
Roadmap

1. Spatial models: Armington

2. Exact hat algebra

3. Dynamic spatial models: Armington + migration

4. Dynamic hat algebra
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Spatial models

So far we have been focusing on dynamics

Now we are going to look at the other dimension: space

To start, we will work with static models

But we will introduce multiple regions across space, and frictions inhibiting

mobility of goods and factors of production
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The Armington model

Armington and gravity

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of

goods

Comparative advantage
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Armington and gravity

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of

goods

Comparative advantage

Empirical work has long used the gravity model:

Xij = α
YiYj

Dij
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Armington and gravity

 trade flow from i to j

 GDP of origin

 GDP of destination

 distance and other frictions affecting trade flows

Xij = α
YiYj

Dij

Xij

Yi

Yj

Dij
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Armington and gravity

The gravity model is widely used and empirically matches the data, but no real

theoretical foundation, can't do counterfactuals
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Armington and gravity

The gravity model is widely used and empirically matches the data, but no real

theoretical foundation, can't do counterfactuals

The Armington model provides a simple theoretical foundation for gravity

with two key ingredients:

1. Spatially differentiated products

2. Love-of-variety preferences

Xij = α
YiYj

Dij
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Armington

The set up:

 regionsN
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Armington

The set up:

 regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

Trade frictions (e.g. distance) result in different prices offered by different

producers

N
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Armington: preferences

The representative household in region  has CES preferences across goods:

 is the elasticity of substitution with 

 is an exogenous taste parameter

 is the quantity of goods imported from  to 

j

Uj = (∑
i∈N

aijqij )
1
σ

σ−1
σ

σ
σ−1

σ σ > 1

aij

qij i j
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Armington: demand

The consumer maximizes utility subject to a budget:

max
{qij}i∈N

(∑
i∈N

aijqij ) subject to: ∑
i∈N

qijpij ≤ Yj

1
σ

σ−1
σ

σ
σ−1
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Armington: demand

The consumer maximizes utility subject to a budget:

Standard result gives demand for goods from  by :

 is the usual Dixit-Stiglitz price index

max
{qij}i∈N

(∑
i∈N

aijqij ) subject to: ∑
i∈N

qijpij ≤ Yj

1
σ

σ−1
σ

σ
σ−1

i j

qij = aijp
−σ
ij YjP

σ−1
j where Pj = (∑

k∈N

akjp
1−σ
kj )

1
1−σ

Pj

10 / 86

Armington: demand

Multiply by prices to get trade flows in dollar terms:

Trade flows decrease in bilateral prices, increase in the local price index, and

increase in local size/GDP

qij = aijp
−σ
ij YjP

σ−1
j where Pj = (∑

k∈N

akjp
1−σ
kj

)

1
1−σ

Xij = qijpij = aijp
1−σ
ij YjP

σ−1
j
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Armington: supply

Armington assumption: each region produces a distinct variety of a good
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τij ≥ 1 qij j i

τij
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Armington: supply

Armington assumption: each region produces a distinct variety of a good

There are iceberg trade costs : for 1 unit of  to arrive at  from  you

need to ship  units

Market structure:

Producers compete in perfect competition

Regions are endowed with  workers supplying 1 unit of labor

Each unit of labor can produce  units so total output is 

Workers are paid a wage  so that 

τij ≥ 1 qij j i

τij

Li

Ai AiLi

wi Yi = wiLi
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Armington: supply

Given a labor endowment  and productivity  the marginal cost of

production is 

Li Ai
wi

Ai
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Armington: supply

Given a labor endowment  and productivity  the marginal cost of

production is 

Perfect competition means the factory-door price is marginal cost: 

The price in  to buy a unit of the good from  is then:

Plug back into demand to get:

Li Ai
wi

Ai

wi

Ai

j i

pij = τij
wi

Ai

Xij = aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j

wi

Ai
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Armington: market clearing

Define expenditure shares as the expenditures on  by  relative to s total

expenditures:

Xij = aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j

wi

Ai

i j j

λij =
Xij

∑k∈N Xkj
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Armington: market clearing

λij =

=

=

Xij

∑k∈N Xkj

aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j
wi

Ai

∑k∈N akjτ
1−σ
kj

( )
1−σ

YjP
σ−1

j
wk

Ak

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak
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Armington: market clearing

 spends more on  relative to other places if  has lower wages, higher

productivity, or lower trade costs relative to other locations

λij =
aij( )

1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

j i i
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Armington: market clearing

In perfect competition the expenditures on inputs in  need to match the

spending by other locations  on s goods:

Perfect competition  labor costs = revenues

j

i j

wjLj = ∑
i∈N

λjiwiLi

→
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Armington: equilibrium

Our equilibrium is then defined by two sets of equations:

where the endogenous variables are the   terms and the   terms

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N 2 λij N wj
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Armington: equilibrium

Given the exogenous parameters , how do we solve for the

equilibrium?

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

aij, τij, Ai, Li, σ
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Armington: equilibrium

Given the exogenous parameters , how do we solve for the

equilibrium?

We can use function iteration after substituting in for  in market clearing:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

aij, τij, Ai, Li, σ

λij

wjLj = ∑
i∈N

wiLi

aji( )
1−στjiwj

Aj

∑k∈N aki( )
1−σ

τkiwk

Ak
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Armington: equilibrium

We have  market clearing conditions and  unknown  terms

wjLj = ∑
i∈N

wiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N N wi
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Armington: equilibrium

We have  market clearing conditions and  unknown  terms

Write up a function solve_armington_eq(sigma, tau, A, L, a, tol, damp)

that solves for the equilibrium wages and expenditure shares

wjLj = ∑
i∈N

wiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N N wi
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Armington: equilibrium

function solve_armington_eq(σ, τ, A, L, a, tol = 1e-5, damp = .1)

     w, λ  = ones(size(A)), zeros(size(a))

     wage_error = 1e5

while wage_error > tol

         denominator, wL = zeros(size(A)), zeros(size(A))

for k in eachindex(A)

             denominator .+= a[k,:] .* (τ[k,:] * w[k] / A[k]).^(1 .- σ)

end

for i in eachindex(A)

             wL .+= a[:,i] .* (τ[:,i] .* w ./ A).^(1 .- σ) .* w[i] .* L[i] ./ denominator[i]

end

         wnew = wL ./ L 

         wage_error = maximum(abs.(wnew .- w)./w)

         w = damp .* wnew .+ (1 - damp) .* w

end

for o in eachindex(A), d in eachindex(A)

         λ[o,d] = a[o,d] * (τ[o,d] * w[o] / A[o])^(1 - σ) / sum(a[:,d] .* (τ[:,d] .* w[:] ./ A[:]

end

return w, λ

end
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Symmetric + cross-region trade costs of 5

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  0.833333  0.166667

##  0.166667  0.833333
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Productivity shock to region 1

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [10., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.6143181095745787

##  0.38568189042542783

 display(λ)

## 2×2 Matrix{Float64}:

##  0.922754  0.323331

##  0.077246  0.676669
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Increased labor supply in region 1

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [5., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  0.8780637781792023

##  1.6096811091040044

 display(λ)

## 2×2 Matrix{Float64}:

##  0.901634   0.26828

##  0.0983663  0.73172
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Return to autarky

 τ = [1. 1e9; 1e9 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  1.0     1.0e-9

##  1.0e-9  1.0
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Free trade

 τ = [1. 1.0001; 1.0001 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  0.500025  0.499975

##  0.499975  0.500025
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New trading partner

 τ = [1. 2. 3.; 3. 1. 2.; 1e9 5. 1.]; 

 a = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];

 A = [1., 1., 1.];

 L = [1., 1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 3-element Vector{Float64}:

##  1.2539609132194725

##  1.095427131707213

##  0.6506119550733213

 display(λ)

## 3×3 Matrix{Float64}:

##  0.723812    0.246282  0.117659

##  0.276188    0.563849  0.20203

##  1.39504e-9  0.189869  0.680311 27 / 86
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Solving Armington

We solved for the Armington equilibrium

If we have values for all the exogenous parameters, we can then perform

counterfactuals where we explore the equilibrium effects of changes in trade

costs, productivity, etc

This is a bit unsatisfying: we'd like to not have to take a stand on numerous

region-specific and bilateral parameters
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Exact hat algebra

A workhorse method for solving for counterfactual is exact hat algebra, you

can think of it as a structural differences estimator

There are two key pieces to it:

1. Real world data (wages, trade flows) are essentially sufficient statistics for

unobservable parameters (productivity, trade costs)

2. Spatial models are built in a way where we can express a counterfactual

equilibrium in terms of changes relative to the factual

Going forward, primes will indicate counterfactual quantities , hats will

indicate relative quantities 

(w′
i)

