
Roadmap

1. Regression

2. Endogenous grid method

3. Envelope condition method

4. Modified policy iteration

2 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid pointsn m > n + 1

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

n m > n + 1

Ψ n × n

m × n

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

Finally we use the standard least-squares equation

Where is the Moore-Penrose matrix inverse

n m > n + 1

Ψ n × n

m × n

c = (Ψ′Ψ)−1Ψ′y

(Ψ′Ψ)−1Ψ′

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

Finally we use the standard least-squares equation

Where is the Moore-Penrose matrix inverse

We can apply Chebyshev regression to even our regular tensor approaches,

n m > n + 1

Ψ n × n

m × n

c = (Ψ′Ψ)−1Ψ′y

(Ψ′Ψ)−1Ψ′

3 / 46

Chebyshev regression: practice

Go back to our original VFI example and convert it to a regression approach

using LinearAlgebra

using Optim

using Plots

 params = (alpha = 0.75, beta = 0.95, eta = 2,

 steady_state = (0.75*0.95)^(1/(1 - 0.75)), k_0 = (0.75*0.95)^(1/(1 - 0.75))*.75,

 capital_upper = (0.75*0.95)^(1/(1 - 0.75))*1.5, capital_lower = (0.75*0.95)^(1/(

 num_basis = 7, num_points = 15, tolerance = 1e-6, fin_diff = 1e-6, mpi_start = 5

 coefficients = zeros(params.num_basis);

 coefficients[1:2] = [100 5];

4 / 46

Chebyshev regression: practice

 cheb_nodes(n) = cos.(pi * (2*(1:n) .- 1)./(2n))

cheb_nodes (generic function with 1 method)

 grid = cheb_nodes(params.num_points) # [-1, 1] grid

15-element Vector{Float64}:

0.9945218953682733

0.9510565162951535

0.8660254037844387

0.7431448254773942

0.5877852522924731

0.4067366430758004

0.20791169081775945

2.83276944882399e-16

-0.20791169081775912

-0.4067366430758001

-0.587785252292473

-0.7431448254773941

0 86602 03 8 38

5 / 46

Chebyshev regression: practice

Make the inverse function to shrink from capital to Chebyshev space

shrink_grid(capital)

6 / 46

Chebyshev regression: practice

Make the inverse function to shrink from capital to Chebyshev space

shrink_grid(capital)

 shrink_grid(capital) =

2*(capital - params.capital_lower)/(params.capital_upper - params.capital_lower) - 1;

shrink_grid will inherit params from wrapper functions

6 / 46

Chebyshev regression: practice

Chebyshev polynomial function

function cheb_polys(x, n)

if n == 0

return 1 # T_0(x) = 1

elseif n == 1

return x # T_1(x) = x

else

 cheb_recursion(x, n) =

2x.*cheb_polys.(x, n - 1) .- cheb_polys.(x, n - 2)

return cheb_recursion(x, n) # T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)

end

end;

7 / 46

Chebyshev regression: practice

7×15 Matrix{Float64}:

0.0666667 0.0666667 0.0666667 … 0.0666667 0.0666667

0.132603 0.126808 0.11547 -0.126808 -0.132603

0.13042 0.107869 0.0666667 0.107869 0.13042

0.126808 0.0783714 4.46986e-16 -0.0783714 -0.126808

0.121806 0.0412023 -0.0666667 0.0412023 0.121806

0.11547 -8.47892e-17 -0.11547 … -1.85126e-16 -0.11547

0.107869 -0.0412023 -0.133333 -0.0412023 0.107869

 construct_basis_matrix(grid, params) = hcat([cheb_polys.(shrink_grid.(grid), n) for n = 0:params

 basis_matrix = construct_basis_matrix(capital_grid, params);

 basis_inverse = inv(basis_matrix'*basis_matrix)*(basis_matrix') # pre-compute pseudoinverse for

8 / 46

Chebyshev regression: practice

 eval_value_function(coefficients, grid, params) = construct_basis_matrix(grid, params) * coeffic

9 / 46

Chebyshev regression: practice

function loop_grid_regress(params, capital_grid, coefficients)

 max_value = -.0*ones(params.num_points);

 consumption_store = -.0*ones(params.num_points);

for (iteration, capital) in enumerate(capital_grid)

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.00*capital^params.alpha, 0.99*capital^params.alpha)

 max_value[iteration] = -Optim.minimum(results)

 consumption_store[iteration] = Optim.minimizer(results)

end

return max_value, consumption_store

end;

10 / 46

Chebyshev regression: practice

function solve_vfi_regress(params, basis_inverse, capital_grid, coefficients)

 max_value = -.0*ones(params.num_points);

 error = 1e10;

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

 iteration = 1

while error > params.tolerance

 max_value, consumption_store = loop_grid_regress(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end

return coefficients, max_value, coefficients_store
11 / 46

Chebyshev regression: practice

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_vfi_regress(params, basis_inverse, capital_grid, coefficients)

Maximum Error of 0.04560791678414923 on iteration 25.

Maximum Error of 0.007635436575597669 on iteration 50.

Maximum Error of 0.0019075236037348097 on iteration 75.

Maximum Error of 0.0005149316099488123 on iteration 100.

Maximum Error of 0.00014178153569906261 on iteration 125.

Maximum Error of 3.92482976918936e-5 on iteration 150.

Maximum Error of 1.0880896630296866e-5 on iteration 175.

