
Roadmap

1. The theory behind continuous time models

2. Numerical methods for solving continuous time model

2 / 92

Model setup

Consider a problem where each period an agent obtains flow utility

, where is our state and is our controlJ(x(t),u(t)) x u

3 / 92

Model setup

Consider a problem where each period an agent obtains flow utility

, where is our state and is our control

Suppose there is a finite horizon with a terminal time

J(x(t),u(t)) x u

T

3 / 92

Model setup

The agent's objective is to maximize the total payoff, subject to the transitions

of the states

This is an open-loop solution so we optimize our entire policy trajectory from

time

We will not be solving for functions of states, but functions of time:

max
u,xT

∫
T

0
J(x(t),u(t)) dt

subject to: ẋ(t) = g(x(t),u(t)), x(0) = x0, x(T) = xT

t = 0

u(t),x(t)

4 / 92

Hamiltonians

In a dynamic optimization problem, we will have an auxiliary function that

yields the first-order conditions

5 / 92

Hamiltonians

In a dynamic optimization problem, we will have an auxiliary function that

yields the first-order conditions

This function is called the Hamiltonian:

It is a function that treats the transitions as quasi-constraints so it appears

similar to the Lagrangian you know

H(x(t),u(t),λ(t)) ≡ J(x(t),u(t)) + λ(t)g(x(t),u(t))

5 / 92

Hamiltonians

Pontryagin's Maximum Principle states that the following conditions are

necessary for an optimal solution:

What do these conditions mean?

= 0 ∀t ∈ [0,T]

= −λ̇(t)

= ẋ(t)

x(0) = x0

λ(T) = 0

(Maximality)

(Co-state)

(State transitions)

(Initial condition)

(Transversality)

∂H(x(t),u(t),λ(t))

∂u
∂H(x(t),u(t),λ(t))

∂x
∂H(x(t),u(t),λ(t))

∂λ

6 / 92

Necessary conditions

First, what is the Hamiltonian?

7 / 92

Necessary conditions

First, what is the Hamiltonian?

The Hamiltonian tells us the contribution of that instant to overall utility via

the change in flow utility and the change in the state (which affects future flow

utilities)

t

7 / 92

Necessary conditions

First, what is the Hamiltonian?

The Hamiltonian tells us the contribution of that instant to overall utility via

the change in flow utility and the change in the state (which affects future flow

utilities)

The decisionmaker can use her control to increase the contemporaneous flow

utility and reap immediate rewards, or to alter the state variable to increase

future rewards

t

H(x(t),u(t),λ(t)) ≡ J(x(t),u(t))


current flow

+ λ(t)g(x(t),u(t))

change in future value

7 / 92

Necessary conditions

The maximality condition: in every instant, we select the control so that we

can no longer increase our total payoff

= 0 ∀t ∈ [0,T]
∂H(x(t),u(t),λ(t))

∂u

8 / 92

Necessary conditions

The maximality condition: in every instant, we select the control so that we

can no longer increase our total payoff

It effectively sets the net marginal benefits of the control to zero

= 0 ∀t ∈ [0,T]
∂H(x(t),u(t),λ(t))

∂u

8 / 92

Necessary conditions

The state transition is just a definition

= ẋ(t)
∂H(x(t),u(t),λ(t))

∂λ

9 / 92

Necessary conditions

The state transition is just a definition

Taking the derivative of the Hamiltonian with respect to the shadow value,

just like a Lagrangian, yields this constraint back

= ẋ(t)
∂H(x(t),u(t),λ(t))

∂λ

9 / 92

Necessary conditions

The co-state condition defines how the shadow value of our state transition,

called the co-state variable, evolves over time

= −λ̇(t)
∂H(x(t),u(t),λ(t))

∂x

10 / 92

Necessary conditions

The co-state condition defines how the shadow value of our state transition,

called the co-state variable, evolves over time

What is the co-state?

= −λ̇(t)
∂H(x(t),u(t),λ(t))

∂x

10 / 92

Necessary conditions

What is the co-state?

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

x

(H)

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

Then the shadow value of that stock must decrease along an optimal

trajectory

x

(H)

(λ)

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

Then the shadow value of that stock must decrease along an optimal

trajectory

Why?

x

(H)

(λ)

11 / 92

Necessary conditions

If it didn't, we could increase value by accumulating more of the stock variable

 there is a profitable deviation and what we were doing cannot be optimal

We can re-write the co-state equation as

→

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

12 / 92

Necessary conditions

We must have that the a unit of the stock's value must change (third term), so

that is exactly offsets the change in value from increasing the stock in the

immediate instant of time

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

13 / 92

Necessary conditions

We must have that the a unit of the stock's value must change (third term), so

that is exactly offsets the change in value from increasing the stock in the

immediate instant of time

The immediate value is made up of the actual utility payoff (first term), and the

future utility payoff payoff from how increasing the stock today affects the

stock in the future (second term)

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

13 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

14 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

Many different paths are consistent with these differential equations,

depends on the constant of integration

14 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

Many different paths are consistent with these differential equations,

depends on the constant of integration

We need additional optimality conditions to use as constraints to impose the

optimal path

14 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

We need to pin down the co-state path

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

We need to pin down the co-state path

We do this using transverality conditions

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

The second two are for pinning down the initial and terminal state variables if

they're free

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

The second two are for pinning down the initial and terminal state variables if

they're free

Usually terminal conditions are free and initial conditions are not

16 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

17 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

Why?

17 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

Why?

If it were positive the policymaker could profitably deviate by altering the

level of the stock. Finally, these are all necessary conditions of the problem

17 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

→

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

→

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

→

J(x(t),u(t), t) = e−rt V (x(t),u(t))

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

→

J(x(t),u(t), t) = e−rt V (x(t),u(t))

J 0 t

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

 is the present value and is the current value

→

J(x(t),u(t), t) = e−rt V (x(t),u(t))

J 0 t

J V

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

 is the present value and is the current value

Present value refers to the value with respect to a specific period that we call

the present

→

J(x(t),u(t), t) = e−rt V (x(t),u(t))

J 0 t

J V

18 / 92

Current value terms

Our previous necessary conditions apply to present value Hamiltonians,

but let us analyze a current value Hamiltonian to avoid including time terms,

 is the shadow value brought into current value terms:

H cv(x(t),u(t),μ(t)) ≡ ertH(x(t),u(t),λ(t), t)

= ertJ(x(t),u(t), t) + ertλ(t)g(x(t),u(t))

μ(t) λ μ(t) = ertλ(t)

19 / 92

Current value terms

We can then re-write our necessary conditions in current value by

substituting in for:

the shadow value (which implies that)

 into our co-state condition:

λ̇(t) = −re−rtμ(t) + e−rtμ̇(t)

∂H/∂x = e−rt ∂H cv/∂x

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t),u(t),μ(t))

∂x

20 / 92

Current value

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t),u(t),μ(t))

∂x

21 / 92

Current value

Before, the present value form of the co-state condition required the change

in the present shadow value precisely equal the effect of the state variable on

instantaneous value

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t),u(t),μ(t))

∂x

21 / 92

Current value

In current value form, the co-state condition recognizes that the change in the

present shadow value is comprised of two parts:

1. The change in the current shadow value

2. The reduction in present value purely from the passage of time

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t),u(t),μ(t))

∂x

22 / 92

Current value

In current value form, the co-state condition recognizes that the change in the

present shadow value is comprised of two parts:

1. The change in the current shadow value

2. The reduction in present value purely from the passage of time

If discounting is high (large), then the current shadow value must change

quicker in order to compensate the policymaker for leaving stock for the

future

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t),u(t),μ(t))

∂x

r

22 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

dy/dt = f(y, t)

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

dy/dt = f(y, t)

f : Rn+1 → R
n

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

The unknown is the function

dy/dt = f(y, t)

f : Rn+1 → R
n

y(t) : [t0,T] → R
n

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

The unknown is the function

 determines the number of differential equations that we have

dy/dt = f(y, t)

f : Rn+1 → R
n

y(t) : [t0,T] → R
n

n

23 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

y(t) y(t)

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

If we pin down or we have an initial value problem

y(t) y(t)

y(t0) = y0 y(T) = yT

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

If we pin down or we have an initial value problem

IVPs are defined by the function being pinned down at one end or the other

y(t) y(t)

y(t0) = y0 y(T) = yT

24 / 92

Numerical methods for continuous time models

In one dimension we must pin down the function with either an initial or

terminal condition so they are all IVPs by default

25 / 92

Numerical methods for continuous time models

In one dimension we must pin down the function with either an initial or

terminal condition so they are all IVPs by default

If then we can have a boundary value problem where we impose

conditions on

where

n > 1 n

y

gi(y(t0)) = 0, i = 1, . . . , .n′,

gi(y(T)) = 0, i = n′ + 1, . . . ,n

g : Rn → R
n

25 / 92

Numerical methods for continuous time models

In general we have that

for some set of points , ,

gi(y(ti)) = 0

ti t0 ≤ ti ≤ T 1 ≤ i ≤ n

26 / 92

Numerical methods for continuous time models

In general we have that

for some set of points , ,

Often we set so we will need some condition in the limit:

gi(y(ti)) = 0

ti t0 ≤ ti ≤ T 1 ≤ i ≤ n

T = ∞ limt→∞ y(t)

26 / 92

Numerical methods for continuous time models

Note two more things:

1. We are implicitly assuming that these conditions are independent,

otherwise we will not have a unique solution

2. IVPs and BVP are fundamentally different: IVPs are problems where the

auxiliary conditions that pin down the solution are all at one point, in BVPs

they can be at different points, this has significant implications for how we

can solve the problems

n

27 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

28 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

Define and then we can study the alternative system

of two first-order ODEs

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

z = dy/dx

dy/dx = z dz/dx = g(z, y,x)

28 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

Define and then we can study the alternative system

of two first-order ODEs

In general you can always transform a th-order ODE into first-order ODEs

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

z = dy/dx

dy/dx = z dz/dx = g(z, y,x)

n n

28 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

y′ = f(t, y), y(t0) = y0

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

Assume the grid is uniformly spaced: where is

the mesh size

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

ti = t0 + ih, i = 0, 1, . . . ,N h

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

Assume the grid is uniformly spaced: where is

the mesh size

Our goal is to find for each , a value that closely approximates

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

ti = t0 + ih, i = 0, 1, . . . ,N h

ti Yi y(ti)
29 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have Yi+1 = F(Yi,Yi−1, . . . , ti+1, ti, . . .)