(ŵi = )
w′

i

wi
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Exact hat algebra

In our working example, our factual equilibrium will be the real world

We observe the data for this equilibrium (wages, trade flows, etc)

We want to understand the equilibrium effects of some arbitrary changes in

the distribution of productivity: 

Assume no other exogenous variables are changing: 

{Â1, Â2, …}

τ̂ ij = 1, âij = 1, σ̂ = 1, L̂ = 1
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Exact hat algebra

Recall our equilibrium conditions were:

Let's start by manipulating the market clearing condition which holds in the

factual and counterfactual equilibria:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak
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Exact hat algebra

Recall our equilibrium conditions were:

Let's start by manipulating the market clearing condition which holds in the

factual and counterfactual equilibria:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

wjLj = ∑
i∈N

λjiwiLi w′
jL

′
j = ∑

i∈N

λ′
jiw

′
iL

′
i
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Exact hat algebra

First by definition:  so thatλjiwiLi = Xji

w′
jL

′
j = ∑

i∈N

λ′
jiw

′
iL

′
i = ∑

i∈N

X ′
ji

33 / 86

Exact hat algebra

First by definition:  so that

Next, put the left hand side into hat form by dividing both sides by :

λjiwiLi = Xji

w′
jL

′
j = ∑

i∈N

λ′
jiw

′
iL

′
i = ∑

i∈N

X ′
ji

wjLj

ŵj L̂j


=1

= ∑
i∈N

X ′
ji

wjLj
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Exact hat algebra

Multiply and divide the right and side by  to put it into hat form:

ŵj = ∑
i∈N

X ′
ji

wjLj

Xji

ŵj = ∑
i∈N

X̂ji

Xji

wjLj
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Exact hat algebra

Finally, we know that  so that  and

The change in wages depends on the change in endogenous wages and

expenditure shares, and the observed factual bilateral expenditures, wages,

and labor

Xji = λjiwiLi X̂ji = λ̂jiŵiL̂i

ŵj = ∑
i∈N

λ̂jiŵi

Xji

wjLj

35 / 86

Exact hat algebra

Now let's go to the gravity equation:

λ′
ij =

aij( )
1−στijw

′
i

A′
i

∑k∈N akj( )
1−στkjw

′
k

A′
k
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Exact hat algebra

Now let's go to the gravity equation:

Put this into hat form:

λ′
ij =

aij( )
1−στijw

′
i

A′
i

∑k∈N akj( )
1−στkjw

′
k

A′
k

λ′
ij/λij =

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

/
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

aij( )
1−στijw

′
i

A′
i

∑k∈N akj( )
1−στkjw

′
k

A′
k

aij( )
1−στijwi

Ai

∑l∈N alj( )
1−στljwl

Al

36 / 86

Exact hat algebra

The numerator goes into hats easily, the denominator is trickier:

Next, bring the bottom sum inside the top sum since it is a function of  and

does not depend on k

λ̂ij =
( )

1−σ
ŵi

Âi

⎡
⎢
⎣

⎤
⎥
⎦

∑
k∈N

akj( )
1−σ

τkjw′
k

A′
k

∑l∈N alj( )
1−στljwl

Al

j
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Exact hat algebra

λ̂ij =
( )

1−σ
ŵi

Âi

∑k∈N

⎡
⎢
⎣

⎤
⎥
⎦

akj( )
1−σ

τkjw′
k

A′
k

∑l∈N alj( )
1−στljwl

Al
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Exact hat algebra

Inside the square brackets, multiply and divide by 

λ̂ij =
( )

1−σ
ŵi

Âi

∑k∈N

⎡
⎢
⎣

⎤
⎥
⎦

akj( )
1−σ

τkjw′
k

A′
k

∑l∈N alj( )
1−στljwl

Al

akj( )
1−σ

τkjwk

Ak
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Exact hat algebra

λ̂ij =
( )

1−σ
ŵi

Âi

∑k∈N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣



( )
1−σ


λkj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

akj( )
1−σ

τkjw′
k

A′
k

akj( )
1−στkjwk

Ak

ŵk

Âk

akj( )
1−στkjwk

Ak

∑l∈N alj( )
1−στljwl

Al
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Exact hat algebra

This finally gives us that:

The change in expenditure shares depends on the change in exogenous

productivity, endogenous wages, and the observed factual expenditure shares

λ̂ij =
( )

1−σ
ŵi

Âi

∑k∈N λkj( )
1−σ

ŵk

Âk
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Exact hat algebra

We now have our two equilibrium conditions in changes:

and can combine them into a single equilibrium condition in changes:

λ̂ij = ŵj = ∑
i∈N

λ̂jiŵi

( )
1−σ

ŵi

Âi

∑k∈N λkj( )
1−σ

ŵk

Âk

Xji

wjLj

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk
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Exact hat algebra

Notice that it does not depend on any structural parameters except for 

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

σ
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Exact hat algebra

 are all observable data:

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

 are unknown but can be solved through function iteration

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi

ŵi
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

 are unknown but can be solved through function iteration

We also will want to solve for  to understand how the price index is

changing

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi

ŵi

P̂ i
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Exact hat algebra

Recall:

Like before, bring the denominator inside the numerator sum

Pj = (∑
k∈N

akjp
1−σ
kj

) = (∑
k∈N

akj(τkj )
1−σ

)

1
1−σ

wk

Ak

1
1−σ

P̂
1−σ

j =
∑k∈N akj(τkj )

1−σw′
k

A′
k

∑l∈N alj(τlj )
1−σ

wl

Al
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Exact hat algebra

multiply and divide by  to get:

P̂
1−σ

j = ∑
k∈N

akj(τkj )
1−σw′

k

A′
k

∑l∈N alj(τlj )
1−σ

wl

Al

akj(τkj )
1−σ

wk

Ak

P̂
1−σ

j = ∑
k∈N

akj(τkj )
1−σw′

k

A′
k

akj(τkj )
1−σ

wk

Ak

akj(τkj )
1−σ

wk

Ak

∑l∈N alj(τlj )
1−σ

wl

Al
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Exact hat algebra

P̂
1−σ

j = ∑
k∈N

( )

1−σ


λkj

ŵk

Âk

akj(τkj )
1−σ

wk

Ak

∑l∈N alj(τlj )
1−σ

wl

Al

P̂ j =
⎛

⎝
∑
k∈N

( )

1−σ

λkj

⎞

⎠

ŵk

Âk

1
1−σ
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Exact hat algebra

We have  market clearing conditions and  unknown  terms

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

N N ŵi
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Exact hat algebra

We have  market clearing conditions and  unknown  terms

Write up a function solve_armington_exact_hat(X, lambda, w, L, Ahat,

sigma, tol, damp)  that solves for the new equilibrium in changes

Key thing to keep in mind: we haven't defined a numeraire yet, use the

consumption price index

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

N N ŵi
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Exact hat algebra

Here are the data to use:

 w = [1., 1.];

 L = [1., 1.];

 λ = [.8 .2; .2 .8];

 X = (w .* L)' .* λ;

 Ahat = [10., 1.];

 σ = 2.;

Columns of  should sum to 1,  is generated to be consistent with λ X w, L, λ
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Exact hat algebra

## solve_armington_exact_hat (generic function with 3 methods)

function solve_armington_exact_hat(X, λ, w, L, Ahat, σ, tol = 1e-5, damp = .1)

     what = ones(size(Ahat))

     wage_error = 1e5

while wage_error > tol

         denominator, what_new = zeros(size(Ahat)), zeros(size(Ahat))

for k in eachindex(Ahat)

             denominator .+= λ[k,:] .* (what[k] / Ahat[k]).^(1 .- σ)

end

for i in eachindex(Ahat)

             what_new .+= (X[:,i] ./ (w .* L) ) .* (what ./ Ahat).^(1 .- σ) .* what[i] ./ denomin

end

         wage_error = maximum(abs.(what_new .- what)./what)

         what = damp .* what_new .+ (1 - damp) .* what

end

     λhat = (what ./ Ahat).^(1 .- σ) ./ sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)

     Phat = vec((sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

return what, λhat, Phat

end
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Exact hat algebra

 Ahat = [10., 1.];

 what, λhat, Phat = solve_armington_exact_hat(X, λ, w, L, Ahat, σ);

 what ./ Phat

## 2-element Vector{Float64}:

##  8.817954095849839

##  1.289024997893565

When region 1 becomes more productive: their real wages increase > 800%,

region 2's real wages increase 30%
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Exact hat algebra

 λhat

## 2×2 Matrix{Float64}:

##  1.13405  1.89688

##  0.4638   0.77578

Both region's expenditures tilt toward region 1
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Exact hat algebra

There was nothing special about productivity here
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Exact hat algebra

There was nothing special about productivity here

We could have looked at changes in trade costs, preference parameters, labor

endowments, or any combination of them
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Armington with dynamic migration

Dynamics in spatial models

Introducing meaningful dynamics in spatial models is difficult
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Dynamics in spatial models

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space

grows dramatically

This is then exacerbated by introducing meaningful notions of time

How can we begin to introduce some dynamics into spatial models?