Maximum Error of 3.0177727176252443e-6 on iteration 200.

0.847524 seconds (22.49 M allocations: 515.604 MiB, 5.23% gc time, 0.25% compilation time)

([-194.85536958622183, 14.142104524187651, -2.664424683176605, 0.5749549884000286, -0.13337251156715

12 / 46

Chebyshev regression: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 13 / 46

Chebyshev regression: practice

14 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciatesη = 1

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

η = 1

B = 0, l = 1

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

This yields closed form solutions to the model

η = 1

B = 0, l = 1

kt+1 = βαθtk
α
t

ct = (1 − βα)θtk
α
t

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

This yields closed form solutions to the model

The endogenous grid method was introduced by Carroll (2006) for value

function iteration

η = 1

B = 0, l = 1

kt+1 = βαθtk
α
t

ct = (1 − βα)θtk
α
t

15 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

This works to our advantage because typically it is easier to solve for given

than the reverse

k k′

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

This works to our advantage because typically it is easier to solve for given

than the reverse

Let's see how this works

k k′

16 / 46

Endogenous grid method

1. Choose a grid on which the value function is

approximated

2. Choose nodes and weights , for approximating integrals.

3. Compute next period productivity, .

4. Solve for and such that

(inner loop) The quantities solve the following given :

,

(outer loop) The value function solves the following given

:

{k′
m, θm}m=1,...,M

ϵj ωj j = 1, . . . , J

θ′
m,j = θ

ρ
mexp(ϵj)

b {cm, km}

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

V̂ (k, θ; b)

{cm, k′
m}

V̂ (km, θm; b) = u(cm) + β∑J
j=1 ωj [V̂ (k′

m, θ′
m,j; b)]

17 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

18 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

This means that we can pre-compute the expectations of the value function

and value function derivatives and let

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

W(k′, θ) = E[V (k′, θ′; b)]

18 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

This means that we can pre-compute the expectations of the value function

and value function derivatives and let

We can then use the consumption FOC to solve for consumption,

 and then rewrite the resource constraint as,

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

W(k′, θ) = E[V (k′, θ′; b)]

c = [βWk(k′, θ)]−1/γ 18 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

We do not need to approximate a conditional expectation (already did it

before hand and can do it with very high accuracy since it is a one time cost)

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

We do not need to approximate a conditional expectation (already did it

before hand and can do it with very high accuracy since it is a one time cost)

Can we make the algorithm better?

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method: turbo speed

Let's make a change of variables

Y ≡ (1 − δ)k + θkα = c + k′

20 / 46

Endogenous grid method: turbo speed

Let's make a change of variables

so we can rewrite the Bellman as

Y ≡ (1 − δ)k + θkα = c + k′

V (Y , θ) = max
k′

{ + βE [V (Y ′, θ′)]}

s.t. c = Y − k′

Y ′ = (1 − δ)k′ + θ′(k′)α

c1−γ − 1

1 − γ

20 / 46

Endogenous grid method: turbo speed

This yields the FOC

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

21 / 46

Endogenous grid method: turbo speed

This yields the FOC

 is a simple function of (our grid points) so we can compute it, and the

entire conditional expectation on the RHS, directly from the endogenous grid

points

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

Y ′ k′

21 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

At no point did we need to use a numerical solver

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

At no point did we need to use a numerical solver

Once we have converged on some we then solve for via

 which does require a solver, but only once and after we

have recovered our value function approximant

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

V̂
∗

k

Y = (1 − δ)k + θkα

22 / 46

Endogenous grid method: practice

Let's solve our previous basic growth model using EGM

 coefficients = zeros(params.num_basis);

 coefficients[1:2] = [100 5];

23 / 46

Endogenous grid method: practice

function loop_grid_egm(params, capital_grid, coefficients)

 max_value = similar(capital_grid)

 capital_store = similar(capital_grid)

for (iteration, capital_next) in enumerate(capital_grid)

function bellman(consumption)

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return value_out

end;

 value_deriv = (eval_value_function(coefficients, capital_next + params.fin_diff, params)

 eval_value_function(coefficients, capital_next - params.fin_diff, params)[1])/(2para

 consumption = (params.beta*value_deriv)^(-1/params.eta)

 max_value[iteration] = bellman(consumption)

 capital_store[iteration] = (capital_next + consumption)^(1/params.alpha)

end

 grid = shrink_grid.(capital_store)

 basis_matrix = [cheb_polys.(grid, n) for n = 0:params.num_basis - 1];

 basis_matrix = hcat(basis_matrix...) 24 / 46

Endogenous grid method: practice

function solve_egm(params, capital_grid, coefficients)

 iteration = 1

 error = 1e10;

 max_value = -.0*ones(params.num_points);

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

while error > params.tolerance

 coefficients_prev = deepcopy(coefficients)

 current_poly, current_capital, max_value =

 loop_grid_egm(params, capital_grid, coefficients)

 coefficients = current_poly\max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end
25 / 46

Endogenous grid method: practice

Maximum Error of 0.04656312802519048 on iteration 25.

Maximum Error of 0.0077279558439712175 on iteration 50.

Maximum Error of 0.0019283105651684272 on iteration 75.

Maximum Error of 0.0005203908554999235 on iteration 100.

Maximum Error of 0.00014327347852089944 on iteration 125.

Maximum Error of 3.966043939472439e-5 on iteration 150.

Maximum Error of 1.0995091700787616e-5 on iteration 175.