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have

We then solve the difference equation for the 's in sequence where the

initial is fixed by the initial condition

Yi+1 = F(Yi,Yi−1, . . . , ti+1, ti, . . .)

Y

Y0 Y0 = y0

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have

We then solve the difference equation for the 's in sequence where the

initial is fixed by the initial condition

This approximates the solution only at the grid points, but then we can

interpolate using standard procedures to get the approximate solution off the

grid points

Yi+1 = F(Yi,Yi−1, . . . , ti+1, ti, . . .)

Y

Y0 Y0 = y0

30 / 92

Euler's method

The workhorse finite-difference method is Euler's method

31 / 92

Euler's method

The workhorse finite-difference method is Euler's method

Euler's method is the difference equation

where is given by the initial condition

Yi+1 = Yi + hf(ti,Yi)

Y0

31 / 92

Euler's method

Suppose the current iterate is and is the true solutionP = (ti,Yi) y(t)

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

P = (ti,Yi) y(t)

P y′(ti) →PQ

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

Euler's method follows that direction until at

P = (ti,Yi) y(t)

P y′(ti) →PQ

t = ti+1 Q

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

Euler's method follows that direction until at

The Euler estimate of is then

P = (ti,Yi) y(t)

P y′(ti) →PQ

t = ti+1 Q

y(ti+1) Y E
i+1 32 / 92

Euler's method

This sounds very similar to Newton's method, because it is

33 / 92

Euler's method

This sounds very similar to Newton's method, because it is

Euler's method can be motivated by a similar Taylor approximation argument

33 / 92

Euler's method

This sounds very similar to Newton's method, because it is

Euler's method can be motivated by a similar Taylor approximation argument

If is the true solution, the second order Taylor expansion around is

for some

y(t) ti

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

ξ ∈ [ti, ti+1]

33 / 92

Euler's method

If we drop the second order term and assume and

we have exactly Euler's formula

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

f(ti,Yi) = y′(ti) Yi = y(ti)

34 / 92

Euler's method

If we drop the second order term and assume and

we have exactly Euler's formula

For small , should be a close approximation to the solution of the

truncated Taylor expansion,so should be a good approximation to

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

f(ti,Yi) = y′(ti) Yi = y(ti)

h y(x)

Yi y(ti)

34 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

y(t) f(ti,Yi)

[ti, ti+1]

35 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

We can motivate Euler's method with an integration argument instead of a

Taylor expansion argument

y(t) f(ti,Yi)

[ti, ti+1]

35 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

We can motivate Euler's method with an integration argument instead of a

Taylor expansion argument

The fundamental theorem of calculus tells us that

y(t) f(ti,Yi)

[ti, ti+1]

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

35 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

As decreases, we would expect the solutions to become more accurate

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

h

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

As decreases, we would expect the solutions to become more accurate

As , we are back in the ODE world

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

h

h → 0
36 / 92

Euler's method errors

Consider a system, y′(t) = y(t), y(0) = 1

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

y′(t) = y(t), y(0) = 1

y(t) = et

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

The Euler method gives us a difference equation of

y′(t) = y(t), y(0) = 1

y(t) = et

Yi+1 = Yi + hYi = (1 + h)Yi

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

The Euler method gives us a difference equation of

This difference equation has solution and implies the

approximation is

y′(t) = y(t), y(0) = 1

y(t) = et

Yi+1 = Yi + hYi = (1 + h)Yi

Yi = (1 + h)i

Y (t) = (1 + h)t/h

37 / 92

Euler's method errors

Thus the relative error between the two is

where excluded terms have order higher than

log(|Y (t)/y(t)|) = log(1 + h) − t = (h − h2+. . .) − t = −th+. . .
t

h

t

h

h

38 / 92

Euler's method errors

Thus the relative error between the two is

where excluded terms have order higher than

Thus the relative error in the Euler approximation has order and as goes to

zero so does the approximation error

log(|Y (t)/y(t)|) = log(1 + h) − t = (h − h2+. . .) − t = −th+. . .
t

h

t

h

h

h h

38 / 92

Euler's method errors

In general we can show that Euler's method has linear convergence

Suppose the solution to is on , that is ,

and that and are bounded for all and . Then the error of the

Euler scheme with step size is

y′(t) = f(t, y(t)), y(t0) = y0 C 3 [t0,T] f C 2

fy fyy y t0 ≤ t ≤ T

h O(h)

39 / 92

Euler's method code

40 / 92

Euler's method code

function euler_ode(df, t0, y0, h, n)

 t = zeros(n+1)

 y = zeros(n+1)

set the initial values

 t[1] = t0

 y[1] = y0

use Euler's method to approximate the solution at each step

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = y[i] + h * df(t[i], y[i])

end

return (t, y)

end

euler_ode (generic function with 2 methods)

40 / 92

Euler's method code

dy/dt = y -> y = C_0*exp(t)

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 10)

Define and send it to the euler_ode functiondf/dt

41 / 92

Euler's method code

42 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

43 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

This yields the implicit Euler method

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

Yi+1 = Yi + hf(ti+1,Yi+1)

43 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

This yields the implicit Euler method

Notice that now is only implicitly defined in terms of and so we will

need to solve a non-linear equation in

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

Yi+1 = Yi + hf(ti+1,Yi+1)

Yi+1 ti Yi

Yi+1

43 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

Yi+1 i

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Yi+1 i

Yi+1 Yi ti+1 f ti+1

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Thus the implicit Euler method will get us better approximation properties,

often times much better

Yi+1 i

Yi+1 Yi ti+1 f ti+1

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Thus the implicit Euler method will get us better approximation properties,

often times much better

Because of this we can typically use larger 's with the implicit Euler method

Yi+1 i

Yi+1 Yi ti+1 f ti+1

h

44 / 92

Implicit Euler's method code

rootfinding portion of implicit Euler

function find_euler_root(df, y, t, h, y0, tol)

 y_new = y0

 y_old = y0

 error = Inf

while error > tol

 y_new = y + h * df(t, y_new)

 error = abs((y_new - y_old)/y_old)

 y_old = deepcopy(y_new)

end

return y_new

end

find_euler_root (generic function with 1 method)

45 / 92

Implicit Euler's method code

function euler_implicit_ode(df, t0, y0, h, n, tol = 1e-6)

 t = zeros(n+1)

 y = zeros(n+1)

 t[1] = t0

 y[1] = y0

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = find_euler_root(df, y[i], t[i+1], h, y[i], tol)

end

return (t, y)

end

euler_implicit_ode (generic function with 2 methods)

46 / 92

Implicit Euler's method code

 df(t, y) = y

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 10, 1e-6)

Define and send it to the euler_implicit_ode functiondf/dt

47 / 92

Implicit Euler's method code

48 / 92

Comparison

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 10)

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 10, 1e-6)

 y_real = exp.(t1)

49 / 92

Comparison

50 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts f

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

For example if is concave we will overshoot the true value

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

y

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

For example if is concave we will overshoot the true value

We could instead use the slope at but this will give the same

problem but in the opposite direction, we will undershoot

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

y

(ti+1,Y E
i+1)

51 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

Yi+1 = Yi + [f(ti,Yi) + f(ti+1,Yi+1)]
h

2

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

Yi+1 = Yi + [f(ti,Yi) + f(ti+1,Yi+1)]
h

2

h

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

This has the same flavor as forward vs central finite differences

Yi+1 = Yi + [f(ti,Yi) + f(ti+1,Yi+1)]
h

2

h

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

This has the same flavor as forward vs central finite differences

There are higher order Runge-Kutta rules that have even more desirable

Yi+1 = Yi + [f(ti,Yi) + f(ti+1,Yi+1)]
h

2

h

52 / 92

Runge-Kutta code

function find_euler_root_rk(df, y, t, tp, h, y0, tol)

 y_new = y0

 y_old = y0

 error = Inf

while error > tol

 y_new = y + h/2 * (df(t, y) + df(tp, y_new))

 error = abs((y_new - y_old)/y_old)

 y_old = deepcopy(y_new)

end

return y_new

end

find_euler_root_rk (generic function with 1 method)

