
Roadmap

1. Projection theory

2. Spectral and finite element methods
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Projection theory

Projection methods

We often need to approximate functions in economics, a common way to do

this is via projection

Main idea: build some function  indexed by coefficients that approximates
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Projection methods

We often need to approximate functions in economics, a common way to do

this is via projection

Main idea: build some function  indexed by coefficients that approximates

the function we are interested in

What do I mean by approximately?

The coefficients of  are selected to minimize some residual function that

tells us how far away our approximation is to the true function on some set of

points

V̂

V̂
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Projection methods

How do we do this?
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Projection methods

How do we do this?

First we specify our approximating function: some linear combination of basis

functions 

with coefficients 

Ψi(S)

V j(S|c) =
j

∑
i=0

ciΨi(S)

c0, . . . , cj
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Projection methods

We then choose some residual function  which is a function of :

and select the coefficient values to minimize the residual, given some measure

of distance

R V j

R(S|c) = H(V j(S|c))
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Projection methods

We then choose some residual function  which is a function of :

and select the coefficient values to minimize the residual, given some measure

of distance

This step of selecting the coefficients is called projecting  against our basis

What basis do we select?

How do we project (select the coefficients / residual function)?

R V j

R(S|c) = H(V j(S|c))

H
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Projection methods

Let's work a simple example to get intuition
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Ordinary least squares linear regression
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Projection methods

Let's work a simple example to get intuition

Ordinary least squares linear regression

We can think of the problem as searching for some unknown conditional

expectation , given outcome variable  and regressors E[Y |X] Y X
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Projection methods

We don't know the true functional form of , but we can approximate it

using the first two monomials on :  and 

E[Y |X]

X 1 X

E[Y |X] ≈ c0 + c1X
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Projection methods

We don't know the true functional form of , but we can approximate it

using the first two monomials on :  and 

These are the first two elements of the monomial basis

One residual function is then: , the

absolute error

For OLS we would then square this

OLS is within the class of projection methods

E[Y |X]

X 1 X

E[Y |X] ≈ c0 + c1X

R(Y ,X|c0, c1) = abs(Y − c0 − c1X)
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Projection classes are defined by metrics

Projection methods are separated into several broad classes by the type of

residual we're trying to shrink to zero
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Projection classes are defined by metrics

Projection methods are separated into several broad classes by the type of

residual we're trying to shrink to zero

We need to select some metric function , that determines how we project

 tells us how close our residual function is to zero over the domain of our

state space

ρ

ρ
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Example residuals given different projections

Example: The figure shows two different residuals on some capital domain of 

The residual based on the coefficient

vector  is large for small values of capital

but near-zero everywhere else

[0, k̄]

c1
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Example residuals given different projections

Example: The figure shows two different residuals on some capital domain of 

The residual based on the coefficient

vector  is large for small values of capital

but near-zero everywhere else

The residual based on  has medium

values just about everywhere

Which is closer to zero over the interval? It

will depend on our selection of 

[0, k̄]

c1

c2

ρ
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We want to use weighted residuals

We move from the plain residual to  because we want to set a weighted

residual equal to zero

ρ
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ρ
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Suppose we have some weight functions  that map from our state

space to the real line

The one-dimensional metric is defined as

ρ

ϕi : Ω → R

ρ(R ⋅ |c, 0) = {
0 if  ∫Ω ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1

1 otherwise
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We want to use weighted residuals

We move from the plain residual to  because we want to set a weighted

residual equal to zero

Suppose we have some weight functions  that map from our state

space to the real line

The one-dimensional metric is defined as

Where we want to solve for 

ρ

ϕi : Ω → R

ρ(R ⋅ |c, 0) = {
0 if  ∫Ω ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1

1 otherwise

c = argmin ρ(R(⋅|c), 0)
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We want to use weighted residuals

We can then change our problem to simply solving a system of integrals

ensuring the metric is zero

∫
Ω

ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1.
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We want to use weighted residuals

We can then change our problem to simply solving a system of integrals

ensuring the metric is zero

We can solve this using standard rootfinding techniques

Big remaining question: how do we choose our  weight functions?