One way is to essentially layer a separate, tractable dynamic model onto our

static Armington model
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Dynamics in spatial models

How we will do this is by introducing dynamic migration decisions of

households
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Dynamics in spatial models

How we will do this is by introducing dynamic migration decisions of

households

First we will introduce static migration to get a sense of how it works
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Armington + migration

The set up:

 regions with a measure  total households across all regionsN L = 1

56 / 86

Armington + migration

The set up:

 regions with a measure  total households across all regions

Each region produces a differentiated product

N L = 1

56 / 86

Armington + migration

The set up:

 regions with a measure  total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

N L = 1

56 / 86

Armington + migration

The set up:

 regions with a measure  total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

Trade frictions result in different prices offered by different producers

N L = 1

56 / 86

Armington + migration

The set up:

 regions with a measure  total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

Trade frictions result in different prices offered by different producers

Households frictionlessly choose where to live to maximize their utility

N L = 1
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Armington + migration: indirect utility

The household makes two choices:

1. Which region  to live in subject

2. How to allocate their budget across the menu of possible  goods

j

N
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Armington + migration: indirect utility

The household makes two choices:

1. Which region  to live in subject

2. How to allocate their budget across the menu of possible  goods

We make two additional tweaks to the model:

1. Adding a type 1 extreme value, destination-specific idiosyncratic shock 

observed by the households

2. Adding log utility over the CES aggregator

j

N

εj
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Armington + migration: indirect utility

The consumer maximizes utility subject to their wage :wj

max
{qij}i∈N

log
⎡

⎣
(∑

i∈N

aijqij )
⎤

⎦
+ εj subject to: ∑

i∈N

qijpij ≤ wj

1
σ

σ−1
σ

σ
σ−1
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Armington + migration: indirect utility

We get the standard result for their real wage  under CES preferences:

 is the usual Dixit-Stiglitz price index

Cj

Cj = wj/Pj where Pj = (∑
k∈N

akjp
1−σ
kj

)

1
1−σ

Pj
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Armington + migration: indirect utility

We get the standard result for their real wage  under CES preferences:

 is the usual Dixit-Stiglitz price index

We now have the households' real wage conditional on choosing , we can

now solve for the households' optimal choice of :

Cj

Cj = wj/Pj where Pj = (∑
k∈N

akjp
1−σ
kj

)

1
1−σ

Pj

j

j

max
j∈N

log Cj + εj
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Armington + migration: labor supply

The household just chooses the location with the highest combination of real

wages 

max
j∈N

log Cj + εj

Cj
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Armington + migration: labor supply

The household just chooses the location with the highest combination of real

wages 

How many households choose each location? The Frechet assumption on 

buys us a closed form solution (see any treatment on discrete choice models)

max
j∈N

log Cj + εj

Cj

εj
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Armington + migration: labor supply

If , with mean 0 variance 1, the share of the  households

choosing to live in region  is:

where 

εj ∼ T1EV L = 1

j

Lj = =
exp log Cj

∑k∈N exp log Ck

wj

Pj

∑k∈N
wk

Pk

∑j∈N Lj = 1
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Armington + migration: labor supply

If , with mean 0 variance 1, the share of the  households

choosing to live in region  is:

where 

This is essentially our extensive margin of labor supply

Higher wages or lower prices in  relative to other locations attracts more

workers

εj ∼ T1EV L = 1

j

Lj = =
exp log Cj

∑k∈N exp log Ck

wj

Pj

∑k∈N
wk

Pk

∑j∈N Lj = 1

j
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Armington + migration: equilibrium

We now have two equilibrium conditions, labor supply and joint market

clearing:

where:

Lj = wjLj = ∑
i∈N

wiLi

exp
wj

Pj

∑k∈N exp
wk

Pk

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

Pj = (∑k∈N akj(τkj )
1−σ

)wk

Ak

1
1−σ

∑j∈N Lj = 1
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Armington + migration: exact hat algebra

Now let's solve the model using exact hat algebra
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Armington + migration: exact hat algebra

Now let's solve the model using exact hat algebra

Since labor is endogenous, we now need to account for it in the market

clearing condition:

You can prove to yourself that this is the correct expression

ŵjL̂j = ∑
i∈N

( )
1−σ

ŵiL̂i
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk
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Armington + migration: exact hat algebra

Next we need to put labor supply in hat terms:

Next, use a similar multiply and divide by  trick as for 

Lj =

wj

Pj

∑k∈N
wk

Pk

L̂j =

ŵj

P̂ j

∑k∈N

w′
k

P ′
k

∑
l∈N

wl

Pl

wj

Pj
λ
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Armington + migration: exact hat algebra

The change in labor depends on the change in real wages but also the initial

labor allocation

L̂j = = =

L̂j =

ŵj

P̂ j

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

∑k∈N

w′
k

P ′
k

wk
Pk
wk
Pk

∑
l∈N

wl
Pl

ŵj

P̂ j

[ ]
∑

k∈N

ŵk

P̂ k

wk

Pk

∑l∈N

wl
Pl

ŵj

P̂ j

∑k∈N [ ]


Lk

ŵk

P̂ k

wk
Pk

∑l∈N

wl
Pl

ŵj

P̂ j

∑k∈N Lk
ŵk

P̂ k
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Armington + migration: exact hat algebra

We now have our two equilibrium conditions in changes that we can iterate

on to recover 

Write up a function solve_armington_mig_exact_hat(X, lambda, w, L, Ahat,

sigma, tol, damp)  that solves for the new equilibrium in changes

ŵjL̂j = ∑
i∈N

L̂j =

( )
1−σ

ŵiL̂i
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

ŵj

P̂ j

∑k∈N Lk
ŵk

P̂ k

ŵj, L̂j

66 / 86

Armington + migration: exact hat algebra

Here are the data to use:

 w = [6., 3.];

 L = [.3, .7];

 λ = [.8 .2; .2 .8];

 X = (w .* L)' .* λ

## 2×2 Matrix{Float64}:

##  1.44  0.42

##  0.36  1.68

 Ahat = [.5, 1.];

 σ = 2.;

Columns of  should sum to 1, L should sum to 1,  is generated to be

consistent with 

λ X

w, L, λ
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Exact hat algebra

function solve_armington_mig_exact_hat(X, λ, w, L, Ahat, σ, tol = 1e-5, damp = .1)

     what, Lhat, labor_error, wage_error = ones(size(Ahat)), ones(size(Ahat)), 1e5, 1e5

while max(labor_error, wage_error) > tol

         denominator, what_new, Lhat_new = zeros(size(Ahat)), zeros(size(Ahat)), zeros(size(Ahat)

for k in eachindex(Ahat)

             denominator .+= λ[k,:] .* (what[k] / Ahat[k]).^(1 .- σ)

end

for i in eachindex(Ahat)

             what_new .+= (X[:,i] ./ (w .* L) ) .* (what ./ Ahat).^(1 .- σ) .* what[i] .* Lhat[i]

end

         Phat = vec((sum(λ .* (what_new ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

         Lhat_new = what ./ Phat ./ sum(L .* what ./ Phat)

         wage_error, labor_error = maximum(abs.(what_new .- what)./what), maximum(abs.(Lhat_new 

         what = damp .* what_new .+ (1 - damp) .* what

         Lhat = damp .* Lhat_new .+ (1 - damp) .* Lhat

end

     λhat = (what ./ Ahat).^(1 .- σ) ./ sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)

     Phat = vec((sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

return what, λhat, Phat, Lhat

end
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Exact hat algebra

 Ahat = [.5, 1.];

 what, λhat, Phat, Lhat = solve_armington_mig_exact_hat(X, λ, w, L, Ahat, σ)

## ([0.9051035127985965, 1.0832507504862192], [0.8816650787044907 0.6506730472117545; 1.473339685182036

 what ./ Phat

## 2-element Vector{Float64}:

##  0.5671087718872735

##  0.9196825263816277

When region 1 becomes less productive by 50%: their real wages fall by about

the same amount, region 2s real wages fall as well
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Exact hat algebra