53 / 92

Runge-Kutta code

function euler_rk_ode(df, t0, y0, h, n, tol = 1e-6)

 t = zeros(n+1)

 y = zeros(n+1)

 t[1] = t0

 y[1] = y0

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = find_euler_root_rk(df, y[i], t[i], t[i+1], h, y0, tol)

end

return (t, y)

end

euler_rk_ode (generic function with 2 methods)

54 / 92

Comparison

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 100)

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 100, 1e-7)

 t2, y3 = euler_rk_ode(df, 0., 1., .1, 100, 1e-7)

 y_real = exp.(t1)

Check the time/memory with @btime in BenchmarkTools

55 / 92

Comparison: RK has minimal error

56 / 92

Comparison: RK has minimal error

57 / 92

Boundary Value Problems

IVPs are easy to solve because the solution depends only on local conditions

so we can use local solution algorithms which are convenient

58 / 92

Boundary Value Problems

IVPs are easy to solve because the solution depends only on local conditions

so we can use local solution algorithms which are convenient

BVPs have auxiliary conditions that are imposed at different points in time so

we lose the local nature of the problem and our solutions must now be global

in nature

58 / 92

Boundary Value Problems

Consider the following BVP

where

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

59 / 92

Boundary Value Problems

Consider the following BVP

where

We cannot use standard IVP approaches because at or we only know the

value of either or but not both

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

t0 T

x y

59 / 92

Boundary Value Problems

Consider the following BVP

where

We cannot use standard IVP approaches because at or we only know the

value of either or but not both

Thus we cannot find the next value of both of them using only local

information: we need alternative approaches

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

t0 T

x y

59 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

y(t0)

y(T)

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

y(t0)

y(T)

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

But we do get some information from where we end up at and can use

that information to update our guesses for until we are sufficiently close

to

y(t0)

y(T)

y(T)

y(t0)

yT

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

But we do get some information from where we end up at and can use

that information to update our guesses for until we are sufficiently close

to

There are two components to a shooting method

y(t0)

y(T)

y(T)

y(t0)

yT

60 / 92

Shooting

First we guess some and then solve the IVP problem with methods

we've already used

to find some which we call since it depends on our initial guess

y(0) = y0

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(0) = y0

y(T) Y (T , y0)

y0

61 / 92

Shooting

Second we need to find the right y0

62 / 92

Shooting

Second we need to find the right

We want to find a such that

y0

y0 yT = Y (T , y0)

62 / 92

Shooting

Second we need to find the right

We want to find a such that

This is a nonlinear equation in so we need to solve nonlinear equations

y0

y0 yT = Y (T , y0)

y0

62 / 92

Shooting

Second we need to find the right

We want to find a such that

This is a nonlinear equation in so we need to solve nonlinear equations

We can write the algorithm as

1. Initialize: Guess . Choose a stopping criterion

2. Solve the IVP for given the initial condition

3. If , STOP. Else choose based on the previous values of

 and go back to step 1

y0

y0 yT = Y (T , y0)

y0

yi0 ϵ > 0

x(T), y(T) y0 = yi0
||y(T) − yT || < ϵ yi+1

0

y

62 / 92

Shooting

This is an example of a two layer algorithm

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any Y (T , y0) y0

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

Y (T , y0) y0

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

In the outer layer (step 2) we solve the nonlinear equation

Y (T , y0) y0

Y (T , y0) = yT

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

In the outer layer (step 2) we solve the nonlinear equation

We can use any nonlinear solver here, typically we do this by defining a

subroutine that computes as a function of and then sends

that subroutine to a rootfinding program

Y (T , y0) y0

Y (T , y0) = yT

Y (T , y0) − yT y0

63 / 92

Example: Lifecycle model

A simple lifecycle model is given by

 is utility from consumption, is the wage rate, are assets and

 is the return on invested assets

max
c(t)

∫
T

0
e−rtu(c(t))dt

s. t. Ȧ(t) = f(A(t)) + w(t) − c(t)

A(0) = A(T) = 0.

u(c(t)) w(t) A(t)

f(A(t))

64 / 92

Example: Lifecycle model

A simple lifecycle model is given by

 is utility from consumption, is the wage rate, are assets and

 is the return on invested assets

We assume that assets are initially and terminally zero where the latter would

come about naturally from a transversality condition

max
c(t)

∫
T

0
e−rtu(c(t))dt

s. t. Ȧ(t) = f(A(t)) + w(t) − c(t)

A(0) = A(T) = 0.

u(c(t)) w(t) A(t)

f(A(t))

64 / 92

Example: Lifecycle model

The Hamiltonian is

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

65 / 92

Example: Lifecycle model

The Hamiltonian is

and the co-state condition is given by

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

λ̇(t) = rλ(t) − λ(t)f ′(A(t))

65 / 92

Example: Lifecycle model

The Hamiltonian is

and the co-state condition is given by

The maximum principle implies that

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

λ̇(t) = rλ(t) − λ(t)f ′(A(t))

u′(c(t)) = λ(t)

65 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

A

A

66 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

The issue here is that we never know and at either or

A

A

A λ t = 0 t = T

66 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

The issue here is that we never know and at either or

We can use the maximum principle to convert the costate condition into a

condition on consumption

A

A

A λ t = 0 t = T

ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

66 / 92

Example: Lifecycle model

The Figure shows the phase diagram assuming that for all

If when we guess , but when we guess ,

we know the correct guess lies in between and we can solve for it using the

f ′(A) > r A

A(T) < 0 c(0) = cH A(T) > 0 c(0) = cL

67 / 92

Example: Lifecycle model

Let's code it up

Ȧ(t) = f(A(t)) + w(t) − c(t) ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

f(A(t)) = 1.05A(t)

u(c(t)) = log(c(t))

w(t) = 5

r = .02

68 / 92

Example: Lifecycle model

Let's code it up

 df(t,a,c) = (1.05*a + 5 - c, -1 * (1/c) / (-1/c^2) * (1.05 - .02))

df (generic function with 2 methods)

Ȧ(t) = f(A(t)) + w(t) − c(t) ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

f(A(t)) = 1.05A(t)

u(c(t)) = log(c(t))

w(t) = 5

r = .02

68 / 92

Example: Lifecycle model

We need a 2 variable ODE solver next

69 / 92

Example: Lifecycle model

We need a 2 variable ODE solver next

function euler_ode(df, t0, a0, c0, h, n)

 t = zeros(n+1)

 a = zeros(n+1)

 c = zeros(n+1)

 t[1] = t0

 a[1] = a0

 c[1] = c0

for i in 1:n

 t[i+1] = t[i] + h

 a[i+1] = a[i] + h * df(t[i], a[i], c[i])[1]

 c[i+1] = c[i] + h * df(t[i], a[i], c[i])[2]

end

return t, a, c

end 69 / 92

Example: Lifecycle model

Last, wrap it in bisection method

function solve_bvp(df, t0, a0, aend, c0low, c0high, h, n, tol = 1e-6)

 t = zeros(n+1)

 a = zeros(n+1)

 c = zeros(n+1)

while abs.(c0low - c0high) > tol

 c0guess = (c0low + c0high)/2

 t, a, c = euler_ode(df, t0, a0, c0guess, h, n)

 anew = a[end]

if sign(anew) > 0

 c0low = c0guess

else

 c0high = c0guess

end

end 70 / 92

Example: Lifecycle model

Now we have to find the initial bounds, one where , one where

 aend = 0.

 a0 = 0.

 t0 = 0.

 h = .01

 n = 100

 c0low = 1 # low c0 guess

 c0high = 10 # high c0 guess

A(T) > 0

A(T) < 0

71 / 92

Example: Lifecycle model

 a0high = euler_ode(df, t0, a0, c0high, h, n)[2][end]

-19.07974813179398

 a0low = euler_ode(df, t0, a0, c0low, h, n)[2][end]

5.986527176940143

As expected, too high consumption yields negative assets , too low

consumption yields positive assets

The that solves the problem will fall somewhere in between

C(0) A(T)

C(0) A(T)

C(0)

72 / 92

Example: Lifecycle model

 t, a, c = solve_bvp(df, t0, a0, aend, c0low, c0high, h, n)

73 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

∞

max
u(t)

∫
∞

0
e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

74 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

We still have as before, but we no longer have the terminal

condition

∞

max
u(t)

∫
∞

0
e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

x(0) = x0

74 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

We still have as before, but we no longer have the terminal

condition

We replace it with a transversality condition that

∞

max
u(t)

∫
∞

0
e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

x(0) = x0

limt→∞ e−rt|λ(t)Tx(t)| ≤ ∞

74 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

But this implies something very convenient: that the initial state

corresponding to any terminal state is not very sensitive to the value of the

terminal state

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

But this implies something very convenient: that the initial state

corresponding to any terminal state is not very sensitive to the value of the

terminal state

We will guess the terminal condition and integrate backward

∞

x(T)