Maximum Error of 3.0494442960141223e-6 on iteration 200.

0.229561 seconds (5.69 M allocations: 144.159 MiB, 9.64% gc time, 0.76% compilation time)

([-194.86588167567055, 14.166854450284145, -2.659830643535021, 0.5619970720353987, -0.13632318626428

@time solution_coeffs, max_value, intermediate_coefficients = solve_egm(params, capital_grid, co

26 / 46

Endogenous grid method: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 27 / 46

Endogenous grid method: practice

28 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

29 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

The idea here is that we want to use the envelope conditions instead of FOCs

to construct policy functions

29 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

The idea here is that we want to use the envelope conditions instead of FOCs

to construct policy functions

These will end up being easier to solve and sometimes we can solve them in

closed form

29 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Vk(k) = u′(c)f ′(k)

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

Vk(k) = u′(c)f ′(k)

t

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

We can then recover from the budget constraint given our current state

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

k′ 30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

We can then recover from the budget constraint given our current state

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

k′ 30 / 46

Envelope condition method

The algorithm is

1. Choose a grid on which the value function is approximated

2. Solve for and such that

(inner loop) The quantities solve the following given :

,

(outer loop) The value function solves the following given

:

{km}m=1,...,M

b {cm, k′
m}

{cm, k′
m} V (km)

Vk(km) = u′(cm)f ′(km)

cm + k′
m = f(km)

V̂ (k; b)

{cm, km}

V̂ (km; b) = u(cm) + β∑J
j=1 ωj [V̂ (k′

m; b)]

31 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

32 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

However we will generally be able to solve a system of conditions via function

iteration to recover the optimal controls as a function of current states and

future states that are perfectly known at the current time

32 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

However we will generally be able to solve a system of conditions via function

iteration to recover the optimal controls as a function of current states and

future states that are perfectly known at the current time

Thus at no point in time during the value function approximation algorithm do

we need to interpolate off the grid or approximate expectations: this yields

large speed and accuracy gains

32 / 46

Envelope condition method: practice

function loop_grid_ecm(params, capital_grid, coefficients)

 max_value = similar(capital_grid);

for (iteration, capital) in enumerate(capital_grid)

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return value_out

end;

 value_deriv = (eval_value_function(coefficients, capital + params.fin_diff, params)[1] -

 eval_value_function(coefficients, capital - params.fin_diff, params)[1])/(2params.fi

 consumption = (value_deriv/(params.alpha*capital^(params.alpha-1)))^(-1/params.eta)

 consumption = min(consumption, capital^params.alpha)

 max_value[iteration] = bellman(consumption)

end

return max_value

end
33 / 46

Envelope condition method: practice

function solve_ecm(params, basis_inverse, capital_grid, coefficients)

 iteration = 1

 error = 1e10;

 max_value = similar(capital_grid);

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

while error > params.tolerance

 coefficients_prev = deepcopy(coefficients)

 max_value = loop_grid_ecm(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end

return coefficients, max_value, coefficients_store

end
34 / 46

Envelope condition method: practice

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_ecm(params, basis_inverse, capital_grid, coefficients)

Maximum Error of 0.0453525403650495 on iteration 25.

Maximum Error of 0.0076079815408730215 on iteration 50.

Maximum Error of 0.0019013403845842475 on iteration 75.

Maximum Error of 0.0005133070957501089 on iteration 100.

Maximum Error of 0.00014133753500579239 on iteration 125.

Maximum Error of 3.912563883912878e-5 on iteration 150.

Maximum Error of 1.0846910981672597e-5 on iteration 175.

Maximum Error of 3.0083484348532563e-6 on iteration 200.

0.174326 seconds (4.53 M allocations: 106.518 MiB, 5.97% gc time, 0.99% compilation time)

([-194.85531932176127, 14.142062593106905, -2.6644837015279976, 0.5749531960546624, -0.1333743010189

35 / 46

Envelope condition method: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 36 / 46

Envelope condition method: practice

 time_horizon = 100;

 consumption, capital = simulate_model(params, solution_coeffs, time_horizon);

 plot(1:time_horizon, consumption, color = :red, linewidth = 4.0, label = "Consumption", legend =

 plot!(1:time_horizon, capital[1:end-1], color = :blue, linewidth = 4.0, linestyle = :dash, label

 plot!(1:time_horizon, params.steady_state*ones(time_horizon), color = :purple, linewidth = 2.0,

37 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

This means that we may be able to skip the maximization step and re-use our

old policy function to get new values for polynomial fitting

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

This means that we may be able to skip the maximization step and re-use our

old policy function to get new values for polynomial fitting

This is called modified policy iteration
38 / 46

Modified policy iteration

It only changes step 5 of VFI:

While convergence criterion tolerance

Start iteration

Solve the right hand side of the Bellman equation

Recover the maximized values, conditional on

Fit the polynomial to the values and recover new coefficients

Compute where

While MPI stop criterion tolerance

Use policies from last VFI iteration to re-fit the polynomial (no

maximizing!)