 Lhat

## 2-element Vector{Float64}:

##  0.6967741048725734

##  1.1299539550546118

Decreasing productivity in region 1 leads to reallocation of workers to region

2 as workers search for higher real wages

70 / 86

Armington with dynamic migration

Now let's introduce dynamics in the migration decision:

Time 

Same static goods market in each period 

Each region  is populated with  households where 

Productivity in each time is 

Households are forward-looking and have perfect information

Households discount the future at 

Moving from  to  has a multiplicative utility cost 

Households work and consume at the beginning of the period, migrate at

the end of the period

t = 0, … , T

t

j Ljt ∑j∈N Ljt = 1

Ajt

β ∈ (0, 1)

i j μij ∈ (0, 1]
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Armington with dynamic migration

We can write the household's objective as:

where the idiosyncratic shock is destination-specific

vjt = max
i∈N

log + βE[vit+1] − μji + εit

wjt

Pjt

72 / 86

Armington with dynamic migration

We can write the household's objective as:

where the idiosyncratic shock is destination-specific

The share of households migrating from  to  at time  is:

The share of households in  at time  is still 

vjt = max
i∈N

log + βE[vit+1] − μji + εit

wjt

Pjt

j i t

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)

j t Lj
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Armington with dynamic migration: labor supply

We now have our dynamic labor supply equation which depends on expected

future payoffs and migration costs

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)
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Dynamic hat algebra

Armington: dynamic hat algebra

Now that our problem is dynamic we need to make one additional notational

tweak: dots/time changes

The dot version of a variable is the relative time change between two periods

Żjt+1 ≡ Zjt+1/Zjt
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Armington: dynamic hat algebra

Now that our problem is dynamic we need to make one additional notational

tweak: dots/time changes

The dot version of a variable is the relative time change between two periods

Then, the dynamic hat variable is the counterfactual relative to the factual in

time changes:

Żjt+1 ≡ Zjt+1/Zjt

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Armington: dynamic hat algebra

In the static model using hat variables let us get around knowing the levels of

most exogenous variables

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Ẑjt+1 ≡ Ż
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Armington: dynamic hat algebra

In the static model using hat variables let us get around knowing the levels of

most exogenous variables

In the dynamic model using dynamic hat variables will let us get around

knowing the levels of time-varying exogenous (common) variables: this is like

a structural difference-in-differences

Lets put our equilibrium conditions in dynamic hat notation starting with the

labor supply equation

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Armington: dynamic hat algebra

Next, let  to keep notation simple later, and use the multiply

and divide trick to put into dot terms

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)

π̇jit+1 =

exp(βE[vit+2]−μji)

exp(βE[vit+1]−μji)

∑k∈N exp(βE[vkt+2]−μjk)

∑
l∈N

exp(βE[vlt+1]−μjl)

uit ≡ exp(E [vit])
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Armington: dynamic hat algebra

π̇jit+1 =

exp(βE[vit+2]−μji)

exp(βE[vit+1]−μji)

∑
k∈N

exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

π̇jit+1 = =

π̇jit+1 = =

u̇
β
it+2

∑k∈N exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑
k∈N

exp(βE[vkt+2]−μjk)
exp(βE[vkt+1]−μjk)

exp(βE[vkt+1]−μjk)

∑
l∈N

exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑k∈N u̇
β
kt+2

exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑k∈N πjktu̇
β
kt+2
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Armington: dynamic hat algebra

By putting migration into time changes, we differenced out time-invariant

migration costs

π̇jit+1 =
u̇

β
it+2

∑k∈N πjktu̇
β

kt+2
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Armington: dynamic hat algebra

By putting migration into time changes, we differenced out time-invariant

migration costs

But now we have time changes in another endogenous variable 

 so we need another equilibrium condition (in time

changes)

π̇jit+1 =
u̇

β
it+2

∑k∈N πjktu̇
β

kt+2

uit+2 = exp(E[vit+2])
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Armington: dynamic hat algebra

We will use the T1EV version of the Bellman:

E[vjt] = log ujt = log + log(∑
i∈N

exp(βvit+1 − μji))
wjt

Pjt
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Armington: dynamic hat algebra

We will use the T1EV version of the Bellman:

Exponentiate both sides and then take time differences:

Next use the multiply and divide trick

E[vjt] = log ujt = log + log(∑
i∈N

exp(βvit+1 − μji))
wjt

Pjt

u̇jt+1 =
ẇjt+1

Ṗ jt+1

∑i∈N exp(βvit+2 − μji)

∑l∈N exp(βvlt+1 − μjl)
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Armington: dynamic hat algebra

Now we have  as a function of itself and other dot variables

u̇jt+1 =

= ∑
i∈N

u̇jt+1 = ∑
i∈N

u̇
β
it+2πjit

ẇjt+1

Ṗ jt+1

∑i∈N exp(βvit+2 − μji)
exp(βvit+1−μji)

exp(βvit+1−μji)

∑l∈N exp(βvlt+1 − μjl)

ẇjt+1

Ṗ jt+1

exp(βvit+2 − μji)

exp(βvit+1 − μji)

exp(βvit+1 − μji)

∑l∈N exp(βvlt+1 − μjl)

ẇjt+1

Ṗ jt+1

u̇
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Armington: dynamic hat algebra

Next, do the same for the market clearing condition

wjtLjt = ∑
i∈N

witLit

aij( )
1−στijwit

Ait

∑k∈N akj( )
1−στkjwkt

Akt
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Armington: dynamic hat algebra

Next, do the same for the market clearing condition

You can prove to yourself that it is:

wjtLjt = ∑
i∈N

witLit

aij( )
1−στijwit

Ait

∑k∈N akj( )
1−στkjwkt

Akt

ẇjt+1L̇jt+1 = ∑
i∈N

( )
1−σ

ẇit+1L̇it+1
Xjit

wjtLjt

ẇjt+1

Ȧjt+1

∑k∈N λkit( )
1−σ

ẇkt+1

Ȧkt+1
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Armington: dynamic hat algebra

We have our three equilibrium conditions in time changes

Along with the labor transition , and changes in prices

that are easy to solve for , we can then solve for the dynamic equilibrium

of the economy given some sequence of changes in productivity 

Ljt+1 = ∑i∈N πijtLit

Ṗ jt+1

Ȧjt+1
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Armington: dynamic hat algebra

We also impose  converges to 1 (else can't solve the problem)

ẇjt+1L̇jt+1 = ∑
i∈N

π̇jit+1 = u̇jt+1 = ∑
i∈N

u̇
β
it+2πjit

Ljt+1 = ∑
i∈N

πijtLit Ṗ jt+1 =
⎛

⎝
∑
k∈N

( )

1−σ

λkjt

⎞

⎠

( )
1−σ

ẇit+1L̇it+1
Xjit

wjtLjt

ẇjt+1

Ȧjt+1

∑k∈N λkit( )
1−σ

ẇkt+1

Ȧkt+1

u̇
β
it+2

∑k∈N πjktu̇
β

kt+2

ẇjt+1

Ṗ jt+1

ẇkt+1

Ȧkt+1

1
1−σ

u̇it
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Armington: dynamic hat algebra

How do we solve it?
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Armington: dynamic hat algebra

How do we solve it?

We essentially have two nested problems:

1. A static market-clearing problem at each time  (conditional on the labor

allocation)

2. A dynamic migration problem (conditional on the sequence of wages and

prices)

t
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Armington: dynamic hat algebra

Pseudocode might look like this:

while error > tolerance (outer loop)

  compute sequence of migration shares given initial conditions and expected values

  compute sequence of labor given initial conditions and migration shares

  for each time t (inner loop)

      solve for wages and prices that clear the goods market

  end

  compute the sequence of expected values

  compute error in expected values since last iteration

end

solve_arm_dyn_mig(X, lambda, w, L, pi, Ahat, sigma, beta, tol, damp)

86 / 86
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Roadmap

1. Spatial models: Armington

2. Exact hat algebra

3. Dynamic spatial models: Armington + migration

4. Dynamic hat algebra
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Spatial models

So far we have been focusing on dynamics

Now we are going to look at the other dimension: space

To start, we will work with static models

But we will introduce multiple regions across space, and frictions inhibiting

mobility of goods and factors of production
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The Armington model



Armington and gravity

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of

goods

Comparative advantage
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Armington and gravity

Classic trade theory (e.g. Ricardo) highlights economic forces driving trade of

goods

Comparative advantage

Empirical work has long used the gravity model:

Xij = α
YiYj

Dij

5 / 86



Armington and gravity

 trade flow from i to j

 GDP of origin

 GDP of destination

 distance and other frictions affecting trade flows

Xij = α
YiYj

Dij

Xij

Yi

Yj

Dij

6 / 86



Armington and gravity

The gravity model is widely used and empirically matches the data, but no real

theoretical foundation, can't do counterfactuals

Xij = α
YiYj

Dij
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Armington and gravity

The gravity model is widely used and empirically matches the data, but no real

theoretical foundation, can't do counterfactuals

The Armington model provides a simple theoretical foundation for gravity

with two key ingredients:

1. Spatially differentiated products

2. Love-of-variety preferences

Xij = α
YiYj

Dij

7 / 86



Armington

The set up:

 regionsN
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Armington

The set up:

 regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

Trade frictions (e.g. distance) result in different prices offered by different

producers

N

8 / 86



Armington: preferences

The representative household in region  has CES preferences across goods:

 is the elasticity of substitution with 

 is an exogenous taste parameter

 is the quantity of goods imported from  to 

j

Uj = (∑
i∈N

aijqij )
1

σ

σ−1

σ

σ
σ−1

σ σ > 1

aij

qij i j
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Armington: demand

The consumer maximizes utility subject to a budget:

max
{qij}i∈N

(∑
i∈N

aijqij ) subject to: ∑
i∈N

qijpij ≤ Yj

1
σ

σ−1
σ

σ
σ−1
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Armington: demand

The consumer maximizes utility subject to a budget:

Standard result gives demand for goods from  by :

 is the usual Dixit-Stiglitz price index

max
{qij}i∈N

(∑
i∈N

aijqij ) subject to: ∑
i∈N

qijpij ≤ Yj

1
σ

σ−1
σ

σ
σ−1

i j

qij = aijp
−σ
ij

YjP
σ−1

j
where Pj = (∑

k∈N

akjp
1−σ
kj

)

1
1−σ

Pj
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Armington: demand

Multiply by prices to get trade flows in dollar terms:

Trade flows decrease in bilateral prices, increase in the local price index, and

increase in local size/GDP

qij = aijp
−σ
ij

YjP
σ−1

j
where Pj = (∑

k∈N

akjp
1−σ
kj

)

1

1−σ

Xij = qijpij = aijp
1−σ
ij YjP

σ−1

j
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Armington: supply

Armington assumption: each region produces a distinct variety of a good
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Armington: supply

Armington assumption: each region produces a distinct variety of a good

There are iceberg trade costs : for 1 unit of  to arrive at  from  you

need to ship  units

Market structure:

Producers compete in perfect competition

Regions are endowed with  workers supplying 1 unit of labor

Each unit of labor can produce  units so total output is 

Workers are paid a wage  so that 

τij ≥ 1 qij j i

τij

Li

Ai AiLi

wi Yi = wiLi
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Armington: supply

Given a labor endowment  and productivity  the marginal cost of

production is 

Li Ai

wi

Ai
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Armington: supply

Given a labor endowment  and productivity  the marginal cost of

production is 

Perfect competition means the factory-door price is marginal cost: 

The price in  to buy a unit of the good from  is then:

Plug back into demand to get:

Li Ai

wi

Ai

wi

Ai

j i

pij = τij

wi

Ai

Xij = aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j

wi

Ai
13 / 86



Armington: market clearing

Define expenditure shares as the expenditures on  by  relative to s total

expenditures:

Xij = aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j

wi

Ai

i j j

λij =
Xij

∑k∈N Xkj
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Armington: market clearing

λij =

=

=

Xij

∑k∈N Xkj

aijτ
1−σ
ij ( )

1−σ

YjP
σ−1

j
wi

Ai

∑k∈N akjτ
1−σ
kj

( )
1−σ

YjP
σ−1

j
wk

Ak

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

15 / 86



Armington: market clearing

 spends more on  relative to other places if  has lower wages, higher

productivity, or lower trade costs relative to other locations

λij =

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

j i i
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Armington: market clearing

In perfect competition the expenditures on inputs in  need to match the

spending by other locations  on s goods:

Perfect competition  labor costs = revenues

j

i j

wjLj = ∑
i∈N

λjiwiLi

→

17 / 86



Armington: equilibrium

Our equilibrium is then defined by two sets of equations:

where the endogenous variables are the   terms and the   terms

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N 2 λij N wj

18 / 86



Armington: equilibrium

Given the exogenous parameters , how do we solve for the

equilibrium?

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

aij, τij, Ai, Li, σ
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Armington: equilibrium

Given the exogenous parameters , how do we solve for the

equilibrium?

We can use function iteration after substituting in for  in market clearing:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

aij, τij, Ai, Li, σ

λij

wjLj = ∑
i∈N

wiLi

aji( )
1−στjiwj

Aj

∑k∈N aki( )
1−σ

τkiwk

Ak
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Armington: equilibrium

We have  market clearing conditions and  unknown  terms

wjLj = ∑
i∈N

wiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N N wi
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Armington: equilibrium

We have  market clearing conditions and  unknown  terms

Write up a function solve_armington_eq(sigma, tau, A, L, a, tol, damp)

that solves for the equilibrium wages and expenditure shares

wjLj = ∑
i∈N

wiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

N N wi
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Armington: equilibrium

function solve_armington_eq(σ, τ, A, L, a, tol = 1e-5, damp = .1)

     w, λ  = ones(size(A)), zeros(size(a))

     wage_error = 1e5

while wage_error > tol

         denominator, wL = zeros(size(A)), zeros(size(A))

for k in eachindex(A)

             denominator .+= a[k,:] .* (τ[k,:] * w[k] / A[k]).^(1 .- σ)

end

for i in eachindex(A)

             wL .+= a[:,i] .* (τ[:,i] .* w ./ A).^(1 .- σ) .* w[i] .* L[i] ./ denominator[i]

end

         wnew = wL ./ L 

         wage_error = maximum(abs.(wnew .- w)./w)

         w = damp .* wnew .+ (1 - damp) .* w

end

for o in eachindex(A), d in eachindex(A)

         λ[o,d] = a[o,d] * (τ[o,d] * w[o] / A[o])^(1 - σ) / sum(a[:,d] .* (τ[:,d] .* w[:] ./ A[:]

end

return w, λ

end
21 / 86



Symmetric + cross-region trade costs of 5

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  0.833333  0.166667

##  0.166667  0.833333
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Productivity shock to region 1

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [10., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.6143181095745787

##  0.38568189042542783

 display(λ)

## 2×2 Matrix{Float64}:

##  0.922754  0.323331

##  0.077246  0.676669
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Increased labor supply in region 1

 τ = [1. 5; 5. 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [5., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  0.8780637781792023

##  1.6096811091040044

 display(λ)

## 2×2 Matrix{Float64}:

##  0.901634   0.26828

##  0.0983663  0.73172
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Return to autarky

 τ = [1. 1e9; 1e9 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  1.0     1.0e-9

##  1.0e-9  1.0
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Free trade

 τ = [1. 1.0001; 1.0001 1.]; 

 a = [1. 1.; 1. 1.];

 A = [1., 1.];

 L = [1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 2-element Vector{Float64}:

##  1.0

##  1.0

 display(λ)

## 2×2 Matrix{Float64}:

##  0.500025  0.499975

##  0.499975  0.500025
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New trading partner

 τ = [1. 2. 3.; 3. 1. 2.; 1e9 5. 1.]; 

 a = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];

 A = [1., 1., 1.];

 L = [1., 1., 1.];

 σ = 2.;

 w, λ = solve_armington_eq(σ, τ, A, L, a);

 display(w)

## 3-element Vector{Float64}:

##  1.2539609132194725

##  1.095427131707213

##  0.6506119550733213

 display(λ)

## 3×3 Matrix{Float64}:

##  0.723812    0.246282  0.117659

##  0.276188    0.563849  0.20203

##  1.39504e-9  0.189869  0.680311 27 / 86



Solving Armington

We solved for the Armington equilibrium
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Solving Armington

We solved for the Armington equilibrium

If we have values for all the exogenous parameters, we can then perform

counterfactuals where we explore the equilibrium effects of changes in trade

costs, productivity, etc

This is a bit unsatisfying: we'd like to not have to take a stand on numerous

region-specific and bilateral parameters
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Exact hat algebra

A workhorse method for solving for counterfactual is exact hat algebra, you

can think of it as a structural differences estimator
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equilibrium in terms of changes relative to the factual

30 / 86



Exact hat algebra

A workhorse method for solving for counterfactual is exact hat algebra, you

can think of it as a structural differences estimator

There are two key pieces to it:

1. Real world data (wages, trade flows) are essentially sufficient statistics for

unobservable parameters (productivity, trade costs)