λ(0) T

75 / 92

Example: Reverse shooting for horizon problems

Consider the simplest growth model

where is consumption, is the capital stock, and is production

∞

max
c(t)

∫
∞

0
e−rtu(c(t))dt

k̇(t) = f(k(t)) − c(t)

s. t. k(0) = k0,

c k f

76 / 92

Example: Reverse shooting for horizon problems

We can use Pontryagin's necessary conditions to get that consumption and

capital are governed by the following differential equations

with boundary conditions,

∞

ċ(t) = − (f ′(k) − r)

k̇(t) = f(k(t)) − c(t),

u′(c(t))

u′′(c(t))

k(0) = k0, 0 < lim
t→∞

|k(t)| ≤ ∞

77 / 92

Example: Reverse shooting for horizon problems

Assume and are concave, the Figure shows the phase diagram for the

problem

Steady state when and

∞

u f

f ′(k∗) = r c∗ = f(k∗) 78 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

∞

MS

MU

79 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

Both are invariant manifolds because any system that starts on either of these

manifolds
will continue to move along the manifold

∞

MS

MU

79 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

Both are invariant manifolds because any system that starts on either of these

manifolds
will continue to move along the manifold

However is stable because it will converge to the steady state while

diverges away from the steady state

∞

MS

MU

MS MU

79 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

∞

80 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

We want and to equal their steady state values at , but we can't quite

do that so we search for a so that has a path that is close to the

steady state

∞

k c t = ∞

c(0) (c(t), k(t))

80 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

We want and to equal their steady state values at , but we can't quite

do that so we search for a so that has a path that is close to the

steady state

Suppose we start with , if we guess too big we will cross the

isoquant and have a falling capital stock, but if we guess too small we will

get a path that crosses the isoquant and results in a falling consumption level

∞

k c t = ∞

c(0) (c(t), k(t))

k0 < k∗ c(0) k

c(0)

c

80 / 92

Example: Reverse shooting for horizon problems

This gives us our algorithm

1. Initialize: set and set , choose a stopping criterion

2. Set

3. Solve the IVP with initial conditions . Stop the IVP at

the first when or , denote this

4. If , STOP. If , set , else set . Go to step

2.

∞

cH = f(k0) cL = 0 ϵ > 0

c0 = (cL + cH)1
2

c(0) = c0, k(0) = k0

t ċ(t) < 0 k̇(t) < 0 T

|c(T) − c∗| < ϵ ċ(t) < 0 cL = c0 cH = c0

81 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

∞

82 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

Any small deviation from is magnified and results in a path that

increasingly gets far away from

∞

MS

MS

82 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

Any small deviation from is magnified and results in a path that

increasingly gets far away from

Unless we happen to pick a point precisely on the stable manifold we will

move away from it, so it is hard to search for the solution since changes in our

guesses will lead to wild changes in terminal values

∞

MS

MS

82 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

∞

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

If we wanted to compute a path that lies near the unstable manifold, we could

simply pick a point near the steady state as the initial condition and integrate

the system

∞

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

If we wanted to compute a path that lies near the unstable manifold, we could

simply pick a point near the steady state as the initial condition and integrate

the system

We don't actually want to solve for a path on but this gives us some insight

∞

MU

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

Gives same phase diagram but with the arrows flipped so the stable manifold

forward in time is now the unstable manifold reverse in time

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

Gives same phase diagram but with the arrows flipped so the stable manifold

forward in time is now the unstable manifold reverse in time

Paths tend to converge toward the stable manifold while going away from the

steady state

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Reverse shooting for horizon problems∞

85 / 92

Reverse shooting example

Let's code it up

f(k) = √k

r = .02

u(c) = log(c)

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

This is

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

k = 625, c = 25

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

This is

Pretend we only knew (from) and solve by searching over

terminal capital

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

k = 625, c = 25

f(k) = c K̇ = 0

86 / 92

Example: Lifecycle model

 df(t,k,c) = (

 -(sqrt(k) - c),

 -(-1 * (1/c) / (-1/c^2) * (0.5*k^(-0.5) - .02))

)

df (generic function with 2 methods)

87 / 92

Reverse shooting example

We need a 2 variable ODE solver next

88 / 92

Reverse shooting example

We need a 2 variable ODE solver next

function euler_ode(df, t0, k0, c0, h, n)

 t = zeros(n+1)

 k = zeros(n+1)

 c = zeros(n+1)

 t[1] = t0

 k[1] = k0

 c[1] = c0

for i in 1:n

 t[i+1] = t[i] + h

 k[i+1] = max(1e-6, k[i] + h * df(t[i], k[i], c[i])[1])

 c[i+1] = max(1e-6, c[i] + h * df(t[i], k[i], c[i])[2])

end

return t, k, c

end 88 / 92

Reverse shooting example

Last, wrap it in bisection method

function solve_bvp_rev(df, t0, k0, klow, khigh, h, n, tol = 1e-6)

 t = zeros(n+1)

 k = zeros(n+1)

 c = zeros(n+1)

while abs.(klow - khigh) > tol

 kguess = (klow + khigh)/2

 t, k, c = euler_ode(df, t0, kguess, sqrt(kguess), h, n)

 anew = k[end]

if anew < k0

 klow = kguess

else

 khigh = kguess

end

end

return t, k, c
89 / 92

Reverse shooting example

Now we have to find the initial bounds, one where , one where

 k0 = 10 # initial condition to hit

 t0 = 0. # time starts at 0

 klow = 100 # below closed-form solution of k = 625

 khigh = 1000 # above closed-form solution of k = 625

 aend = (.5 / .02)^2 # closed-form solution

 cend = sqrt(aend) # closed-form solution

 h = .1

 n = 10000 # make the horizon long to approx infinite-horizon

A(T) > 0

A(T) < 0

90 / 92

Reverse shooting example

 t, k, c = solve_bvp_rev(df, t0, k0, klow, khigh, h, n)

91 / 92

Reverse shooting example

 k0 = 800

 t, k, c = solve_bvp_rev(df, t0, k0, klow, khigh, h, n)

92 / 92

Lecture 8

Continuous time dynamic models

Ivan Rudik
AEM 7130

Roadmap

1. The theory behind continuous time models

2. Numerical methods for solving continuous time model

2 / 92

Model setup

Consider a problem where each period an agent obtains flow utility

, where is our state and is our controlJ(x(t), u(t)) x u

3 / 92

Model setup

Consider a problem where each period an agent obtains flow utility

, where is our state and is our control

Suppose there is a finite horizon with a terminal time

J(x(t), u(t)) x u

T

3 / 92

Model setup

The agent's objective is to maximize the total payoff, subject to the transitions

of the states

This is an open-loop solution so we optimize our entire policy trajectory from

time

We will not be solving for functions of states, but functions of time:

max
u,xT

∫
T

0

J(x(t),u(t)) dt

subject to: ẋ(t) = g(x(t),u(t)), x(0) = x0, x(T) = xT

t = 0

u(t),x(t)

4 / 92

Hamiltonians

In a dynamic optimization problem, we will have an auxiliary function that

yields the first-order conditions

5 / 92

Hamiltonians

In a dynamic optimization problem, we will have an auxiliary function that

yields the first-order conditions

This function is called the Hamiltonian:

It is a function that treats the transitions as quasi-constraints so it appears

similar to the Lagrangian you know

H(x(t), u(t), λ(t)) ≡ J(x(t), u(t)) + λ(t)g(x(t), u(t))

5 / 92

Hamiltonians

Pontryagin's Maximum Principle states that the following conditions are

necessary for an optimal solution:

What do these conditions mean?

= 0 ∀t ∈ [0, T]

= −λ̇(t)

= ẋ(t)

x(0) = x0

λ(T) = 0

(Maximality)

(Co-state)

(State transitions)

(Initial condition)

(Transversality)

∂H(x(t), u(t), λ(t))

∂u

∂H(x(t), u(t), λ(t))

∂x

∂H(x(t), u(t), λ(t))

∂λ

6 / 92

Necessary conditions

First, what is the Hamiltonian?

7 / 92

Necessary conditions

First, what is the Hamiltonian?

The Hamiltonian tells us the contribution of that instant to overall utility via

the change in flow utility and the change in the state (which affects future flow

utilities)

t

7 / 92

Necessary conditions

First, what is the Hamiltonian?

The Hamiltonian tells us the contribution of that instant to overall utility via

the change in flow utility and the change in the state (which affects future flow

utilities)

The decisionmaker can use her control to increase the contemporaneous flow

utility and reap immediate rewards, or to alter the state variable to increase

future rewards

t

H(x(t), u(t), λ(t)) ≡ J(x(t), u(t))


current flow

+ λ(t)g(x(t), u(t))

change in future value

7 / 92

Necessary conditions

The maximality condition: in every instant, we select the control so that we

can no longer increase our total payoff

= 0 ∀t ∈ [0, T]
∂H(x(t), u(t), λ(t))

∂u

8 / 92

Necessary conditions

The maximality condition: in every instant, we select the control so that we

can no longer increase our total payoff

It effectively sets the net marginal benefits of the control to zero

= 0 ∀t ∈ [0, T]
∂H(x(t), u(t), λ(t))

∂u

8 / 92

Necessary conditions

The state transition is just a definition

= ẋ(t)
∂H(x(t), u(t), λ(t))

∂λ

9 / 92

Necessary conditions

The state transition is just a definition

Taking the derivative of the Hamiltonian with respect to the shadow value,

just like a Lagrangian, yields this constraint back

= ẋ(t)
∂H(x(t), u(t), λ(t))

∂λ

9 / 92

Necessary conditions

The co-state condition defines how the shadow value of our state transition,

called the co-state variable, evolves over time

= −λ̇(t)
∂H(x(t), u(t), λ(t))

∂x

10 / 92

Necessary conditions

The co-state condition defines how the shadow value of our state transition,

called the co-state variable, evolves over time

What is the co-state?