>

p

Γ(kt+1; b(p))

b̂
(p+1)

b(p+1) = (1 − γ)b(p) + γb̂
(p+1)

γ ∈ (0, 1)

>

(1) (1) () ^(p+1)
39 / 46

Modified policy iteration

Stop criteron can be a few things:

1. Fixed number of iterations

2. Stop when change in value function is sufficient small, QuantEcon suggests

stopping MPI when

where the max and min are over the values on the grid

max(Vp(x; c) − Vp−1(x; c)) − min(Vp(x; c) − Vp−1(x; c)) < ϵ(1 − β)β

40 / 46

Modified policy iteration

Stop criteron can be a few things:

1. Fixed number of iterations

2. Stop when change in value function is sufficient small, QuantEcon suggests

stopping MPI when

where the max and min are over the values on the grid

Only MPI after a few VFI iterations unless you have a good initial guess, if your

early policy functions are bad then starting MPI too early will blow up your

problem

max(Vp(x; c) − Vp−1(x; c)) − min(Vp(x; c) − Vp−1(x; c)) < ϵ(1 − β)β

40 / 46

Modified policy iteration

function solve_vfi_regress_mpi(params, basis_inverse, basis_matrix, grid, capital_grid, coeffici

 max_value = -.0*ones(params.num_points);

 error = 1e10;

 value_prev = .1*ones(params.num_points);

 value_prev_outer = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

 iteration = 1

while error > params.tolerance

 max_value, consumption_store =

 loop_grid_regress(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

if iteration > params.mpi_start # modified policy iteration loop

 mpi_iteration = 1

while maximum(abs.(max_value - value_prev)) -

 minimum(abs.(max_value - value_prev)) >

 (1 - params.beta)/params.beta*params.tolerance

 value_prev = deepcopy(max_value)

41 / 46

Modified policy iteration

function bellman(consumption, capital)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_v

return value_out

end

 max_value = bellman.(consumption_store, capital_grid) # greedy policy

 coefficients = basis_inverse*max_value

if mod(mpi_iteration, 5) == 0

 println("MPI iteration $mpi_iteration on VFI iteration $iteration.")

end

 mpi_iteration += 1

end

end

 error = maximum(abs.((max_value .- value_prev_outer)./(value_prev_outer)))

 value_prev_outer = deepcopy(max_value)

if mod(iteration, 5) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end 42 / 46

Modified policy iteration

43 / 46

Modified policy iteration

Maximum Error of 0.33871304913135464 on iteration 5.

MPI iteration 25 on VFI iteration 6.

MPI iteration 50 on VFI iteration 6.

MPI iteration 75 on VFI iteration 6.

MPI iteration 25 on VFI iteration 7.

MPI iteration 50 on VFI iteration 7.

MPI iteration 25 on VFI iteration 8.

Maximum Error of 1.141822859504868e-5 on iteration 10.

Maximum Error of 4.0892905314530945e-6 on iteration 15.

Maximum Error of 3.0060755201005212e-6 on iteration 20.

Maximum Error of 2.3260768798925272e-6 on iteration 25.

Maximum Error of 1.7998932693973723e-6 on iteration 30.

Maximum Error of 1.3927345521584257e-6 on iteration 35.

Maximum Error of 1.0776782693136323e-6 on iteration 40.

0.223322 seconds (5.89 M allocations: 136.588 MiB, 4.52% gc time, 0.88% compilation time)

([-194.8621441678187, 14.1421045241982, -2.6644246831782934, 0.5749549884003013, -0.1333725115671613

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_vfi_regress_mpi(params, basis_inverse, basis_matrix, grid, capital_grid, coefficients)

44 / 46

Modified policy iteration

45 / 46

Solve times

The solve times are:

Regression: 0.867 seconds

Endogenous Grid + Regression: 0.216 seconds

Envelope Condition + Regression: 0.172 seconds

Modified Policy Iteration + Regression: 0.257 seconds

Individually they give 3-6 times speed up

46 / 46

Lecture 9

Advanced Methods for Numerical Dynamic Models

Ivan Rudik
AEM 7130

Roadmap

1. Regression

2. Endogenous grid method

3. Envelope condition method

4. Modified policy iteration

2 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid pointsn m > n + 1

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

n m > n + 1

Ψ n × n

m × n

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

Finally we use the standard least-squares equation

Where is the Moore-Penrose matrix inverse

n m > n + 1

Ψ n × n

m × n

c = (Ψ′Ψ)−1Ψ′
y

(Ψ′Ψ)−1Ψ′

3 / 46

Chebyshev regression

Chebyshev regression works just like normal regression

For a degree polynomial approximation, we choose grid points

We then build our basis function matrix , but instead of being it is

Finally we use the standard least-squares equation

Where is the Moore-Penrose matrix inverse

We can apply Chebyshev regression to even our regular tensor approaches,

n m > n + 1

Ψ n × n

m × n

c = (Ψ′Ψ)−1Ψ′
y

(Ψ′Ψ)−1Ψ′

3 / 46

Chebyshev regression: practice

Go back to our original VFI example and convert it to a regression approach

using LinearAlgebra

using Optim

using Plots

 params = (alpha = 0.75, beta = 0.95, eta = 2,

 steady_state = (0.75*0.95)^(1/(1 - 0.75)), k_0 = (0.75*0.95)^(1/(1 - 0.75))*.75,

 capital_upper = (0.75*0.95)^(1/(1 - 0.75))*1.5, capital_lower = (0.75*0.95)^(1/(

 num_basis = 7, num_points = 15, tolerance = 1e-6, fin_diff = 1e-6, mpi_start = 5

 coefficients = zeros(params.num_basis);

 coefficients[1:2] = [100 5];

4 / 46

Chebyshev regression: practice

 cheb_nodes(n) = cos.(pi * (2*(1:n) .- 1)./(2n))

cheb_nodes (generic function with 1 method)

 grid = cheb_nodes(params.num_points) # [-1, 1] grid

15-element Vector{Float64}:

0.9945218953682733

0.9510565162951535

0.8660254037844387

0.7431448254773942

0.5877852522924731

0.4067366430758004

0.20791169081775945

2.83276944882399e-16

-0.20791169081775912

-0.4067366430758001

-0.587785252292473

-0.7431448254773941

0 86602 03 8 38

5 / 46

Chebyshev regression: practice

Make the inverse function to shrink from capital to Chebyshev space

shrink_grid(capital)

6 / 46

Chebyshev regression: practice

Make the inverse function to shrink from capital to Chebyshev space

shrink_grid(capital)

 shrink_grid(capital) =

2*(capital - params.capital_lower)/(params.capital_upper - params.capital_lower) - 1;

shrink_grid will inherit params from wrapper functions

6 / 46

Chebyshev regression: practice

Chebyshev polynomial function

function cheb_polys(x, n)

if n == 0

return 1 # T_0(x) = 1

elseif n == 1

return x # T_1(x) = x

else

 cheb_recursion(x, n) =

2x.*cheb_polys.(x, n - 1) .- cheb_polys.(x, n - 2)

return cheb_recursion(x, n) # T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)

end

end;

7 / 46

Chebyshev regression: practice

7×15 Matrix{Float64}:

0.0666667 0.0666667 0.0666667 … 0.0666667 0.0666667

0.132603 0.126808 0.11547 -0.126808 -0.132603

0.13042 0.107869 0.0666667 0.107869 0.13042

0.126808 0.0783714 4.46986e-16 -0.0783714 -0.126808

0.121806 0.0412023 -0.0666667 0.0412023 0.121806

0.11547 -8.47892e-17 -0.11547 … -1.85126e-16 -0.11547

0.107869 -0.0412023 -0.133333 -0.0412023 0.107869

 construct_basis_matrix(grid, params) = hcat([cheb_polys.(shrink_grid.(grid), n) for n = 0:params

 basis_matrix = construct_basis_matrix(capital_grid, params);

 basis_inverse = inv(basis_matrix'*basis_matrix)*(basis_matrix') # pre-compute pseudoinverse for

8 / 46

Chebyshev regression: practice

 eval_value_function(coefficients, grid, params) = construct_basis_matrix(grid, params) * coeffic

9 / 46

Chebyshev regression: practice

function loop_grid_regress(params, capital_grid, coefficients)

 max_value = -.0*ones(params.num_points);

 consumption_store = -.0*ones(params.num_points);

for (iteration, capital) in enumerate(capital_grid)

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.00*capital^params.alpha, 0.99*capital^params.alpha)

 max_value[iteration] = -Optim.minimum(results)

 consumption_store[iteration] = Optim.minimizer(results)

end

return max_value, consumption_store

end;

10 / 46

Chebyshev regression: practice

function solve_vfi_regress(params, basis_inverse, capital_grid, coefficients)

 max_value = -.0*ones(params.num_points);

 error = 1e10;

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

 iteration = 1

while error > params.tolerance

 max_value, consumption_store = loop_grid_regress(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end

return coefficients, max_value, coefficients_store
11 / 46

Chebyshev regression: practice

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_vfi_regress(params, basis_inverse, capital_grid, coefficients)

Maximum Error of 0.04560791678414923 on iteration 25.

Maximum Error of 0.007635436575597669 on iteration 50.

Maximum Error of 0.0019075236037348097 on iteration 75.

Maximum Error of 0.0005149316099488123 on iteration 100.

Maximum Error of 0.00014178153569906261 on iteration 125.

Maximum Error of 3.92482976918936e-5 on iteration 150.

Maximum Error of 1.0880896630296866e-5 on iteration 175.

Maximum Error of 3.0177727176252443e-6 on iteration 200.

0.847524 seconds (22.49 M allocations: 515.604 MiB, 5.23% gc time, 0.25% compilation time)

([-194.85536958622183, 14.142104524187651, -2.664424683176605, 0.5749549884000286, -0.13337251156715

12 / 46

Chebyshev regression: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 13 / 46

Chebyshev regression: practice

14 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciatesη = 1

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

η = 1

B = 0, l = 1

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

This yields closed form solutions to the model

η = 1

B = 0, l = 1

kt+1 = βαθtk
α
t

ct = (1 − βα)θtk
α
t

15 / 46

Endogenous grid method (Carroll, 2006)

Suppose now we are working with a model with an inelastic labor supply with

logarithmic utility , and capital that fully depreciates

Leisure does not enter the utility function nor does labor enter the production

function, i.e.