2. Spatial models are built in a way where we can express a counterfactual

equilibrium in terms of changes relative to the factual

Going forward, primes will indicate counterfactual quantities , hats will

indicate relative quantities 

(w
′
i
)

(ŵi = )
w

′
i

wi

30 / 86



Exact hat algebra

In our working example, our factual equilibrium will be the real world
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Exact hat algebra

In our working example, our factual equilibrium will be the real world

We observe the data for this equilibrium (wages, trade flows, etc)

We want to understand the equilibrium effects of some arbitrary changes in

the distribution of productivity: 

Assume no other exogenous variables are changing: 

{Â1, Â2, …}

τ̂ ij = 1, âij = 1, σ̂ = 1, L̂ = 1
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Exact hat algebra

Recall our equilibrium conditions were:

Let's start by manipulating the market clearing condition which holds in the

factual and counterfactual equilibria:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak
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Exact hat algebra

Recall our equilibrium conditions were:

Let's start by manipulating the market clearing condition which holds in the

factual and counterfactual equilibria:

λij = wjLj = ∑
i∈N

λjiwiLi

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

wjLj = ∑
i∈N

λjiwiLi w′

jL
′

j = ∑
i∈N

λ′

jiw
′

iL
′

i
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Exact hat algebra

First by definition:  so thatλjiwiLi = Xji

w′

j
L′

j
= ∑

i∈N

λ′

ji
w′

i
L′

i
= ∑

i∈N

X ′

ji
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Exact hat algebra

First by definition:  so that

Next, put the left hand side into hat form by dividing both sides by :

λjiwiLi = Xji

w′

j
L′

j
= ∑

i∈N

λ′

ji
w′

i
L′

i
= ∑

i∈N

X ′

ji

wjLj

ŵj L̂j


=1

= ∑
i∈N

X ′

ji

wjLj
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Exact hat algebra

Multiply and divide the right and side by  to put it into hat form:

ŵj = ∑
i∈N

X ′
ji

wjLj

Xji

ŵj = ∑
i∈N

X̂ji

Xji

wjLj
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Exact hat algebra

Finally, we know that  so that  and

The change in wages depends on the change in endogenous wages and

expenditure shares, and the observed factual bilateral expenditures, wages,

and labor

Xji = λjiwiLi X̂ji = λ̂jiŵiL̂i

ŵj = ∑
i∈N

λ̂jiŵi

Xji

wjLj
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Exact hat algebra

Now let's go to the gravity equation:

λ′

ij =

aij( )
1−στijw

′

i

A′

i

∑k∈N akj( )
1−στkjw

′

k

A′

k
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Exact hat algebra

Now let's go to the gravity equation:

Put this into hat form:

λ′
ij =

aij( )
1−στijw

′
i

A′
i

∑k∈N akj( )
1−στkjw

′
k

A′
k

λ′
ij/λij =

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

/
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

aij( )
1−στijw

′
i

A′
i

∑k∈N akj( )
1−στkjw

′
k

A′
k

aij( )
1−στijwi

Ai

∑l∈N alj( )
1−στljwl

Al
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Exact hat algebra

The numerator goes into hats easily, the denominator is trickier:

Next, bring the bottom sum inside the top sum since it is a function of  and

does not depend on k

λ̂ij =

( )
1−σ

ŵi

Âi

⎡
⎢
⎣

⎤
⎥
⎦

∑
k∈N

akj( )
1−σ

τkjw′
k

A′

k

∑l∈N alj( )
1−στljwl

Al

j
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Exact hat algebra

λ̂ij =

( )
1−σ

ŵi

Âi

∑k∈N

⎡
⎢
⎣

⎤
⎥
⎦

akj( )
1−σ

τkjw′
k

A′

k

∑l∈N alj( )
1−στljwl

Al
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Exact hat algebra

Inside the square brackets, multiply and divide by 

λ̂ij =

( )
1−σ

ŵi

Âi

∑k∈N

⎡
⎢
⎣

⎤
⎥
⎦

akj( )
1−σ

τkjw′
k

A′

k

∑l∈N alj( )
1−στljwl

Al

akj( )
1−σ

τkjwk

Ak
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Exact hat algebra

λ̂ij =

( )
1−σ

ŵi

Âi

∑k∈N

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣



( )
1−σ


λkj

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

akj( )
1−σ

τkjw′
k

A′
k

akj( )
1−στkjwk

Ak

ŵk

Âk

akj( )
1−στkjwk

Ak

∑l∈N alj( )
1−στljwl

Al
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Exact hat algebra

This finally gives us that:

The change in expenditure shares depends on the change in exogenous

productivity, endogenous wages, and the observed factual expenditure shares

λ̂ij =

( )
1−σ

ŵi

Âi

∑k∈N λkj( )
1−σ

ŵk

Âk
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Exact hat algebra

We now have our two equilibrium conditions in changes:

and can combine them into a single equilibrium condition in changes:

λ̂ij = ŵj = ∑
i∈N

λ̂jiŵi

( )
1−σ

ŵi

Âi

∑k∈N λkj( )
1−σ

ŵk

Âk

Xji

wjLj

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk
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Exact hat algebra

Notice that it does not depend on any structural parameters except for 

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

σ
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Exact hat algebra

 are all observable data:

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

 are unknown but can be solved through function iteration

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi

ŵi
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Exact hat algebra

 are all observable data:

 is a chosen counterfactual

 are unknown but can be solved through function iteration

We also will want to solve for  to understand how the price index is

changing

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

λij, Xij, wi, Li

Âi

ŵi

P̂ i
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Exact hat algebra

Recall:

Like before, bring the denominator inside the numerator sum

Pj = (∑
k∈N

akjp
1−σ
kj

) = (∑
k∈N

akj(τkj )
1−σ

)

1

1−σ
wk

Ak

1

1−σ

P̂
1−σ

j =

∑k∈N akj(τkj )
1−σw′

k

A′

k

∑l∈N alj(τlj )
1−σ

wl

Al
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Exact hat algebra

multiply and divide by  to get:

P̂
1−σ

j = ∑
k∈N

akj(τkj )
1−σw′

k

A′

k

∑l∈N alj(τlj )
1−σ

wl

Al

akj(τkj )
1−σ

wk

Ak

P̂
1−σ

j = ∑
k∈N

akj(τkj )
1−σw′

k

A′

k

akj(τkj )
1−σ

wk

Ak

akj(τkj )
1−σ

wk

Ak

∑l∈N alj(τlj )
1−σ

wl

Al
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Exact hat algebra

P̂
1−σ

j = ∑
k∈N

( )

1−σ


λkj

ŵk

Âk

akj(τkj )
1−σ

wk

Ak

∑l∈N alj(τlj )
1−σ

wl

Al

P̂ j =
⎛

⎝
∑
k∈N

( )

1−σ

λkj

⎞

⎠

ŵk

Âk

1

1−σ

46 / 86



Exact hat algebra

We have  market clearing conditions and  unknown  terms

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

N N ŵi
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Exact hat algebra

We have  market clearing conditions and  unknown  terms

Write up a function solve_armington_exact_hat(X, lambda, w, L, Ahat,

sigma, tol, damp)  that solves for the new equilibrium in changes
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( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj
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1−σ

ŵk

Âk
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Exact hat algebra

We have  market clearing conditions and  unknown  terms

Write up a function solve_armington_exact_hat(X, lambda, w, L, Ahat,

sigma, tol, damp)  that solves for the new equilibrium in changes

Key thing to keep in mind: we haven't defined a numeraire yet, use the

consumption price index

ŵj = ∑
i∈N

( )
1−σ

ŵi
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

N N ŵi
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Exact hat algebra

Here are the data to use:

 w = [1., 1.];

 L = [1., 1.];

 λ = [.8 .2; .2 .8];

 X = (w .* L)' .* λ;

 Ahat = [10., 1.];

 σ = 2.;

Columns of  should sum to 1,  is generated to be consistent with λ X w, L, λ
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Exact hat algebra

## solve_armington_exact_hat (generic function with 3 methods)

function solve_armington_exact_hat(X, λ, w, L, Ahat, σ, tol = 1e-5, damp = .1)

     what = ones(size(Ahat))

     wage_error = 1e5

while wage_error > tol

         denominator, what_new = zeros(size(Ahat)), zeros(size(Ahat))

for k in eachindex(Ahat)

             denominator .+= λ[k,:] .* (what[k] / Ahat[k]).^(1 .- σ)

end

for i in eachindex(Ahat)

             what_new .+= (X[:,i] ./ (w .* L) ) .* (what ./ Ahat).^(1 .- σ) .* what[i] ./ denomin

end

         wage_error = maximum(abs.(what_new .- what)./what)

         what = damp .* what_new .+ (1 - damp) .* what

end

     λhat = (what ./ Ahat).^(1 .- σ) ./ sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)