= −λ̇(t)
∂H(x(t), u(t), λ(t))

∂x

10 / 92

Necessary conditions

What is the co-state?

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

x

(H)

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

Then the shadow value of that stock must decrease along an optimal

trajectory

x

(H)

(λ)

11 / 92

Necessary conditions

What is the co-state?

The additional future value of having one more unit of our state variable

Suppose we increase today's stock of by one unit and this increases the

instantaneous change in our value

Then the shadow value of that stock must decrease along an optimal

trajectory

Why?

x

(H)

(λ)

11 / 92

Necessary conditions

If it didn't, we could increase value by accumulating more of the stock variable

 there is a profitable deviation and what we were doing cannot be optimal

We can re-write the co-state equation as

→

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

12 / 92

Necessary conditions

We must have that the a unit of the stock's value must change (third term), so

that is exactly offsets the change in value from increasing the stock in the

immediate instant of time

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

13 / 92

Necessary conditions

We must have that the a unit of the stock's value must change (third term), so

that is exactly offsets the change in value from increasing the stock in the

immediate instant of time

The immediate value is made up of the actual utility payoff (first term), and the

future utility payoff payoff from how increasing the stock today affects the

stock in the future (second term)

+ λ(t) + λ̇(t) = 0
∂J

∂x

∂g

∂x

13 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

14 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

Many different paths are consistent with these differential equations,

depends on the constant of integration

14 / 92

Necessary conditions

These necessary conditions give us the shape of the optimal path but they do

not tell us what the optimal path actually is

Many different paths are consistent with these differential equations,

depends on the constant of integration

We need additional optimality conditions to use as constraints to impose the

optimal path

14 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

We need to pin down the co-state path

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

We have effectively two ODEs, one for and one for

We need two constraints

Constraint 1: Initial condition on the state

This directly pins down where the state path starts

We need to pin down the co-state path

We do this using transverality conditions

λ̇(t) ẋ(t)

15 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

The second two are for pinning down the initial and terminal state variables if

they're free

16 / 92

Pinning down the optimal path

In general there are four types of transversality conditions

The first two are for free initial or terminal time problems: these are problems

where the agent can select when the problem starts or ends

The second two are for pinning down the initial and terminal state variables if

they're free

Usually terminal conditions are free and initial conditions are not

16 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

17 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

Why?

17 / 92

Pinning down the optimal path example

If the terminal state is free, the transversality condition is that its shadow

value must be zero

Why?

If it were positive the policymaker could profitably deviate by altering the

level of the stock. Finally, these are all necessary conditions of the problem

17 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

→

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

→

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

→

J(x(t), u(t), t) = e
−rt

V (x(t), u(t))

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

→

J(x(t), u(t), t) = e
−rt

V (x(t), u(t))

J 0 t

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

 is the present value and is the current value

→

J(x(t), u(t), t) = e
−rt

V (x(t), u(t))

J 0 t

J V

18 / 92

Discounting

We discount the future using exponential discounting now time can

directly affect value

Assume that time does not directly affect instantaneous payoffs or the

transitions equations

Then our value is

 yields the present, time value of the change in value at time

 is the present value and is the current value

Present value refers to the value with respect to a specific period that we call

the present

→

J(x(t), u(t), t) = e
−rt

V (x(t), u(t))

J 0 t

J V

18 / 92

Current value terms

Our previous necessary conditions apply to present value Hamiltonians,

but let us analyze a current value Hamiltonian to avoid including time terms,

 is the shadow value brought into current value terms:

H cv(x(t), u(t), μ(t)) ≡ ertH(x(t), u(t), λ(t), t)

= ertJ(x(t), u(t), t) + ertλ(t)g(x(t), u(t))

μ(t) λ μ(t) = ertλ(t)

19 / 92

Current value terms

We can then re-write our necessary conditions in current value by

substituting in for:

the shadow value (which implies that)

 into our co-state condition:

λ̇(t) = −re−rtμ(t) + e−rtμ̇(t)

∂H/∂x = e−rt ∂H cv/∂x

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t), u(t), μ(t))

∂x

20 / 92

Current value

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t), u(t), μ(t))

∂x

21 / 92

Current value

Before, the present value form of the co-state condition required the change

in the present shadow value precisely equal the effect of the state variable on

instantaneous value

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t), u(t), μ(t))

∂x

21 / 92

Current value

In current value form, the co-state condition recognizes that the change in the

present shadow value is comprised of two parts:

1. The change in the current shadow value

2. The reduction in present value purely from the passage of time

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t), u(t), μ(t))

∂x

22 / 92

Current value

In current value form, the co-state condition recognizes that the change in the

present shadow value is comprised of two parts:

1. The change in the current shadow value

2. The reduction in present value purely from the passage of time

If discounting is high (large), then the current shadow value must change

quicker in order to compensate the policymaker for leaving stock for the

future

e−rt = e−rt [rμ(t) − μ̇(t)]
∂H cv(x(t), u(t), μ(t))

∂x

r

22 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

dy/dt = f(y, t)

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

dy/dt = f(y, t)

f : Rn+1 → R
n

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

The unknown is the function

dy/dt = f(y, t)

f : Rn+1 → R
n

y(t) : [t0,T] → R
n

23 / 92

Numerical methods for continuous time models

Continuous time models are systems of ODEs

A first-order ordinary differential equation has the form

Where

The unknown is the function

 determines the number of differential equations that we have

dy/dt = f(y, t)

f : Rn+1 → R
n

y(t) : [t0,T] → R
n

n

23 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

y(t) y(t)

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

If we pin down or we have an initial value problem

y(t) y(t)

y(t0) = y0 y(T) = yT

24 / 92

Numerical methods for continuous time models

The differential equation will give us the shape of the path that is the solution,

but not where that path lies in our state space

We need additional conditions to pin down , how we pin down is what

defines the different types of problems we have

If we pin down or we have an initial value problem

IVPs are defined by the function being pinned down at one end or the other

y(t) y(t)

y(t0) = y0 y(T) = yT

24 / 92

Numerical methods for continuous time models

In one dimension we must pin down the function with either an initial or

terminal condition so they are all IVPs by default

25 / 92

Numerical methods for continuous time models

In one dimension we must pin down the function with either an initial or

terminal condition so they are all IVPs by default

If then we can have a boundary value problem where we impose

conditions on

where

n > 1 n

y

gi(y(t0)) = 0, i = 1, . . . , . n′,

gi(y(T)) = 0, i = n′ + 1, . . . , n

g : Rn → R
n

25 / 92

Numerical methods for continuous time models

In general we have that

for some set of points , ,

gi(y(ti)) = 0

ti t0 ≤ ti ≤ T 1 ≤ i ≤ n

26 / 92

Numerical methods for continuous time models

In general we have that

for some set of points , ,

Often we set so we will need some condition in the limit:

gi(y(ti)) = 0

ti t0 ≤ ti ≤ T 1 ≤ i ≤ n

T = ∞ limt→∞ y(t)

26 / 92

Numerical methods for continuous time models

Note two more things:

1. We are implicitly assuming that these conditions are independent,

otherwise we will not have a unique solution

2. IVPs and BVP are fundamentally different: IVPs are problems where the

auxiliary conditions that pin down the solution are all at one point, in BVPs

they can be at different points, this has significant implications for how we

can solve the problems

n

27 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

28 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

Define and then we can study the alternative system

of two first-order ODEs

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

z = dy/dx

dy/dx = z dz/dx = g(z, y,x)

28 / 92

Numerical methods for continuous time models

If we have higher-order ODEs we can use a simple change of variables

for

Define and then we can study the alternative system

of two first-order ODEs

In general you can always transform a th-order ODE into first-order ODEs

d2y/dx2 = g(dy/dx, y,x)

x, y ∈ R

z = dy/dx

dy/dx = z dz/dx = g(z, y,x)

n n

28 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

y′ = f(t, y), y(t0) = y0

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

Assume the grid is uniformly spaced: where is

the mesh size

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

ti = t0 + ih, i = 0, 1, . . . , N h

29 / 92

Finite difference methods for IVPs

We solve IVPs using finite-difference methods

Consider the following IVP

A finite-difference method solves this IVP by first specifying a grid/mesh over

:

Assume the grid is uniformly spaced: where is

the mesh size

Our goal is to find for each , a value that closely approximates

y′ = f(t, y), y(t0) = y0

t t0 < t1 <. . . < ti <. . .

ti = t0 + ih, i = 0, 1, . . . , N h

ti Yi y(ti)
29 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have Yi+1 = F(Yi, Yi−1, . . . , ti+1, ti, . . .)