First lets begin with a simple example before moving into the most commonly

used weight functions

∫
Ω

ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1.

j + 1
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Least squares projection

Suppose we selected the weight function to be

ϕi(S) =
∂R(S|c)

∂ci−1
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Least squares projection

Suppose we selected the weight function to be

Then we would be performing least squares! Why?

ϕi(S) =
∂R(S|c)

∂ci−1
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Least squares projection

Recall the objective of least squares is

min
c
∫ R2(⋅|c)dS
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Least squares projection

Recall the objective of least squares is

The FOC for a minimum is

So the first order condition sets the weighted average residual to zero


where the weights are determined by the partial derivatives of the residual

OLS minimizes residuals weighted by how they change in the coefficients

min
c
∫ R2(⋅|c)dS

∫ R(⋅|c)dS = 0, i = 1, . . . , j + 1
∂R(S|c)

∂ci−1
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Collocation

The simplest weight function gives us a methodology called collocation
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Collocation

The simplest weight function gives us a methodology called collocation

Here our weight function is

Where  is the Dirac delta function and  are j+1 points or nodes selected by

the researcher, called collocation points/nodes

The Dirac delta function is zero at all  except at 

What does this weight function mean?

ϕi(S) = δ(S − Si)

δ Si

S S = Si
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Collocation

Before we even select our coefficients, this means that the residual can only

be non-zero at a finite set of points Si
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Collocation

Before we even select our coefficients, this means that the residual can only

be non-zero at a finite set of points 

So the solution to our problem must set the residual to zero at these

collocation points

Since we have a finite set of points we do not need to solve difficult integrals

but only a system of equations

In class we will mostly be using collocation for function approximation

Si

R(Si|c) = 0, i = 1, . . . , j + 1
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Collocation

What points in our state space do we select to be collocation points?
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Collocation

What points in our state space do we select to be collocation points?

We do so by selecting a specific finite number of points in our state space and

use them to construct a collocation grid that spans the domain of our problem

We often have continuous states in economics (capital, technology, etc.), so

how does collocation manage to work?

Using our knowledge of how the value function behaves at the limited set of

points on our grid, we can interpolate our approximating function at all points

off the grid points, but within the domain of our grid
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Interpolation

Let  be the function we wish to approximate with some V V̂
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Let  be the function we wish to approximate with some 

 is constructed as a linear combination of  linearly independent (i.e.

orthogonal) basis functions
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V̂ (x) =
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cjψj(x)
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Interpolation

Let  be the function we wish to approximate with some 

 is constructed as a linear combination of  linearly independent (i.e.

orthogonal) basis functions

Each  is a basis function, and the coefficients  determine how they are

combined at some point  to yield our approximation  to 

V V̂

V̂ n

V̂ (x) =
n

∑
j=1

cjψj(x)

ψj(x) cj

x̄ V̂ (x̄) V (x̄)
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Interpolation

The number of basis functions we select, , is the degree of interpolationn
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The number of basis functions we select, , is the degree of interpolation

In order to recover  coefficients, we need at least  equations that must be

satisfied at a solution to the problem

If we have precisely  equations, we are just solving a simple system of linear

equations:
we have a perfectly identified system and are solving a collocation

problem
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Interpolation

The number of basis functions we select, , is the degree of interpolation

In order to recover  coefficients, we need at least  equations that must be

satisfied at a solution to the problem

If we have precisely  equations, we are just solving a simple system of linear

equations:
we have a perfectly identified system and are solving a collocation

problem

This is what happens we select our number of grid points in the state space


to be equal to the number of coefficients (which induces a Dirac delta

weighting function)

n

n n

n
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Interpolation

Solve a system of equations, linear in  that equates the approximating

function at the grid points to the recovered values

where  is the matrix of basis functions,  is a vector of coefficients, and  is a

vector of the recovered values

cj

Ψc = v

Ψ c v
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Interpolation

Solve a system of equations, linear in  that equates the approximating

function at the grid points to the recovered values

where  is the matrix of basis functions,  is a vector of coefficients, and  is a

vector of the recovered values

We can recover  by left dividing by  which yields

cj

Ψc = v

Ψ c v

c Ψ

c = Ψ−1
v
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Interpolation

If we have more equations, or grid points, than coefficients, then we can just

use OLS to solve for the coefficients by minimizing the sum of squared errors
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Interpolation