     Phat = vec((sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

return what, λhat, Phat

end
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Exact hat algebra

 Ahat = [10., 1.];

 what, λhat, Phat = solve_armington_exact_hat(X, λ, w, L, Ahat, σ);

 what ./ Phat

## 2-element Vector{Float64}:

##  8.817954095849839

##  1.289024997893565

When region 1 becomes more productive: their real wages increase > 800%,

region 2's real wages increase 30%
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Exact hat algebra

 λhat

## 2×2 Matrix{Float64}:

##  1.13405  1.89688

##  0.4638   0.77578

Both region's expenditures tilt toward region 1
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Exact hat algebra

There was nothing special about productivity here
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Exact hat algebra

There was nothing special about productivity here

We could have looked at changes in trade costs, preference parameters, labor

endowments, or any combination of them
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Armington with dynamic migration



Dynamics in spatial models

Introducing meaningful dynamics in spatial models is difficult
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grows dramatically

This is then exacerbated by introducing meaningful notions of time
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Dynamics in spatial models

Introducing meaningful dynamics in spatial models is difficult

The intuition is that when we introduce additional regions, the state space

grows dramatically

This is then exacerbated by introducing meaningful notions of time

How can we begin to introduce some dynamics into spatial models?

One way is to essentially layer a separate, tractable dynamic model onto our

static Armington model
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Dynamics in spatial models

How we will do this is by introducing dynamic migration decisions of

households
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Dynamics in spatial models

How we will do this is by introducing dynamic migration decisions of

households

First we will introduce static migration to get a sense of how it works
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Armington + migration

The set up:

 regions with a measure  total households across all regionsN L = 1
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Armington + migration

The set up:

 regions with a measure  total households across all regions

Each region produces a differentiated product

Representative household in each region can purchase goods from all

locations

Trade frictions result in different prices offered by different producers

Households frictionlessly choose where to live to maximize their utility

N L = 1
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Armington + migration: indirect utility

The household makes two choices:

1. Which region  to live in subject

2. How to allocate their budget across the menu of possible  goods

j

N
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Armington + migration: indirect utility

The household makes two choices:

1. Which region  to live in subject

2. How to allocate their budget across the menu of possible  goods

We make two additional tweaks to the model:

1. Adding a type 1 extreme value, destination-specific idiosyncratic shock 

observed by the households

2. Adding log utility over the CES aggregator

j

N

εj

57 / 86



Armington + migration: indirect utility

The consumer maximizes utility subject to their wage :wj

max
{qij}i∈N

log
⎡

⎣
(∑

i∈N

aijqij )
⎤

⎦
+ εj subject to: ∑

i∈N

qijpij ≤ wj

1
σ

σ−1
σ

σ

σ−1
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Armington + migration: indirect utility

We get the standard result for their real wage  under CES preferences:

 is the usual Dixit-Stiglitz price index

Cj

Cj = wj/Pj where Pj = (∑
k∈N

akjp
1−σ
kj

)

1
1−σ

Pj
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Armington + migration: indirect utility

We get the standard result for their real wage  under CES preferences:

 is the usual Dixit-Stiglitz price index

We now have the households' real wage conditional on choosing , we can

now solve for the households' optimal choice of :

Cj

Cj = wj/Pj where Pj = (∑
k∈N

akjp
1−σ
kj

)

1
1−σ

Pj

j

j

max
j∈N

log Cj + εj

59 / 86



Armington + migration: labor supply

The household just chooses the location with the highest combination of real

wages 

max
j∈N

log Cj + εj

Cj
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Armington + migration: labor supply

The household just chooses the location with the highest combination of real

wages 

How many households choose each location? The Frechet assumption on 

buys us a closed form solution (see any treatment on discrete choice models)

max
j∈N

log Cj + εj

Cj

εj
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Armington + migration: labor supply

If , with mean 0 variance 1, the share of the  households

choosing to live in region  is:

where 

εj ∼ T1EV L = 1

j

Lj = =
exp log Cj

∑
k∈N

exp log Ck

wj

Pj

∑
k∈N

wk

Pk

∑j∈N Lj = 1
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Armington + migration: labor supply

If , with mean 0 variance 1, the share of the  households

choosing to live in region  is:

where 

This is essentially our extensive margin of labor supply

Higher wages or lower prices in  relative to other locations attracts more

workers

εj ∼ T1EV L = 1

j

Lj = =
exp log Cj

∑
k∈N

exp log Ck

wj

Pj

∑
k∈N

wk

Pk

∑j∈N Lj = 1

j
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Armington + migration: equilibrium

We now have two equilibrium conditions, labor supply and joint market

clearing:

where:

Lj = wjLj = ∑
i∈N

wiLi

exp
wj

Pj

∑k∈N exp
wk

Pk

aij( )
1−στijwi

Ai

∑k∈N akj( )
1−στkjwk

Ak

Pj = (∑k∈N akj(τkj )
1−σ

)wk

Ak

1

1−σ

∑j∈N Lj = 1
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Armington + migration: exact hat algebra

Now let's solve the model using exact hat algebra
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Armington + migration: exact hat algebra

Now let's solve the model using exact hat algebra

Since labor is endogenous, we now need to account for it in the market

clearing condition:

You can prove to yourself that this is the correct expression

ŵjL̂j = ∑
i∈N

( )
1−σ

ŵiL̂i
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk
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Armington + migration: exact hat algebra

Next we need to put labor supply in hat terms:

Next, use a similar multiply and divide by  trick as for 

Lj =

wj

Pj

∑
k∈N

wk

Pk

L̂j =

ŵj

P̂ j

∑k∈N

w′
k

P ′
k

∑
l∈N

wl

Pl

wj

Pj
λ
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Armington + migration: exact hat algebra

The change in labor depends on the change in real wages but also the initial

labor allocation

L̂j = = =

L̂j =

ŵj

P̂ j

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

∑k∈N

w′
k

P ′
k

wk
Pk
wk
Pk

∑
l∈N

wl
Pl

ŵj

P̂ j

[ ]
∑

k∈N

ŵk

P̂ k

wk

Pk

∑l∈N

wl
Pl

ŵj

P̂ j

∑k∈N [ ]


Lk

ŵk

P̂ k

wk
Pk

∑l∈N

wl
Pl

ŵj

P̂ j

∑
k∈N

Lk
ŵk

P̂ k
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Armington + migration: exact hat algebra

We now have our two equilibrium conditions in changes that we can iterate

on to recover 

Write up a function solve_armington_mig_exact_hat(X, lambda, w, L, Ahat,

sigma, tol, damp)  that solves for the new equilibrium in changes

ŵjL̂j = ∑
i∈N

L̂j =

( )
1−σ

ŵiL̂i
Xji

wjLj

ŵj

Âj

∑k∈N λki( )
1−σ

ŵk

Âk

ŵj

P̂ j

∑k∈N Lk
ŵk

P̂ k

ŵj, L̂j
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Armington + migration: exact hat algebra

Here are the data to use:

 w = [6., 3.];

 L = [.3, .7];

 λ = [.8 .2; .2 .8];

 X = (w .* L)' .* λ

## 2×2 Matrix{Float64}:

##  1.44  0.42

##  0.36  1.68

 Ahat = [.5, 1.];

 σ = 2.;

Columns of  should sum to 1, L should sum to 1,  is generated to be

consistent with 

λ X

w, L, λ
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Exact hat algebra

function solve_armington_mig_exact_hat(X, λ, w, L, Ahat, σ, tol = 1e-5, damp = .1)

     what, Lhat, labor_error, wage_error = ones(size(Ahat)), ones(size(Ahat)), 1e5, 1e5

while max(labor_error, wage_error) > tol

         denominator, what_new, Lhat_new = zeros(size(Ahat)), zeros(size(Ahat)), zeros(size(Ahat)

for k in eachindex(Ahat)

             denominator .+= λ[k,:] .* (what[k] / Ahat[k]).^(1 .- σ)

end

for i in eachindex(Ahat)

             what_new .+= (X[:,i] ./ (w .* L) ) .* (what ./ Ahat).^(1 .- σ) .* what[i] .* Lhat[i]

end

         Phat = vec((sum(λ .* (what_new ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

         Lhat_new = what ./ Phat ./ sum(L .* what ./ Phat)

         wage_error, labor_error = maximum(abs.(what_new .- what)./what), maximum(abs.(Lhat_new 

         what = damp .* what_new .+ (1 - damp) .* what

         Lhat = damp .* Lhat_new .+ (1 - damp) .* Lhat

end

     λhat = (what ./ Ahat).^(1 .- σ) ./ sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)

