P}_k}}$$

We now have our two equilibrium conditions in changes that we can iterate on to recover \hat{w}_j, \hat{L}_j

Write up a function solve_armington_mig_exact_hat(X, lambda, w, L, Ahat, sigma, tol, damp) that solves for the new equilibrium in changes

Here are the data to use:

```
w = [6., 3.];
  L = [.3, .7];
 \lambda = [.8 .2; .2 .8];
  X = (w \cdot * L)' \cdot * \lambda
## 2×2 Matrix{Float64}:
## 1.44 0.42
## 0.36 1.68
 Ahat = [.5, 1.];
  \sigma = 2.;
```

Columns of λ should sum to 1, L should sum to 1, X is generated to be consistent with w, L, λ

Exact hat algebra

```
function solve_armington_mig_exact_hat(X, \lambda, w, L, Ahat, \sigma, tol = 1e-5, damp = .1)
    what, Lhat, labor_error, wage_error = ones(size(Ahat)), ones(size(Ahat)), 1e5, 1e5
    while max(labor error, wage error) > tol
         denominator, what_new, Lhat_new = zeros(size(Ahat)), zeros(size(Ahat)), zeros(size(Ahat))
         for k in eachindex(Ahat)
             denominator .+= \lambda[k,:] .* (what[k] / Ahat[k]).^(1 .- \sigma)
        end
         for i in eachindex(Ahat)
             what_new .+= (X[:,i] ./ (w .* L)) .* (what ./ Ahat).^(1 .- \sigma) .* what[i] .* Lhat[i]
        end
         Phat = vec((sum(\lambda .* (what_new ./ Ahat).^(1 .- \sigma), dims = 1)).^(1 ./ (1 .- \sigma)))
         Lhat_new = what ./ Phat ./ sum(L .* what ./ Phat)
        wage_error, labor_error = maximum(abs.(what_new .- what)./what), maximum(abs.(Lhat_new
        what = damp \cdot * what new \cdot + (1 - damp) \cdot * what
         Lhat = damp .* Lhat new .+ (1 - damp) .* Lhat
    end
    \lambda hat = (what ./ Ahat).^{(1 .- \sigma)} ./ sum(\lambda .* (what ./ Ahat).^{(1 .- \sigma)}, dims = 1)
    Phat = vec((sum(\lambda .* (what ./ Ahat).^(1 .- \sigma), dims = 1)).^(1 ./ (1 .- \sigma)))
    return what, λhat, Phat, Lhat
end
```

Exact hat algebra

```
Ahat = [.5, 1.];
what, λhat, Phat, Lhat = solve_armington_mig_exact_hat(X, λ, w, L, Ahat, σ)

## ([0.9051035127985965, 1.0832507504862192], [0.8816650787044907 0.6506730472117545; 1.473339685182036]

what ./ Phat

## 2-element Vector{Float64}:
## 0.5671087718872735
## 0.9196825263816277
```

When region 1 becomes less productive by 50%: their real wages fall by about the same amount, region 2s real wages fall as well

Exact hat algebra

Lhat

```
## 2-element Vector{Float64}:
## 0.6967741048725734
## 1.1299539550546118
```

Decreasing productivity in region 1 leads to reallocation of workers to region 2 as workers search for higher real wages

Armington with dynamic migration

Now let's introduce dynamics in the migration decision:

- Time $t = 0, \dots, T$
- Same static goods market in each period t
- ullet Each region j is populated with L_{jt} households where $\sum_{j\in N} L_{jt} = 1$
- Productivity in each time is A_{jt}
- Households are forward-looking and have perfect information
- Households discount the future at $\beta \in (0,1)$
- ullet Moving from i to j has a multiplicative utility cost $\mu_{ij} \in (0,1]$
- Households work and consume at the beginning of the period, migrate at the end of the period