If we have more equations, or grid points, than coefficients, then we can just

use OLS to solve for the coefficients by minimizing the sum of squared errors

c = (Ψ′Ψ)−1Ψ′
v
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Interpolation

If we have more equations, or grid points, than coefficients, then we can just

use OLS to solve for the coefficients by minimizing the sum of squared errors

We will learn how to interpolate using two different approaches:

1. Spectral methods

2. Finite element methods

c = (Ψ′Ψ)−1Ψ′
v
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Spectral methods

(Pseudo-)spectral methods

Spectral methods apply all of our basis functions to the entire domain of our

grid: they are global
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(Pseudo-)spectral methods

Spectral methods apply all of our basis functions to the entire domain of our

grid: they are global

When using spectral methods we virtually always use polynomials

Why?
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(Pseudo-)spectral methods

The Stone-Weierstrass Theorem which states (for one dimension)

Suppose  is a continuous real-valued function defined on the interval .


For every  a polynomial  such that for all  we have 

f [a, b]

ϵ > 0, ∃ p(x) x ∈ [a, b]

||f(x) − p(x)||sup ≤ ϵ
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(Pseudo-)spectral methods

The Stone-Weierstrass Theorem which states (for one dimension)

Suppose  is a continuous real-valued function defined on the interval .


For every  a polynomial  such that for all  we have 

What does the SW theorem say in words?

f [a, b]

ϵ > 0, ∃ p(x) x ∈ [a, b]

||f(x) − p(x)||sup ≤ ϵ
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(Pseudo-)spectral methods

For any continuous function , we can approximate it arbitrarily well with

some polynomial , as long as  is continuous

f(x)

p(x) f(x)
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(Pseudo-)spectral methods

For any continuous function , we can approximate it arbitrarily well with

some polynomial , as long as  is continuous

Note that the SW theorem does not say what kind of polynomial can

approximate  arbitrarily well, just that some polynomial exists

f(x)

p(x) f(x)

f
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Basis choice

What would be your first choice of basis?
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Basis choice

What would be your first choice of basis?

Logical choice: the monomial basis: 

It is simple, and SW tells us that we can uniformly approximate any continuous

function on a closed interval using them

1,x,x2, . . .
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Basis choice

Practice

code up a function project_monomial(f, n, lb, ub)  that takes in some

function f ,
degree of approximation n , lower bound lb  and upper bound ub ,

and constructs a monomial approximation on an evenly spaced grid via

collocation
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Basis choice

Practice

code up a function project_monomial(f, n, lb, ub)  that takes in some

function f ,
degree of approximation n , lower bound lb  and upper bound ub ,

and constructs a monomial approximation on an evenly spaced grid via

collocation

We will be plotting stuff, see http://docs.juliaplots.org/latest/generated/gr/ for

example code using the GR  backend
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Approximate sin(x)  with monomials

using Plots

 gr();

 f(x) = sin(x);

 Plots.plot(f, 0, 2pi, line = 4, grid = false, legend = false, size = (500, 250))
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Approximating sin(x)

## project_monomial (generic function with 1 method)

function project_monomial(f, n, lb, ub)

# solves Ψc = y → c = Ψ\y
# Ψ = matrix of monomial basis functions evaluted on the grid

     coll_points = range(lb, ub, length = n)                      # collocation points

     y_values = @. f(coll_points)                                    # function values on the gri

     basis_functions = [coll_points.^degree for degree = 0:n-1]   # vector of basis functions

     basis_matrix = hcat(basis_functions...)                      # basis matrix

     coefficients = basis_matrix\y_values                         # c = Ψ\y

return coefficients

end
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Approximating sin(x)

 coefficients_4 = project_monomial(f, 4, 0, 2pi);

 coefficients_5 = project_monomial(f, 5, 0, 2pi);

 coefficients_10 = project_monomial(f, 10, 0, 2pi)