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have

We then solve the difference equation for the 's in sequence where the

initial is fixed by the initial condition

Yi+1 = F(Yi, Yi−1, . . . , ti+1, ti, . . .)

Y

Y0 Y0 = y0

30 / 92

Finite difference methods for IVPs

To do this, we replace our differential equation with a difference system on

the grid

For example we might have

We then solve the difference equation for the 's in sequence where the

initial is fixed by the initial condition

This approximates the solution only at the grid points, but then we can

interpolate using standard procedures to get the approximate solution off the

grid points

Yi+1 = F(Yi, Yi−1, . . . , ti+1, ti, . . .)

Y

Y0 Y0 = y0

30 / 92

Euler's method

The workhorse finite-difference method is Euler's method

31 / 92

Euler's method

The workhorse finite-difference method is Euler's method

Euler's method is the difference equation

where is given by the initial condition

Yi+1 = Yi + hf(ti,Yi)

Y0

31 / 92

Euler's method

Suppose the current iterate is and is the true solutionP = (ti, Yi) y(t)

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

P = (ti, Yi) y(t)

P y′(ti) →PQ

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

Euler's method follows that direction until at

P = (ti, Yi) y(t)

P y′(ti) →PQ

t = ti+1 Q

32 / 92

Euler's method

Suppose the current iterate is and is the true solution

At , is the tangent vector

Euler's method follows that direction until at

The Euler estimate of is then

P = (ti, Yi) y(t)

P y′(ti) →PQ

t = ti+1 Q

y(ti+1) Y E
i+1 32 / 92

Euler's method

This sounds very similar to Newton's method, because it is

33 / 92

Euler's method

This sounds very similar to Newton's method, because it is

Euler's method can be motivated by a similar Taylor approximation argument

33 / 92

Euler's method

This sounds very similar to Newton's method, because it is

Euler's method can be motivated by a similar Taylor approximation argument

If is the true solution, the second order Taylor expansion around is

for some

y(t) ti

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

ξ ∈ [ti, ti+1]

33 / 92

Euler's method

If we drop the second order term and assume and

we have exactly Euler's formula

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

f(ti, Yi) = y′(ti) Yi = y(ti)

34 / 92

Euler's method

If we drop the second order term and assume and

we have exactly Euler's formula

For small , should be a close approximation to the solution of the

truncated Taylor expansion,so should be a good approximation to

y(ti+1) = y(ti) + hy′(ti) + y′′(ξ)
h2

2

f(ti, Yi) = y′(ti) Yi = y(ti)

h y(x)

Yi y(ti)

34 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

y(t) f(ti, Yi)

[ti, ti+1]

35 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

We can motivate Euler's method with an integration argument instead of a

Taylor expansion argument

y(t) f(ti, Yi)

[ti, ti+1]

35 / 92

Euler's method

This approach approximated with a linear function with slope on

the interval

We can motivate Euler's method with an integration argument instead of a

Taylor expansion argument

The fundamental theorem of calculus tells us that

y(t) f(ti,Yi)

[ti, ti+1]

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

35 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

As decreases, we would expect the solutions to become more accurate

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

h

36 / 92

Euler's method

If we approximate the integral with , a box of width and height

, then which implies the Euler method

difference equation above if

Thus this also approximate with a linear function over each subinterval

with slope

As decreases, we would expect the solutions to become more accurate

As , we are back in the ODE world

y(ti+1) = y(ti) + ∫
ti+1

ti

f(s, y(s))ds

hf(ti, y(ti)) h

f(ti, y(ti)) y(ti+1) = y(ti) + hf(ti, y(ti))

Yi = y(ti)

y(t)

f(ti,Yi)

h

h → 0
36 / 92

Euler's method errors

Consider a system, y′(t) = y(t), y(0) = 1

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

y′(t) = y(t), y(0) = 1

y(t) = et

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

The Euler method gives us a difference equation of

y′(t) = y(t), y(0) = 1

y(t) = et

Yi+1 = Yi + hYi = (1 + h)Yi

37 / 92

Euler's method errors

Consider a system,

The solution to this is simply

The Euler method gives us a difference equation of

This difference equation has solution and implies the

approximation is

y′(t) = y(t), y(0) = 1

y(t) = et

Yi+1 = Yi + hYi = (1 + h)Yi

Yi = (1 + h)i

Y (t) = (1 + h)t/h

37 / 92

Euler's method errors

Thus the relative error between the two is

where excluded terms have order higher than

log(|Y (t)/y(t)|) = log(1 + h) − t = (h − h2+. . .) − t = −th+. . .
t

h

t

h

h

38 / 92

Euler's method errors

Thus the relative error between the two is

where excluded terms have order higher than

Thus the relative error in the Euler approximation has order and as goes to

zero so does the approximation error

log(|Y (t)/y(t)|) = log(1 + h) − t = (h − h2+. . .) − t = −th+. . .
t

h

t

h

h

h h

38 / 92

Euler's method errors

In general we can show that Euler's method has linear convergence

Suppose the solution to is on , that is ,

and that and are bounded for all and . Then the error of the

Euler scheme with step size is

y′(t) = f(t, y(t)), y(t0) = y0 C 3 [t0, T] f C 2

fy fyy y t0 ≤ t ≤ T

h O(h)

39 / 92

Euler's method code

40 / 92

Euler's method code

function euler_ode(df, t0, y0, h, n)

 t = zeros(n+1)

 y = zeros(n+1)

set the initial values

 t[1] = t0

 y[1] = y0

use Euler's method to approximate the solution at each step

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = y[i] + h * df(t[i], y[i])

end

return (t, y)

end

euler_ode (generic function with 2 methods)

40 / 92

Euler's method code

dy/dt = y -> y = C_0*exp(t)

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 10)

Define and send it to the euler_ode functiondf/dt

41 / 92

Euler's method code

42 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

43 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

This yields the implicit Euler method

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

Yi+1 = Yi + hf(ti+1, Yi+1)

43 / 92

Implicit Euler method

We expanded around , but we could always expand around so that we

have

This yields the implicit Euler method

Notice that now is only implicitly defined in terms of and so we will

need to solve a non-linear equation in

y ti ti+1

y(ti) = y(ti+1) − hy′(ti+1) = y(ti+1) − hf(ti+1, y(ti+1))

Yi+1 = Yi + hf(ti+1, Yi+1)

Yi+1 ti Yi

Yi+1

43 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

Yi+1 i

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Yi+1 i

Yi+1 Yi ti+1 f ti+1

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Thus the implicit Euler method will get us better approximation properties,

often times much better

Yi+1 i

Yi+1 Yi ti+1 f ti+1

44 / 92

Implicit Euler method

This seems not great, before we simply computed from values known at

but now we have to perform a rootfinding problem

However, does not simply depend on only and but also at

Thus the implicit Euler method will get us better approximation properties,

often times much better

Because of this we can typically use larger 's with the implicit Euler method

Yi+1 i

Yi+1 Yi ti+1 f ti+1

h

44 / 92

Implicit Euler's method code

rootfinding portion of implicit Euler

function find_euler_root(df, y, t, h, y0, tol)

 y_new = y0

 y_old = y0

 error = Inf

while error > tol

 y_new = y + h * df(t, y_new)

 error = abs((y_new - y_old)/y_old)

 y_old = deepcopy(y_new)

end

return y_new

end

find_euler_root (generic function with 1 method)

45 / 92

Implicit Euler's method code

function euler_implicit_ode(df, t0, y0, h, n, tol = 1e-6)

 t = zeros(n+1)

 y = zeros(n+1)

 t[1] = t0

 y[1] = y0

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = find_euler_root(df, y[i], t[i+1], h, y[i], tol)

end

return (t, y)

end

euler_implicit_ode (generic function with 2 methods)

46 / 92

Implicit Euler's method code

 df(t, y) = y

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 10, 1e-6)

Define and send it to the euler_implicit_ode functiondf/dt

47 / 92

Implicit Euler's method code

48 / 92

Comparison

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 10)

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 10, 1e-6)

 y_real = exp.(t1)

49 / 92

Comparison

50 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts f

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

For example if is concave we will overshoot the true value

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

y

51 / 92

Runge-Kutta methods

Runge-Kutta methods take Euler methods but adapts

In the standard Euler approach we implicitly assume that the slope at

 is the same as the slope at which is a bad assumption

unless is linear

For example if is concave we will overshoot the true value

We could instead use the slope at but this will give the same

problem but in the opposite direction, we will undershoot

f

(ti+1,Y E
i+1) (ti,Y E

i)

y

y

(ti+1,Y E
i+1)