Armington with dynamic migration

We can write the household's objective as:

$$v_{jt} = \max_{i \in N} \log rac{w_{jt}}{P_{jt}} + eta \mathbb{E}[v_{it+1}] - \mu_{ji} + arepsilon_{it}$$

where the idiosyncratic shock is destination-specific

Armington with dynamic migration

We can write the household's objective as:

$$v_{jt} = \max_{i \in N} \log rac{w_{jt}}{P_{jt}} + eta \mathbb{E}[v_{it+1}] - \mu_{ji} + arepsilon_{it}$$

where the idiosyncratic shock is destination-specific

The share of households migrating from j to i at time t is:

$$\pi_{jit} = rac{\expigl(eta \mathbb{E}[v_{it+1}] - \mu_{ji}igr)}{\sum_{k \in N} \expigl(eta \mathbb{E}[v_{kt+1}] - \mu_{jk}igr)}$$

The share of households in j at time t is still L_j

Armington with dynamic migration: labor supply

$$\pi_{jit} = rac{\expigl(eta \mathbb{E}[v_{it+1}] - \mu_{ji}igr)}{\sum_{k \in N} \expigl(eta \mathbb{E}[v_{kt+1}] - \mu_{jk}igr)}$$

We now have our dynamic labor supply equation which depends on expected future payoffs and migration costs

Dynamic hat algebra

Now that our problem is dynamic we need to make one additional notational tweak: dots/time changes

$$\dot{Z}_{jt+1} \equiv Z_{jt+1}/Z_{jt}$$

The dot version of a variable is the relative time change between two periods

Now that our problem is dynamic we need to make one additional notational tweak: dots/time changes

$$\dot{Z}_{jt+1} \equiv Z_{jt+1}/Z_{jt}$$

The dot version of a variable is the relative time change between two periods

Then, the dynamic hat variable is the counterfactual relative to the factual in time changes:

$$\hat{Z}_{jt+1} \equiv \dot{Z}_{jt+1}' / \dot{Z}_{jt+1} = rac{Z_{jt+1}' / Z_{jt}'}{Z_{jt+1} / Z_{jt}}$$

$$\hat{Z}_{jt+1} \equiv \dot{Z}_{jt+1}' / \dot{Z}_{jt+1} = rac{Z_{jt+1}' / Z_{jt}'}{Z_{jt+1} / Z_{jt}}$$

In the static model using hat variables let us get around knowing the levels of most exogenous variables

$$\hat{Z}_{jt+1} \equiv \dot{Z}_{jt+1}' / \dot{Z}_{jt+1} = rac{Z_{jt+1}'/Z_{jt}'}{Z_{jt+1}/Z_{jt}}$$

In the static model using hat variables let us get around knowing the levels of most exogenous variables

In the dynamic model using dynamic hat variables will let us get around knowing the levels of time-varying exogenous (common) variables: this is like a structural difference-in-differences

$$\hat{Z}_{jt+1} \equiv \dot{Z}_{jt+1}' / \dot{Z}_{jt+1} = rac{Z_{jt+1}'/Z_{jt}'}{Z_{jt+1}/Z_{jt}}$$

In the static model using hat variables let us get around knowing the levels of most exogenous variables

In the dynamic model using dynamic hat variables will let us get around knowing the levels of time-varying exogenous (common) variables: this is like a structural difference-in-differences

Lets put our equilibrium conditions in dynamic hat notation starting with the labor supply equation

$$\pi_{jit} = rac{\expigl(eta \mathbb{E}[v_{it+1}] - \mu_{ji}igr)}{\sum_{k \in N} \expigl(eta \mathbb{E}[v_{kt+1}] - \mu_{jk}igr)}$$

$$\dot{\pi}_{jit+1} = rac{rac{\exp\left(eta \mathbb{E}[v_{it+2}] - \mu_{ji}
ight)}{\exp\left(eta \mathbb{E}[v_{it+1}] - \mu_{ji}
ight)}}{rac{\sum_{k \in N} \exp\left(eta \mathbb{E}[v_{kt+2}] - \mu_{jk}
ight)}{\sum_{l \in N} \exp\left(eta \mathbb{E}[v_{lt+1}] - \mu_{jl}
ight)}}$$