## 10-element Vector{Float64}:

##   0.0

##   0.9990725797453611

##   0.004015857155746594

##  -0.17384373874058445

##   0.007075663354237428

##   0.004040763229673627

##   0.0016747985986872982

##  -0.0006194667844639566

##   6.485272688675296e-5

##  -2.293696012668126e-6
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Approximating sin(x)

Now we need to construct a function f_approx(coefficients, plot_points)

that takes in the coefficients  vector,
and an arbitrary vector of points to

evaluate the approximating function at (for plotting)
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Approximating sin(x)

Now we need to construct a function f_approx(coefficients, plot_points)

that takes in the coefficients  vector,
and an arbitrary vector of points to

evaluate the approximating function at (for plotting)

function f_approx(coefficients, points)

     n = length(coefficients) - 1

     basis_functions = [coefficients[degree + 1] * points.^degree for degree = 0:n] # evaluate ba

     basis_matrix = hcat(basis_functions...)                                        # transform i

     function_values = sum(basis_matrix, dims = 2)                                  # sum up into

return function_values

end;
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Approximating sin(x)

 plot_points = 0:.01:2pi;

 f_values_4 = f_approx(coefficients_4, plot_points);

 f_values_5 = f_approx(coefficients_5, plot_points);

 f_values_10 = f_approx(coefficients_10, plot_points)

## 629×1 Matrix{Float64}:

##   0.0

##   0.00999095361059282

##   0.019981668333002568

##   0.029971103713540295

##   0.03995822109621549

##   0.04994198367413662

##   0.059921356542025114

##   0.06989530674981242

##   0.07986280335729017

##   0.08982281748978363

##   ⋮

##  -0.08303623493737788

##  -0.07307101015972606

##  -0.06309900382674627

## 0 05312124622679448
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Plot
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Plot
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Plot
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Plot
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Cool!

We just wrote some code that exploits Stone-Weierstrauss and allows us to

(potentially) approximate
any continuous function arbitrarily well as n  goes to

infinity
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Cool!

We just wrote some code that exploits Stone-Weierstrauss and allows us to

(potentially) approximate
any continuous function arbitrarily well as n  goes to

infinity

To approximate any function we'd need to feed in some basis function g(x, n)

as opposed to hard-coding it like I did in the previous slides

Now try approximating Runge's function: f(x) = 1/(1 + 25x^2)
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Runge's function

 runge(x) = 1 ./ (1 .+ 25x.^2);

 coefficients_5 = project_monomial(runge, 5, -1, 1);

 coefficients_10 = project_monomial(runge, 10, -1, 1);

 plot_points = -1:.01:1;

 runge_values_5 = f_approx(coefficients_5, plot_points);

 runge_values_10 = f_approx(coefficients_10, plot_points);
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Runge's function
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Runge's function
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Runge's function
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Maybe we can just crank up n?
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Monomials are not good

What's the deal?

The matrix of monomials, , is often ill-conditioned, especially as the degree

of the monomials increases

The first 6 monomials can induce a condition number of , a substantial loss

of precision

Second, they can vary dramatically in size, which leads to scaling/truncation

errors

Φ

1010
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Monomials are not good

 runge(x) = 1 ./ (1 .+ 25x.^2);

 coefficients_10 = project_monomial(runge, 10, -1, 1);

 points = rand(10);

 n = length(coefficients_10) - 1;

 basis_functions = [coefficients_10[degree + 1] * points.^degree for degree = 0:n];

 basis_matrix = hcat(basis_functions...);

 println("Condition number: $(cond(basis_matrix))")

## Condition number: 2.03519978200562e22
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Monomials are not good

Example:  goes from .0001 to about 90 when moving x from 0.5 to 1.5x11
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Monomials are not good

Example:  goes from .0001 to about 90 when moving x from 0.5 to 1.5

Ideally we want an orthogonal basis: when we add another element of the

basis,
it has sufficiently different behavior than the elements before it so it can

capture
features of the unknown function that the previous elements couldn't

x11

46 / 94

The Chebyshev basis

Most frequently used is the Chebyshev basis
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The Chebyshev basis

Most frequently used is the Chebyshev basis

It has nice approximation properties:

1. They are easy to compute

2. They are orthogonal

3. They are bounded between [−1, 1]
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The Chebyshev basis

Chebyshev polynomials are often selected because they minimize the

oscillations that occur when approximating functions like Runge's function
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The Chebyshev basis