51 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

Yi+1 = Yi + [f(ti, Yi) + f(ti+1, Yi+1)]
h

2

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

Yi+1 = Yi + [f(ti, Yi) + f(ti+1, Yi+1)]
h

2

h

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

This has the same flavor as forward vs central finite differences

Yi+1 = Yi + [f(ti, Yi) + f(ti+1, Yi+1)]
h

2

h

52 / 92

Runge-Kutta methods

Runge-Kutta methods recognizes these two facts

A first-order Runge-Kutta method will take the average of these two slopes to

arrive at the formula

This converges quadratically to the true solution in , but now uses two

evaluations per step

This has the same flavor as forward vs central finite differences

There are higher order Runge-Kutta rules that have even more desirable

Yi+1 = Yi + [f(ti, Yi) + f(ti+1, Yi+1)]
h

2

h

52 / 92

Runge-Kutta code

function find_euler_root_rk(df, y, t, tp, h, y0, tol)

 y_new = y0

 y_old = y0

 error = Inf

while error > tol

 y_new = y + h/2 * (df(t, y) + df(tp, y_new))

 error = abs((y_new - y_old)/y_old)

 y_old = deepcopy(y_new)

end

return y_new

end

find_euler_root_rk (generic function with 1 method)

53 / 92

Runge-Kutta code

function euler_rk_ode(df, t0, y0, h, n, tol = 1e-6)

 t = zeros(n+1)

 y = zeros(n+1)

 t[1] = t0

 y[1] = y0

for i in 1:n

 t[i+1] = t[i] + h

 y[i+1] = find_euler_root_rk(df, y[i], t[i], t[i+1], h, y0, tol)

end

return (t, y)

end

euler_rk_ode (generic function with 2 methods)

54 / 92

Comparison

 df(t, y) = y

 t1, y1 = euler_ode(df, 0., 1., .1, 100)

 t2, y2 = euler_implicit_ode(df, 0., 1., .1, 100, 1e-7)

 t2, y3 = euler_rk_ode(df, 0., 1., .1, 100, 1e-7)

 y_real = exp.(t1)

Check the time/memory with @btime in BenchmarkTools

55 / 92

Comparison: RK has minimal error

56 / 92

Comparison: RK has minimal error

57 / 92

Boundary Value Problems

IVPs are easy to solve because the solution depends only on local conditions

so we can use local solution algorithms which are convenient

58 / 92

Boundary Value Problems

IVPs are easy to solve because the solution depends only on local conditions

so we can use local solution algorithms which are convenient

BVPs have auxiliary conditions that are imposed at different points in time so

we lose the local nature of the problem and our solutions must now be global

in nature

58 / 92

Boundary Value Problems

Consider the following BVP

where

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

59 / 92

Boundary Value Problems

Consider the following BVP

where

We cannot use standard IVP approaches because at or we only know the

value of either or but not both

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

t0 T

x y

59 / 92

Boundary Value Problems

Consider the following BVP

where

We cannot use standard IVP approaches because at or we only know the

value of either or but not both

Thus we cannot find the next value of both of them using only local

information: we need alternative approaches

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(T) = yT

x ∈ R
n, y ∈ R

m

t0 T

x y

59 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

y(t0)

y(T)

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

y(t0)

y(T)

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

But we do get some information from where we end up at and can use

that information to update our guesses for until we are sufficiently close

to

y(t0)

y(T)

y(T)

y(t0)

yT

60 / 92

Boundary Value Problems: Shooting

The core method for solving BVPs is called shooting

The idea behind shooting is that we guess the value of , and use an IVP

method to see what that means about

For any given guess, we generally won't hit the terminal condition exactly and

might not even be that close

But we do get some information from where we end up at and can use

that information to update our guesses for until we are sufficiently close

to

There are two components to a shooting method

y(t0)

y(T)

y(T)

y(t0)

yT

60 / 92

Shooting

First we guess some and then solve the IVP problem with methods

we've already used

to find some which we call since it depends on our initial guess

y(0) = y0

ẋ = f(x, y, t)

ẏ = g(x, y, t)

x(t0) = x0, y(0) = y0

y(T) Y (T , y0)

y0

61 / 92

Shooting

Second we need to find the right y0

62 / 92

Shooting

Second we need to find the right

We want to find a such that

y0

y0 yT = Y (T , y0)

62 / 92

Shooting

Second we need to find the right

We want to find a such that

This is a nonlinear equation in so we need to solve nonlinear equations

y0

y0 yT = Y (T , y0)

y0

62 / 92

Shooting

Second we need to find the right

We want to find a such that

This is a nonlinear equation in so we need to solve nonlinear equations

We can write the algorithm as

1. Initialize: Guess . Choose a stopping criterion

2. Solve the IVP for given the initial condition

3. If , STOP. Else choose based on the previous values of

 and go back to step 1

y0

y0 yT = Y (T , y0)

y0

yi
0 ϵ > 0

x(T), y(T) y0 = yi
0

||y(T) − yT || < ϵ yi+1
0

y

62 / 92

Shooting

This is an example of a two layer algorithm

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any Y (T , y0) y0

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

Y (T , y0) y0

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

In the outer layer (step 2) we solve the nonlinear equation

Y (T , y0) y0

Y (T , y0) = yT

63 / 92

Shooting

This is an example of a two layer algorithm

The inner layer (step 1) uses an IVP method that solves for any

This can be Euler, Runge-Kutta or anything else

In the outer layer (step 2) we solve the nonlinear equation

We can use any nonlinear solver here, typically we do this by defining a

subroutine that computes as a function of and then sends

that subroutine to a rootfinding program

Y (T , y0) y0

Y (T , y0) = yT

Y (T , y0) − yT y0

63 / 92

Example: Lifecycle model

A simple lifecycle model is given by

 is utility from consumption, is the wage rate, are assets and

 is the return on invested assets

max
c(t)

∫
T

0

e−rtu(c(t))dt

s. t. Ȧ(t) = f(A(t)) + w(t) − c(t)

A(0) = A(T) = 0.

u(c(t)) w(t) A(t)

f(A(t))

64 / 92

Example: Lifecycle model

A simple lifecycle model is given by

 is utility from consumption, is the wage rate, are assets and

 is the return on invested assets

We assume that assets are initially and terminally zero where the latter would

come about naturally from a transversality condition

max
c(t)

∫
T

0

e−rtu(c(t))dt

s. t. Ȧ(t) = f(A(t)) + w(t) − c(t)

A(0) = A(T) = 0.

u(c(t)) w(t) A(t)

f(A(t))

64 / 92

Example: Lifecycle model

The Hamiltonian is

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

65 / 92

Example: Lifecycle model

The Hamiltonian is

and the co-state condition is given by

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

λ̇(t) = rλ(t) − λ(t)f ′(A(t))

65 / 92

Example: Lifecycle model

The Hamiltonian is

and the co-state condition is given by

The maximum principle implies that

H = u(c(t)) + λ(t) [f(A(t)) + w(t) − c(t)]

λ̇(t) = rλ(t) − λ(t)f ′(A(t))

u′(c(t)) = λ(t)

65 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

A

A

66 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

The issue here is that we never know and at either or

A

A

A λ t = 0 t = T

66 / 92

Example: Lifecycle model

This gives us a two equation system of differential equations (1 for the

transition, 1 for the costate condition) and the boundary conditions on are

what pin down the problem

The issue here is that we never know and at either or

We can use the maximum principle to convert the costate condition into a

condition on consumption

A

A

A λ t = 0 t = T

ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

66 / 92

Example: Lifecycle model

The Figure shows the phase diagram assuming that for all

If when we guess , but when we guess ,

we know the correct guess lies in between and we can solve for it using the

f ′(A) > r A

A(T) < 0 c(0) = cH A(T) > 0 c(0) = cL

67 / 92

Example: Lifecycle model

Let's code it up

Ȧ(t) = f(A(t)) + w(t) − c(t) ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

f(A(t)) = 1.05A(t)

u(c(t)) = log(c(t))

w(t) = 5

r = .02

68 / 92

Example: Lifecycle model

Let's code it up

 df(t,a,c) = (1.05*a + 5 - c, -1 * (1/c) / (-1/c^2) * (1.05 - .02))

df (generic function with 2 methods)

Ȧ(t) = f(A(t)) + w(t) − c(t) ċ(t) = − [f ′(A(t)) − r]
u′(c(t))

u′′(c(t))

f(A(t)) = 1.05A(t)

u(c(t)) = log(c(t))

w(t) = 5

r = .02

68 / 92

Example: Lifecycle model

We need a 2 variable ODE solver next

69 / 92

Example: Lifecycle model

We need a 2 variable ODE solver next

function euler_ode(df, t0, a0, c0, h, n)

 t = zeros(n+1)

 a = zeros(n+1)

 c = zeros(n+1)

 t[1] = t0

 a[1] = a0

 c[1] = c0

for i in 1:n

 t[i+1] = t[i] + h

 a[i+1] = a[i] + h * df(t[i], a[i], c[i])[1]

 c[i+1] = c[i] + h * df(t[i], a[i], c[i])[2]

end

return t, a, c

end 69 / 92

Example: Lifecycle model

Last, wrap it in bisection method

function solve_bvp(df, t0, a0, aend, c0low, c0high, h, n, tol = 1e-6)

 t = zeros(n+1)

 a = zeros(n+1)

 c = zeros(n+1)

while abs.(c0low - c0high) > tol

 c0guess = (c0low + c0high)/2

 t, a, c = euler_ode(df, t0, a0, c0guess, h, n)

 anew = a[end]

if sign(anew) > 0

 c0low = c0guess

else

 c0high = c0guess

end

end 70 / 92

Example: Lifecycle model

Now we have to find the initial bounds, one where , one where

 aend = 0.