This yields closed form solutions to the model

The endogenous grid method was introduced by Carroll (2006) for value

function iteration

η = 1

B = 0, l = 1

kt+1 = βαθtk
α
t

ct = (1 − βα)θtk
α
t

15 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

This works to our advantage because typically it is easier to solve for given

than the reverse

k k
′

16 / 46

Endogenous grid method (Carroll, 2006)

The idea behind EGM is super simple

instead of constructing a grid on the current states, construct the grid on

future states (making current states endogenous)

This works to our advantage because typically it is easier to solve for given

than the reverse

Let's see how this works

k k
′

16 / 46

Endogenous grid method

1. Choose a grid on which the value function is

approximated

2. Choose nodes and weights , for approximating integrals.

3. Compute next period productivity, .

4. Solve for and such that

(inner loop) The quantities solve the following given :

,

(outer loop) The value function solves the following given

:

{k′
m, θm}m=1,...,M

ϵj ωj j = 1, . . . , J

θ′
m,j = θ

ρ
mexp(ϵj)

b {cm, km}

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

V̂ (k, θ; b)

{cm, k′
m}

V̂ (km, θm; b) = u(cm) + β∑
J
j=1 ωj [V̂ (k′

m, θ′
m,j; b)]

17 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

18 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

This means that we can pre-compute the expectations of the value function

and value function derivatives and let

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

W(k′, θ) = E[V (k′, θ′; b)]

18 / 46

Endogenous grid method

Focus the inner loop of VFI:

(inner loop) The quantities solve the following given :

,

Notice that the values of are fixed since they are grid points

This means that we can pre-compute the expectations of the value function

and value function derivatives and let

We can then use the consumption FOC to solve for consumption,

 and then rewrite the resource constraint as,

{cm, km} V (k′
m, θ′

m)

u′(cm) = βE [Vk(k′
m, θ′

m,j)]

cm + k′
m = θmf(km) + (1 − δ)km

k′

W(k′, θ) = E[V (k′, θ′; b)]

c = [βWk(k′, θ)]−1/γ 18 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

We do not need to approximate a conditional expectation (already did it

before hand and can do it with very high accuracy since it is a one time cost)

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method

This is easier to solve than the necessary conditions we would get out of

standard value function iteration

Why?

We do not need to do any interpolation (is on our grid)

We do not need to approximate a conditional expectation (already did it

before hand and can do it with very high accuracy since it is a one time cost)

Can we make the algorithm better?

(k′ − (1 − δ)k − θkα)−γ = βWk(k′, θ′)

k′

19 / 46

Endogenous grid method: turbo speed

Let's make a change of variables

Y ≡ (1 − δ)k + θk
α = c + k

′

20 / 46

Endogenous grid method: turbo speed

Let's make a change of variables

so we can rewrite the Bellman as

Y ≡ (1 − δ)k + θkα = c + k′

V (Y , θ) = max
k′

{ + βE [V (Y ′, θ′)]}

s.t. c = Y − k′

Y ′ = (1 − δ)k′ + θ′(k′)α

c1−γ − 1

1 − γ

20 / 46

Endogenous grid method: turbo speed

This yields the FOC

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

21 / 46

Endogenous grid method: turbo speed

This yields the FOC

 is a simple function of (our grid points) so we can compute it, and the

entire conditional expectation on the RHS, directly from the endogenous grid

points

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

Y ′ k′

21 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

At no point did we need to use a numerical solver

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

22 / 46

Endogenous grid method: turbo speed

This allows us to compute from the FOC

Then from we can compute and then from the Bellman

At no point did we need to use a numerical solver

Once we have converged on some we then solve for via

 which does require a solver, but only once and after we

have recovered our value function approximant

u′(c) = βE [VY (Y ′, θ′)(1 − δ + αθ′(k′)α−1)]

c

c Y = c + k′ V (Y , θ)

V̂
∗

k

Y = (1 − δ)k + θkα

22 / 46

Endogenous grid method: practice

Let's solve our previous basic growth model using EGM

 coefficients = zeros(params.num_basis);

 coefficients[1:2] = [100 5];

23 / 46

Endogenous grid method: practice

function loop_grid_egm(params, capital_grid, coefficients)

 max_value = similar(capital_grid)

 capital_store = similar(capital_grid)

for (iteration, capital_next) in enumerate(capital_grid)

function bellman(consumption)

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return value_out

end;

 value_deriv = (eval_value_function(coefficients, capital_next + params.fin_diff, params)

 eval_value_function(coefficients, capital_next - params.fin_diff, params)[1])/(2para

 consumption = (params.beta*value_deriv)^(-1/params.eta)

 max_value[iteration] = bellman(consumption)

 capital_store[iteration] = (capital_next + consumption)^(1/params.alpha)

end

 grid = shrink_grid.(capital_store)

 basis_matrix = [cheb_polys.(grid, n) for n = 0:params.num_basis - 1];

 basis_matrix = hcat(basis_matrix...) 24 / 46

Endogenous grid method: practice

function solve_egm(params, capital_grid, coefficients)

 iteration = 1

 error = 1e10;

 max_value = -.0*ones(params.num_points);

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

while error > params.tolerance

 coefficients_prev = deepcopy(coefficients)

 current_poly, current_capital, max_value =

 loop_grid_egm(params, capital_grid, coefficients)

 coefficients = current_poly\max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end
25 / 46

Endogenous grid method: practice

Maximum Error of 0.04656312802519048 on iteration 25.

Maximum Error of 0.0077279558439712175 on iteration 50.

Maximum Error of 0.0019283105651684272 on iteration 75.

Maximum Error of 0.0005203908554999235 on iteration 100.

Maximum Error of 0.00014327347852089944 on iteration 125.

Maximum Error of 3.966043939472439e-5 on iteration 150.

Maximum Error of 1.0995091700787616e-5 on iteration 175.

Maximum Error of 3.0494442960141223e-6 on iteration 200.