Chebyshev polynomials are often selected because they minimize the

oscillations that occur when approximating functions like Runge's function

The Chebyshev polynomial closely approximates the minimax polynomial:

the polynomial, given degree ,
that minimizes any approximation error to the

true function

d
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

[−1, 1]

49 / 94

The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

In practice this is easy to expand to any interval 

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

[−1, 1]

[a, b]

49 / 94

The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

In practice this is easy to expand to any interval 

Chebyshev polynomials look similar to monomials but have better properties

that are visually distinctive

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

[−1, 1]

[a, b]
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

Write two functions: cheb_polys(n, x)  and monomials(n, x)  with a degree of

approximation n  and vector of points x ,
that return the values of the

approximating function at x

If you can't get the recurrence relation to work, you can use an alternative:

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

Tn(x) = cos(narccos(x))
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The Chebyshev basis

Next, a plotting function plot_function(basis_function, x, n)  that takes an

arbitrary basis function basis_function  and plots all basis functions up to

degree n
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The two basis functions

# Chebyshev polynomial function

function cheb_polys(x, n)

if n == 0

return x ./ x               # T_0(x) = 1

elseif n == 1

return x                    # T_1(x) = x

else

         cheb_recursion(x, n) =

2x .* cheb_polys.(x, n-1) .- cheb_polys.(x, n-2)

return cheb_recursion(x, n) # T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)

end

end;

# Monomial function

 monomials(x, n) = x.^n;
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The plotting function

function plot_function(basis_function, x, n)

for i = 1:n-1

         f_data = basis_function(x, i)

if i == 1

             plot(x, f_data, linewidth = 4.0, xlabel = "x", ylabel = "Basis functions", label = "

                  tickfontsize = 14, guidefontsize = 14, grid = false);

else

             plot!(x, f_data, linewidth = 4.0, label = "");

end

end

     f_data = basis_function(x, n)

     plot!(x, f_data, linewidth = 4.0, label = "")

end;

 x = -1:.01:1;
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Monomials up to degree 5

 plot_function(monomials, x, 5)
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Chebyshev polynomials up to degree 5

 plot_function(cheb_polys, x, 5)
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Monomials up to degree 10

 plot_function(monomials, x, 10)
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Chebyshev polynomials up to degree 10

 plot_function(cheb_polys, x, 10)
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Chebyshev polynomials

Chebyshev polynomials span the space
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Chebyshev polynomials

Chebyshev polynomials span the space

Monomials clump together

Chebyshev polynomials are nice for approximation because they are

orthogonal and they span the polynomial vector space

This means that you can form any polynomial of degree equal to less than the

Chebyshev polynomial you are using

It also guarantees that  has full rank and is invertibleΦ
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Two important theorems

There are two important theorems to know about Chebyshev polynomials
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Two important theorems

There are two important theorems to know about Chebyshev polynomials

Chebyshev interpolation theorem: If , if  is a

system of polynomials (where  is of exact degree i) orthogonal with respect to 

 on  and if  interpolates  in the zeros of ,

then:

f(x) ∈ C[a, b] {ψi(x), i = 0, . . . }

ψi(x)

ϕ(x) [a, b] pj = ∑j
i=0 ciψi(x) f(x) ψn+1(x)

lim
j→∞

(||f − pj||2)
2

= lim
j→∞

∫
b

a

ϕ(x)(f(x) − pj)
2
dx = 0
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Two important theorems

There are two important theorems to know about Chebyshev polynomials

Chebyshev interpolation theorem: If , if  is a

system of polynomials (where  is of exact degree i) orthogonal with respect to 

 on  and if  interpolates  in the zeros of ,

then:

What does this say?

f(x) ∈ C[a, b] {ψi(x), i = 0, . . . }

ψi(x)

ϕ(x) [a, b] pj = ∑j
i=0 ciψi(x) f(x) ψn+1(x)

lim
j→∞

(||f − pj||2)
2

= lim
j→∞

∫
b

a

ϕ(x)(f(x) − pj)
2
dx = 0
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Two important theorems

If we have an approximation set of basis functions that are exact at the roots

of the  order polynomials,
then as  goes to infinity the approximation

error becomes arbitrarily small and converges at a quadratic rate

nth n
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error becomes arbitrarily small and converges at a quadratic rate