Next, let $u_{it} \equiv \exp(\mathbb{E}\left[v_{it}\right])$ to keep notation simple later, and use the multiply and divide trick to put into dot terms

$$\dot{oldsymbol{\pi}}_{jit+1} = rac{rac{\exp\left(eta \mathbb{E}[v_{it+2}] - \mu_{ji}
ight)}{\exp\left(eta \mathbb{E}[v_{it+1}] - \mu_{ji}
ight)}}{rac{\sum_{k \in N} \exp\left(eta \mathbb{E}[v_{kt+2}] - \mu_{jk}
ight)}{\sum_{l \in N} \exp\left(eta \mathbb{E}[v_{lt+1}] - \mu_{jl}
ight)}}$$

$$\dot{\pi}_{jit+1} = rac{\dot{u}_{it+2}^{eta}}{rac{\sum_{k \in N} \expig(eta \mathbb{E}[v_{kt+2}] - \mu_{jk}ig)}{\sum_{l \in N} \expig(eta \mathbb{E}[v_{lt+1}] - \mu_{jl}ig)}}{rac{\sum_{k \in N} \expig(eta \mathbb{E}[v_{lt+1}] - \mu_{jl}ig)}{\sum_{l \in N} \expig(eta \mathbb{E}[v_{kt+2}] - \mu_{jk}ig)} rac{\dfrac{\dot{u}_{it+2}^{eta}}{\expig(eta \mathbb{E}[v_{kt+1}] - \mu_{jl}ig)}}{\sum_{l \in N} \expig(eta \mathbb{E}[v_{lt+1}] - \mu_{jl}ig)}} = rac{\dot{u}_{it+2}^{eta}}{\sum_{k \in N} \dot{u}_{kt+2}^{eta}} = rac{\dot{u}_{it+2}^{eta}}{\sum_{l \in N} \expig(eta \mathbb{E}[v_{kt+2}] - \mu_{jk}ig)}} = rac{\dot{u}_{it+2}^{eta}}{\sum_{k \in N} \pi_{jkt} \dot{u}_{kt+2}^{eta}}$$

$$\dot{\pi}_{jit+1} = rac{\dot{u}_{it+2}^eta}{\sum_{k \in N} \pi_{jkt} \dot{u}_{kt+2}^eta}$$

By putting migration into time changes, we differenced out time-invariant migration costs

$$\dot{\pi}_{jit+1} = rac{\dot{u}_{it+2}^eta}{\sum_{k \in N} \pi_{jkt} \dot{u}_{kt+2}^eta}$$

By putting migration into time changes, we differenced out time-invariant migration costs

But now we have time changes in another endogenous variable $u_{it+2} = \exp(\mathbb{E}[v_{it+2}])$ so we need another equilibrium condition (in time changes)

We will use the T1EV version of the Bellman:

$$\mathbb{E}[v_{jt}] = \log u_{jt} = \log rac{w_{jt}}{P_{jt}} + \log \Biggl(\sum_{i \in N} \expig(eta v_{it+1} - \mu_{ji}ig)\Biggr)$$

We will use the T1EV version of the Bellman:

$$\mathbb{E}[v_{jt}] = \log u_{jt} = \log rac{w_{jt}}{P_{jt}} + \log \Biggl(\sum_{i \in N} \expig(eta v_{it+1} - \mu_{ji}ig)\Biggr)$$

Exponentiate both sides and then take time differences:

$$\dot{u}_{jt+1} = rac{\dot{w}_{jt+1}}{\dot{P}_{jt+1}} rac{\sum_{i \in N} \expig(eta v_{it+2} - \mu_{ji}ig)}{\sum_{l \in N} \expig(eta v_{lt+1} - \mu_{jl}ig)}$$

Next use the multiply and divide trick

$$egin{aligned} \dot{u}_{jt+1} &= rac{\dot{w}_{jt+1}}{\dot{P}_{jt+1}} rac{\sum_{i \in N} \expig(eta v_{it+2} - \mu_{ji}ig) rac{\expig(eta v_{it+1} - \mu_{ji}ig)}{\expig(eta v_{it+1} - \mu_{ji}ig)}}{\sum_{l \in N} \expig(eta v_{lt+1} - \mu_{jl}ig)} \ &= rac{\dot{w}_{jt+1}}{\dot{P}_{jt+1}} \sum_{i \in N} rac{\expig(eta v_{it+2} - \mu_{ji}ig)}{\expig(eta v_{it+1} - \mu_{ji}ig)} rac{\expig(eta v_{it+1} - \mu_{ji}ig)}{\sum_{l \in N} \expig(eta v_{lt+1} - \mu_{jl}ig)} \ \dot{u}_{jt+1} &= rac{\dot{w}_{jt+1}}{\dot{P}_{jt+1}} \sum_{i \in N} \dot{u}_{it+2}^eta \pi_{jit} \end{aligned}$$