0.229561 seconds (5.69 M allocations: 144.159 MiB, 9.64% gc time, 0.76% compilation time)

([-194.86588167567055, 14.166854450284145, -2.659830643535021, 0.5619970720353987, -0.13632318626428

@time solution_coeffs, max_value, intermediate_coefficients = solve_egm(params, capital_grid, co

26 / 46

Endogenous grid method: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 27 / 46

Endogenous grid method: practice

28 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

29 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

The idea here is that we want to use the envelope conditions instead of FOCs

to construct policy functions

29 / 46

Envelope condition method

We can simplify rootfinding in an alternative way than an endogenous grid for

infinite horizon problems

The idea here is that we want to use the envelope conditions instead of FOCs

to construct policy functions

These will end up being easier to solve and sometimes we can solve them in

closed form

29 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Vk(k) = u′(c)f ′(k)

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

Vk(k) = u′(c)f ′(k)

t

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

We can then recover from the budget constraint given our current state

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

k′ 30 / 46

Envelope condition method

For our old basic growth model problem (fully depreciating capital, no tech)

the envelope condition (combined with the consumption FOC) is given by

Notice that the envelope condition is an intratemporal condition,

it only depends on time variables

We can use it to solve for as a function of current variables

We can then recover from the budget constraint given our current state

Vk(k) = u′(c)f ′(k)

t

c

c = ()
−1/η

Vk(k)

αkα−1

k′ 30 / 46

Envelope condition method

The algorithm is

1. Choose a grid on which the value function is approximated

2. Solve for and such that

(inner loop) The quantities solve the following given :

,

(outer loop) The value function solves the following given

:

{km}m=1,...,M

b {cm, k′
m}

{cm, k′
m} V (km)

Vk(km) = u′(cm)f ′(km)

cm + k′
m = f(km)

V̂ (k; b)

{cm, km}

V̂ (km; b) = u(cm) + β∑
J

j=1 ωj [V̂ (k′
m; b)]

31 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

32 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

However we will generally be able to solve a system of conditions via function

iteration to recover the optimal controls as a function of current states and

future states that are perfectly known at the current time

32 / 46

Envelope condition method

In more complex settings (e.g. elastic labor supply) we will not necessarily be

able to solve for policies without a solver

However we will generally be able to solve a system of conditions via function

iteration to recover the optimal controls as a function of current states and

future states that are perfectly known at the current time

Thus at no point in time during the value function approximation algorithm do

we need to interpolate off the grid or approximate expectations: this yields

large speed and accuracy gains

32 / 46

Envelope condition method: practice

function loop_grid_ecm(params, capital_grid, coefficients)

 max_value = similar(capital_grid);

for (iteration, capital) in enumerate(capital_grid)

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return value_out

end;

 value_deriv = (eval_value_function(coefficients, capital + params.fin_diff, params)[1] -

 eval_value_function(coefficients, capital - params.fin_diff, params)[1])/(2params.fi

 consumption = (value_deriv/(params.alpha*capital^(params.alpha-1)))^(-1/params.eta)

 consumption = min(consumption, capital^params.alpha)

 max_value[iteration] = bellman(consumption)

end

return max_value

end
33 / 46

Envelope condition method: practice

function solve_ecm(params, basis_inverse, capital_grid, coefficients)

 iteration = 1

 error = 1e10;

 max_value = similar(capital_grid);

 value_prev = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

while error > params.tolerance

 coefficients_prev = deepcopy(coefficients)

 max_value = loop_grid_ecm(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

 error = maximum(abs.((max_value - value_prev)./(value_prev)))

 value_prev = deepcopy(max_value)

if mod(iteration, 25) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end

 iteration += 1

end

return coefficients, max_value, coefficients_store

end
34 / 46

Envelope condition method: practice

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_ecm(params, basis_inverse, capital_grid, coefficients)

Maximum Error of 0.0453525403650495 on iteration 25.

Maximum Error of 0.0076079815408730215 on iteration 50.

Maximum Error of 0.0019013403845842475 on iteration 75.

Maximum Error of 0.0005133070957501089 on iteration 100.

Maximum Error of 0.00014133753500579239 on iteration 125.

Maximum Error of 3.912563883912878e-5 on iteration 150.

Maximum Error of 1.0846910981672597e-5 on iteration 175.

Maximum Error of 3.0083484348532563e-6 on iteration 200.

0.174326 seconds (4.53 M allocations: 106.518 MiB, 5.97% gc time, 0.99% compilation time)

([-194.85531932176127, 14.142062593106905, -2.6644837015279976, 0.5749531960546624, -0.1333743010189

35 / 46

Envelope condition method: practice

function simulate_model(params, solution_coeffs, time_horizon = 100)

 capital_store = zeros(time_horizon + 1)

 consumption_store = zeros(time_horizon)

 capital_store[1] = params.k_0

for t = 1:time_horizon

 capital = capital_store[t]

function bellman(consumption)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(solution_coeffs, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_value

return -value_out

end;

 results = optimize(bellman, 0.0, capital^params.alpha)

 consumption_store[t] = Optim.minimizer(results)

 capital_store[t+1] = capital^params.alpha - consumption_store[t]

end

return consumption_store, capital_store

end; 36 / 46

Envelope condition method: practice

 time_horizon = 100;

 consumption, capital = simulate_model(params, solution_coeffs, time_horizon);

 plot(1:time_horizon, consumption, color = :red, linewidth = 4.0, label = "Consumption", legend =

 plot!(1:time_horizon, capital[1:end-1], color = :blue, linewidth = 4.0, linestyle = :dash, label

 plot!(1:time_horizon, params.steady_state*ones(time_horizon), color = :purple, linewidth = 2.0,

37 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

This means that we may be able to skip the maximization step and re-use our

old policy function to get new values for polynomial fitting

38 / 46

Modified policy iteration

When doing VFI what is the most expensive part of the algorithm?