 a0 = 0.

 t0 = 0.

 h = .01

 n = 100

 c0low = 1 # low c0 guess

 c0high = 10 # high c0 guess

A(T) > 0

A(T) < 0

71 / 92

Example: Lifecycle model

 a0high = euler_ode(df, t0, a0, c0high, h, n)[2][end]

-19.07974813179398

 a0low = euler_ode(df, t0, a0, c0low, h, n)[2][end]

5.986527176940143

As expected, too high consumption yields negative assets , too low

consumption yields positive assets

The that solves the problem will fall somewhere in between

C(0) A(T)

C(0) A(T)

C(0)

72 / 92

Example: Lifecycle model

 t, a, c = solve_bvp(df, t0, a0, aend, c0low, c0high, h, n)

73 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

∞

max
u(t)

∫
∞

0

e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

74 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

We still have as before, but we no longer have the terminal

condition

∞

max
u(t)

∫
∞

0

e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

x(0) = x0

74 / 92

Reverse shooting for horizon problems

The standard infinite horizon optimal control problem is

We still have as before, but we no longer have the terminal

condition

We replace it with a transversality condition that

∞

max
u(t)

∫
∞

0

e−rtπ(x(t),u(t))dt

s. t. ẋ(t) = f(x(t),u(t))

x(0) = x0.

x(0) = x0

limt→∞ e−rt|λ(t)Tx(t)| ≤ ∞

74 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

But this implies something very convenient: that the initial state

corresponding to any terminal state is not very sensitive to the value of the

terminal state

∞

x(T)

λ(0) T

75 / 92

Reverse shooting for horizon problems

Shooting methods do not really work for infinite horizon problems since we

need to integrate the problem over a very long time horizon and so will

be particularly sensitive to when is large

The primary issue is that the terminal state, because of the long time horizon,

is very sensitive to the initial guess

But this implies something very convenient: that the initial state

corresponding to any terminal state is not very sensitive to the value of the

terminal state

We will guess the terminal condition and integrate backward

∞

x(T)

λ(0) T

75 / 92

Example: Reverse shooting for horizon problems

Consider the simplest growth model

where is consumption, is the capital stock, and is production

∞

max
c(t)

∫
∞

0

e−rtu(c(t))dt

k̇(t) = f(k(t)) − c(t)

s. t. k(0) = k0,

c k f

76 / 92

Example: Reverse shooting for horizon problems

We can use Pontryagin's necessary conditions to get that consumption and

capital are governed by the following differential equations

with boundary conditions,

∞

ċ(t) = − (f ′(k) − r)

k̇(t) = f(k(t)) − c(t),

u′(c(t))

u′′(c(t))

k(0) = k0, 0 < lim
t→∞

|k(t)| ≤ ∞

77 / 92

Example: Reverse shooting for horizon problems

Assume and are concave, the Figure shows the phase diagram for the

problem

Steady state when and

∞

u f

f ′(k∗) = r c∗ = f(k∗) 78 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

∞

MS

MU

79 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

Both are invariant manifolds because any system that starts on either of these

manifolds
will continue to move along the manifold

∞

MS

MU

79 / 92

Example: Reverse shooting for horizon problems

For this problem there exists a stable manifold and an unstable manifold

so that the steady state is saddle point stable

Both are invariant manifolds because any system that starts on either of these

manifolds
will continue to move along the manifold

However is stable because it will converge to the steady state while

diverges away from the steady state

∞

MS

MU

MS MU

79 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

∞

80 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

We want and to equal their steady state values at , but we can't quite

do that so we search for a so that has a path that is close to the

steady state

∞

k c t = ∞

c(0) (c(t), k(t))

80 / 92

Example: Reverse shooting for horizon problems

Lets first use standard shooting to try to compute the stable manifold

We want and to equal their steady state values at , but we can't quite

do that so we search for a so that has a path that is close to the

steady state

Suppose we start with , if we guess too big we will cross the

isoquant and have a falling capital stock, but if we guess too small we will

get a path that crosses the isoquant and results in a falling consumption level

∞

k c t = ∞

c(0) (c(t), k(t))

k0 < k
∗

c(0) k

c(0)

c

80 / 92

Example: Reverse shooting for horizon problems

This gives us our algorithm

1. Initialize: set and set , choose a stopping criterion

2. Set

3. Solve the IVP with initial conditions . Stop the IVP at

the first when or , denote this

4. If , STOP. If , set , else set . Go to step

2.

∞

cH = f(k0) cL = 0 ϵ > 0

c0 = (cL + cH)1
2

c(0) = c0, k(0) = k0

t ċ(t) < 0 k̇(t) < 0 T

|c(T) − c∗| < ϵ ċ(t) < 0 cL = c0 cH = c0

81 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

∞

82 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

Any small deviation from is magnified and results in a path that

increasingly gets far away from

∞

MS

MS

82 / 92

Example: Reverse shooting for horizon problems

This algorithm makes sense but the phase diagram shows why it will have

trouble finding the stable manifold

Any small deviation from is magnified and results in a path that

increasingly gets far away from

Unless we happen to pick a point precisely on the stable manifold we will

move away from it, so it is hard to search for the solution since changes in our

guesses will lead to wild changes in terminal values

∞

MS

MS

82 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

∞

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

If we wanted to compute a path that lies near the unstable manifold, we could

simply pick a point near the steady state as the initial condition and integrate

the system

∞

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

Now suppose we wanted to find a path on ,
notice that the flow pushes

points toward so the deviations are smushed together

If we wanted to compute a path that lies near the unstable manifold, we could

simply pick a point near the steady state as the initial condition and integrate

the system

We don't actually want to solve for a path on but this gives us some insight

∞

MU

MU

MU

83 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

Gives same phase diagram but with the arrows flipped so the stable manifold

forward in time is now the unstable manifold reverse in time

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Example: Reverse shooting for horizon problems

We want to change the system so that the stable manifold becomes the

unstable manifold by reversing time:

Gives same phase diagram but with the arrows flipped so the stable manifold

forward in time is now the unstable manifold reverse in time

Paths tend to converge toward the stable manifold while going away from the

steady state

∞

ċ(t) = (f ′(k) − r)

k̇(t) = −(f(k(t)) − c(t))

u′(c(t))

u′′(c(t))

84 / 92

Reverse shooting for horizon problems∞

85 / 92

Reverse shooting example

Let's code it up

f(k) = √k

r = .02

u(c) = log(c)

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

This is

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

k = 625, c = 25

86 / 92

Reverse shooting example

Let's code it up

We know the steady state is where and

This is

Pretend we only knew (from) and solve by searching over

terminal capital

f(k) = √k

r = .02

u(c) = log(c)

f ′(k) = r f(k) = c

k = 625, c = 25

f(k) = c K̇ = 0

86 / 92

Example: Lifecycle model

 df(t,k,c) = (

 -(sqrt(k) - c),

 -(-1 * (1/c) / (-1/c^2) * (0.5*k^(-0.5) - .02))

)

df (generic function with 2 methods)

87 / 92

Reverse shooting example

We need a 2 variable ODE solver next

88 / 92

Reverse shooting example

We need a 2 variable ODE solver next

function euler_ode(df, t0, k0, c0, h, n)

 t = zeros(n+1)

 k = zeros(n+1)

 c = zeros(n+1)

 t[1] = t0

 k[1] = k0

 c[1] = c0

for i in 1:n

 t[i+1] = t[i] + h

 k[i+1] = max(1e-6, k[i] + h * df(t[i], k[i], c[i])[1])

 c[i+1] = max(1e-6, c[i] + h * df(t[i], k[i], c[i])[2])

end

return t, k, c

end 88 / 92

Reverse shooting example

Last, wrap it in bisection method

function solve_bvp_rev(df, t0, k0, klow, khigh, h, n, tol = 1e-6)

 t = zeros(n+1)

 k = zeros(n+1)

 c = zeros(n+1)

while abs.(klow - khigh) > tol

 kguess = (klow + khigh)/2

 t, k, c = euler_ode(df, t0, kguess, sqrt(kguess), h, n)

 anew = k[end]

if anew < k0

 klow = kguess

else

 khigh = kguess

end

end

return t, k, c
89 / 92

Reverse shooting example

Now we have to find the initial bounds, one where , one where

 k0 = 10 # initial condition to hit

 t0 = 0. # time starts at 0

 klow = 100 # below closed-form solution of k = 625

 khigh = 1000 # above closed-form solution of k = 625

 aend = (.5 / .02)^2 # closed-form solution

 cend = sqrt(aend) # closed-form solution

 h = .1

 n = 10000 # make the horizon long to approx infinite-horizon

A(T) > 0

A(T) < 0

90 / 92

Reverse shooting example

 t, k, c = solve_bvp_rev(df, t0, k0, klow, khigh, h, n)

91 / 92

Reverse shooting example

 k0 = 800

 t, k, c = solve_bvp_rev(df, t0, k0, klow, khigh, h, n)

92 / 92