Now we have \dot{u} as a function of itself and other dot variables

Next, do the same for the market clearing condition

$$w_{jt}L_{jt} = \sum_{i \in N} rac{a_{ij} \left(rac{ au_{ij}w_{it}}{A_{it}}
ight)^{1-\sigma}}{\sum_{k \in N} a_{kj} \left(rac{ au_{kj}w_{kt}}{A_{kt}}
ight)^{1-\sigma}} w_{it}L_{it}$$

Next, do the same for the market clearing condition

$$w_{jt}L_{jt} = \sum_{i \in N} rac{a_{ij} \Big(rac{ au_{ij}w_{it}}{A_{it}}\Big)^{1-\sigma}}{\sum_{k \in N} a_{kj} \Big(rac{ au_{kj}w_{kt}}{A_{kt}}\Big)^{1-\sigma}} w_{it}L_{it}$$

You can prove to yourself that it is:

$$\dot{w}_{jt+1}\dot{L}_{jt+1} = \sum_{i \in N} rac{rac{X_{jit}}{w_{jt}L_{jt}} \left(rac{\dot{w}_{jt+1}}{\dot{A}_{jt+1}}
ight)^{1-\sigma}}{\sum_{k \in N} \lambda_{kit} \left(rac{\dot{w}_{kt+1}}{\dot{A}_{kt+1}}
ight)^{1-\sigma}}$$

We have our three equilibrium conditions in time changes

Along with the labor transition $L_{jt+1} = \sum_{i \in N} \pi_{ijt} L_{it}$, and changes in prices that are easy to solve for \dot{P}_{jt+1} , we can then solve for the dynamic equilibrium of the economy given some sequence of changes in productivity \dot{A}_{jt+1}

$$\dot{w}_{jt+1}\dot{L}_{jt+1} = \sum_{i \in N} rac{rac{X_{jit}}{w_{jt}L_{jt}} \left(rac{\dot{w}_{jt+1}}{\dot{A}_{jt+1}}
ight)^{1-\sigma} \dot{w}_{it+1}\dot{L}_{it+1}}{\sum_{k \in N} \lambda_{kit} \left(rac{\dot{w}_{kt+1}}{\dot{A}_{kt+1}}
ight)^{1-\sigma}} \ \dot{\pi}_{jit+1} = rac{\dot{u}_{it+2}^{eta}}{\sum_{k \in N} \pi_{jkt} \dot{u}_{kt+2}^{eta}} \quad \dot{u}_{jt+1} = rac{\dot{w}_{jt+1}}{\dot{P}_{jt+1}} \sum_{i \in N} \dot{u}_{it+2}^{eta} \pi_{jit} \ L_{jt+1} = \sum_{i \in N} \pi_{ijt} L_{it} \quad \dot{P}_{jt+1} = \left(\sum_{k \in N} \left(rac{\dot{w}_{kt+1}}{\dot{A}_{kt+1}}
ight)^{1-\sigma} \lambda_{kjt}
ight)^{1-\sigma}$$

We also impose \dot{u}_{it} converges to 1 (else can't solve the problem)

How do we solve it?

How do we solve it?

We essentially have two nested problems:

- 1. A static market-clearing problem at each time t (conditional on the labor allocation)
- 2. A dynamic migration problem (conditional on the sequence of wages and prices)

Pseudocode might look like this:

```
while error > tolerance (outer loop)
  compute sequence of migration shares given initial conditions and expected values
  compute sequence of labor given initial conditions and migration shares
  for each time t (inner loop)
      solve for wages and prices that clear the goods market
  end
  compute the sequence of expected values
  compute error in expected values since last iteration
end
```

solve_arm_dyn_mig(X, lambda, w, L, pi, Ahat, sigma, beta, tol, damp)