The maximization step!

If we can reduce how often we need to maximize the Bellman we can

significantly improve speed

It turns out that between VFI iterations, the optimal policy does not change all

that much

This means that we may be able to skip the maximization step and re-use our

old policy function to get new values for polynomial fitting

This is called modified policy iteration
38 / 46

Modified policy iteration

It only changes step 5 of VFI:

While convergence criterion tolerance

Start iteration

Solve the right hand side of the Bellman equation

Recover the maximized values, conditional on

Fit the polynomial to the values and recover new coefficients

Compute where

While MPI stop criterion tolerance

Use policies from last VFI iteration to re-fit the polynomial (no

maximizing!)

>

p

Γ(kt+1; b(p))

b̂
(p+1)

b(p+1) = (1 − γ)b(p) + γb̂
(p+1)

γ ∈ (0, 1)

>

(1) (1) () ^(p+1)
39 / 46

Modified policy iteration

Stop criteron can be a few things:

1. Fixed number of iterations

2. Stop when change in value function is sufficient small, QuantEcon suggests

stopping MPI when

where the max and min are over the values on the grid

max(Vp(x; c) − Vp−1(x; c)) − min(Vp(x; c) − Vp−1(x; c)) < ϵ(1 − β)β

40 / 46

Modified policy iteration

Stop criteron can be a few things:

1. Fixed number of iterations

2. Stop when change in value function is sufficient small, QuantEcon suggests

stopping MPI when

where the max and min are over the values on the grid

Only MPI after a few VFI iterations unless you have a good initial guess, if your

early policy functions are bad then starting MPI too early will blow up your

problem

max(Vp(x; c) − Vp−1(x; c)) − min(Vp(x; c) − Vp−1(x; c)) < ϵ(1 − β)β

40 / 46

Modified policy iteration

function solve_vfi_regress_mpi(params, basis_inverse, basis_matrix, grid, capital_grid, coeffici

 max_value = -.0*ones(params.num_points);

 error = 1e10;

 value_prev = .1*ones(params.num_points);

 value_prev_outer = .1*ones(params.num_points);

 coefficients_store = Vector{Vector}(undef, 1)

 coefficients_store[1] = coefficients

 iteration = 1

while error > params.tolerance

 max_value, consumption_store =

 loop_grid_regress(params, capital_grid, coefficients)

 coefficients = basis_inverse*max_value

if iteration > params.mpi_start # modified policy iteration loop

 mpi_iteration = 1

while maximum(abs.(max_value - value_prev)) -

 minimum(abs.(max_value - value_prev)) >

 (1 - params.beta)/params.beta*params.tolerance

 value_prev = deepcopy(max_value)

41 / 46

Modified policy iteration

function bellman(consumption, capital)

 capital_next = capital^params.alpha - consumption

 cont_value = eval_value_function(coefficients, capital_next, params)[1]

 value_out = (consumption)^(1-params.eta)/(1-params.eta) + params.beta*cont_v

return value_out

end

 max_value = bellman.(consumption_store, capital_grid) # greedy policy

 coefficients = basis_inverse*max_value

if mod(mpi_iteration, 5) == 0

 println("MPI iteration $mpi_iteration on VFI iteration $iteration.")

end

 mpi_iteration += 1

end

end

 error = maximum(abs.((max_value .- value_prev_outer)./(value_prev_outer)))

 value_prev_outer = deepcopy(max_value)

if mod(iteration, 5) == 0

 println("Maximum Error of $(error) on iteration $(iteration).")

 append!(coefficients_store, [coefficients])

end 42 / 46

Modified policy iteration

43 / 46

Modified policy iteration

Maximum Error of 0.33871304913135464 on iteration 5.

MPI iteration 25 on VFI iteration 6.

MPI iteration 50 on VFI iteration 6.

MPI iteration 75 on VFI iteration 6.

MPI iteration 25 on VFI iteration 7.

MPI iteration 50 on VFI iteration 7.

MPI iteration 25 on VFI iteration 8.

Maximum Error of 1.141822859504868e-5 on iteration 10.

Maximum Error of 4.0892905314530945e-6 on iteration 15.

Maximum Error of 3.0060755201005212e-6 on iteration 20.

Maximum Error of 2.3260768798925272e-6 on iteration 25.

Maximum Error of 1.7998932693973723e-6 on iteration 30.

Maximum Error of 1.3927345521584257e-6 on iteration 35.

Maximum Error of 1.0776782693136323e-6 on iteration 40.

0.223322 seconds (5.89 M allocations: 136.588 MiB, 4.52% gc time, 0.88% compilation time)

([-194.8621441678187, 14.1421045241982, -2.6644246831782934, 0.5749549884003013, -0.1333725115671613

@time solution_coeffs, max_value, intermediate_coefficients =

 solve_vfi_regress_mpi(params, basis_inverse, basis_matrix, grid, capital_grid, coefficients)

44 / 46

Modified policy iteration

45 / 46

Solve times

The solve times are:

Regression: 0.867 seconds

Endogenous Grid + Regression: 0.216 seconds

Envelope Condition + Regression: 0.172 seconds

Modified Policy Iteration + Regression: 0.257 seconds

Individually they give 3-6 times speed up

46 / 46