     Phat = vec((sum(λ .* (what ./ Ahat).^(1 .- σ), dims = 1)).^(1 ./ (1 .- σ)))

return what, λhat, Phat, Lhat

end
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Exact hat algebra

 Ahat = [.5, 1.];

 what, λhat, Phat, Lhat = solve_armington_mig_exact_hat(X, λ, w, L, Ahat, σ)

## ([0.9051035127985965, 1.0832507504862192], [0.8816650787044907 0.6506730472117545; 1.473339685182036

 what ./ Phat

## 2-element Vector{Float64}:

##  0.5671087718872735

##  0.9196825263816277

When region 1 becomes less productive by 50%: their real wages fall by about

the same amount, region 2s real wages fall as well
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Exact hat algebra

 Lhat

## 2-element Vector{Float64}:

##  0.6967741048725734

##  1.1299539550546118

Decreasing productivity in region 1 leads to reallocation of workers to region

2 as workers search for higher real wages
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Armington with dynamic migration

Now let's introduce dynamics in the migration decision:

Time 

Same static goods market in each period 

Each region  is populated with  households where 

Productivity in each time is 

Households are forward-looking and have perfect information

Households discount the future at 

Moving from  to  has a multiplicative utility cost 

Households work and consume at the beginning of the period, migrate at

the end of the period

t = 0, … , T

t

j Ljt ∑j∈N Ljt = 1

Ajt

β ∈ (0, 1)

i j μij ∈ (0, 1]
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Armington with dynamic migration

We can write the household's objective as:

where the idiosyncratic shock is destination-specific

vjt = max
i∈N

log + βE[vit+1] − μji + εit

wjt

Pjt
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Armington with dynamic migration

We can write the household's objective as:

where the idiosyncratic shock is destination-specific

The share of households migrating from  to  at time  is:

The share of households in  at time  is still 

vjt = max
i∈N

log + βE[vit+1] − μji + εit

wjt

Pjt

j i t

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)

j t Lj
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Armington with dynamic migration: labor supply

We now have our dynamic labor supply equation which depends on expected

future payoffs and migration costs

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)
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Dynamic hat algebra



Armington: dynamic hat algebra

Now that our problem is dynamic we need to make one additional notational

tweak: dots/time changes

The dot version of a variable is the relative time change between two periods

Żjt+1 ≡ Zjt+1/Zjt
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Armington: dynamic hat algebra

Now that our problem is dynamic we need to make one additional notational

tweak: dots/time changes

The dot version of a variable is the relative time change between two periods

Then, the dynamic hat variable is the counterfactual relative to the factual in

time changes:

Żjt+1 ≡ Zjt+1/Zjt

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Armington: dynamic hat algebra

In the static model using hat variables let us get around knowing the levels of

most exogenous variables

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Armington: dynamic hat algebra

In the static model using hat variables let us get around knowing the levels of

most exogenous variables

In the dynamic model using dynamic hat variables will let us get around

knowing the levels of time-varying exogenous (common) variables: this is like

a structural difference-in-differences

Lets put our equilibrium conditions in dynamic hat notation starting with the

labor supply equation

Ẑjt+1 ≡ Ż
′

jt+1/Żjt+1 =
Z ′

jt+1/Z ′
jt

Zjt+1/Zjt
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Armington: dynamic hat algebra

Next, let  to keep notation simple later, and use the multiply

and divide trick to put into dot terms

πjit =
exp(βE[vit+1] − μji)

∑k∈N exp(βE[vkt+1] − μjk)

π̇jit+1 =

exp(βE[vit+2]−μji)

exp(βE[vit+1]−μji)

∑k∈N exp(βE[vkt+2]−μjk)

∑
l∈N

exp(βE[vlt+1]−μjl)

uit ≡ exp(E [vit])
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Armington: dynamic hat algebra

π̇jit+1 =

exp(βE[vit+2]−μji)

exp(βE[vit+1]−μji)

∑
k∈N

exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

π̇jit+1 = =

π̇jit+1 = =

u̇
β
it+2

∑k∈N exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑
k∈N

exp(βE[vkt+2]−μjk)
exp(βE[vkt+1]−μjk)

exp(βE[vkt+1]−μjk)

∑
l∈N

exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑k∈N u̇
β

kt+2

exp(βE[vkt+2]−μjk)

∑l∈N exp(βE[vlt+1]−μjl)

u̇
β
it+2

∑k∈N πjktu̇
β

kt+2
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Armington: dynamic hat algebra

By putting migration into time changes, we differenced out time-invariant

migration costs

π̇jit+1 =
u̇

β

it+2

∑
k∈N

πjktu̇
β

kt+2
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Armington: dynamic hat algebra

By putting migration into time changes, we differenced out time-invariant

migration costs

But now we have time changes in another endogenous variable 

 so we need another equilibrium condition (in time

changes)

π̇jit+1 =
u̇

β

it+2

∑
k∈N

πjktu̇
β

kt+2

uit+2 = exp(E[vit+2])
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Armington: dynamic hat algebra

We will use the T1EV version of the Bellman:

E[vjt] = log ujt = log + log(∑
i∈N

exp(βvit+1 − μji))
wjt

Pjt
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Armington: dynamic hat algebra

We will use the T1EV version of the Bellman:

Exponentiate both sides and then take time differences:

Next use the multiply and divide trick

E[vjt] = log ujt = log + log(∑
i∈N

exp(βvit+1 − μji))
wjt

Pjt

u̇jt+1 =
ẇjt+1

Ṗ jt+1

∑i∈N exp(βvit+2 − μji)

∑l∈N exp(βvlt+1 − μjl)
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Armington: dynamic hat algebra

Now we have  as a function of itself and other dot variables

u̇jt+1 =

= ∑
i∈N

u̇jt+1 = ∑
i∈N

u̇
β

it+2
πjit

ẇjt+1

Ṗ jt+1

∑i∈N exp(βvit+2 − μji)
exp(βvit+1−μji)

exp(βvit+1−μji)

∑l∈N exp(βvlt+1 − μjl)

ẇjt+1

Ṗ jt+1

exp(βvit+2 − μji)

exp(βvit+1 − μji)

exp(βvit+1 − μji)

∑l∈N exp(βvlt+1 − μjl)

ẇjt+1

Ṗ jt+1

u̇
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Armington: dynamic hat algebra

Next, do the same for the market clearing condition

wjtLjt = ∑
i∈N

witLit

aij( )
1−στijwit

Ait

∑k∈N akj( )
1−στkjwkt

Akt
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Armington: dynamic hat algebra

Next, do the same for the market clearing condition

You can prove to yourself that it is:

wjtLjt = ∑
i∈N

witLit

aij( )
1−στijwit

Ait

∑k∈N akj( )
1−στkjwkt

Akt

ẇjt+1L̇jt+1 = ∑
i∈N

( )
1−σ

ẇit+1L̇it+1

Xjit

wjtLjt

ẇjt+1

Ȧjt+1

∑k∈N λkit( )
1−σ

ẇkt+1

Ȧkt+1
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Armington: dynamic hat algebra

We have our three equilibrium conditions in time changes

Along with the labor transition , and changes in prices

that are easy to solve for , we can then solve for the dynamic equilibrium

of the economy given some sequence of changes in productivity 

Ljt+1 = ∑i∈N πijtLit

Ṗ jt+1

Ȧjt+1
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Armington: dynamic hat algebra

We also impose  converges to 1 (else can't solve the problem)

ẇjt+1L̇jt+1 = ∑
i∈N

π̇jit+1 = u̇jt+1 = ∑
i∈N

u̇
β

it+2
πjit

Ljt+1 = ∑
i∈N

πijtLit Ṗ jt+1 =
⎛

⎝
∑
k∈N

( )

1−σ

λkjt

⎞

⎠

( )
1−σ

ẇit+1L̇it+1

Xjit

wjtLjt

ẇjt+1
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Armington: dynamic hat algebra

How do we solve it?

We essentially have two nested problems:

1. A static market-clearing problem at each time  (conditional on the labor

allocation)

2. A dynamic migration problem (conditional on the sequence of wages and

prices)

t
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Armington: dynamic hat algebra

Pseudocode might look like this:

while error > tolerance (outer loop)

  compute sequence of migration shares given initial conditions and expected values

  compute sequence of labor given initial conditions and migration shares

  for each time t (inner loop)

      solve for wages and prices that clear the goods market

  end

  compute the sequence of expected values

  compute error in expected values since last iteration

end

solve_arm_dyn_mig(X, lambda, w, L, pi, Ahat, sigma, beta, tol, damp)
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