This holds for any type of polynomial, but if they are Chebyshev then

convergence is uniform

nth n

60 / 94

Two important theorems

If we have an approximation set of basis functions that are exact at the roots

of the  order polynomials,
then as  goes to infinity the approximation

error becomes arbitrarily small and converges at a quadratic rate

This holds for any type of polynomial, but if they are Chebyshev then

convergence is uniform

Unfortunately we cant store an infinite number of polynomials in our

computer, we would like to know how big our error is after truncating our

sequence of polynomials

nth n
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Two important theorems

Chebyshev truncation theorem: The error in approximating  is bounded by

the sum of all the neglected coefficients

f
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Since Chebyshev polynomials satisfy Stone-Weierstrauss, an infinite
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Since Chebyshev polynomials are bounded between , the sum of the

omitted terms is bounded by the sum of the magnitude of the coefficients
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Two important theorems

Chebyshev truncation theorem: The error in approximating  is bounded by

the sum of all the neglected coefficients

Since Chebyshev polynomials satisfy Stone-Weierstrauss, an infinite

sequence of them can perfectly approximate any continuous function

Since Chebyshev polynomials are bounded between , the sum of the

omitted terms is bounded by the sum of the magnitude of the coefficients

So the error in the approximation is as well!

f

[−1, 1]
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Two important theorems

We often also have that Chebyshev approximations geometrically converge

which give us the following convenient property:

The truncation error by stopping at polynomial  is of the same order as the

magnitude of the coefficient  on the last polynomial

|f(x) − f j(x|c)| ∼ O(cj)

j

cj
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Two important theorems

We often also have that Chebyshev approximations geometrically converge

which give us the following convenient property:

The truncation error by stopping at polynomial  is of the same order as the

magnitude of the coefficient  on the last polynomial

Thus in many situations we can simply check the size of the last polynomial to

gauge how accurate our approximation is

|f(x) − f j(x|c)| ∼ O(cj)

j

cj
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Boyd's moral principle

Chebyshev polynomials are the most widely used basis
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Boyd's moral principle

Chebyshev polynomials are the most widely used basis

This is not purely theoretical but also from practical experience
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Boyd's moral principle

John Boyd summarizes decades of experience with function approximation

with his moral principle:

When in doubt, use Chebyshev polynomials unless the solution is spatially

periodic, in which case an ordinary fourier series is better

Unless you are sure another set of basis functions is better, use Chebyshev

polynomials

Unless you are really, really sure another set of basis functions is better use

Chebyshev polynomials
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Grid point selection

We construct the approximating function by evaluating the basis functions on

a predefined grid in the domain of V
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Grid point selection

We construct the approximating function by evaluating the basis functions on

a predefined grid in the domain of 

If we have precisely  nodes, , we then have

V

n xi

n

∑
j=1

cjϕj(xi) = V (xi) ∀i = 1, 2, . . . ,n
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

If we recover a set of values at our interpolation nodes, ,
we can then

simply invert  and right multiply it by  to recover our coefficients

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n

V ∗(xi)

Φ y
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

If we recover a set of values at our interpolation nodes, ,
we can then

simply invert  and right multiply it by  to recover our coefficients

How do we select our set of nodes ?

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n

V ∗(xi)

Φ y

xi
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Chebyshev strikes again

A good selection of points are called Chebyshev nodes
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Chebyshev strikes again

A good selection of points are called Chebyshev nodes

These are simply the roots of the Chebyshev polynomials on the domain 

They are given by

for some Chebyshev polynomial of degree 

[−1, 1]

xk = cos( π) , k = 1, . . . ,n
2k − 1

2n

n
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Chebyshev strikes again

Mathematically, these also help reduce error in our approximation

xk = cos( π) , k = 1, . . . ,n
2k − 1

2n
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Chebyshev strikes again

Mathematically, these also help reduce error in our approximation

We can gain intuition by looking at a graph of where Chebyshev nodes are

located, plot them yourself!

xk = cos( π) , k = 1, . . . ,n
2k − 1

2n
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Chebyshev node function

 cheb_nodes(n) = cos.(pi * (2*(1:n) .- 1)./(2n))

## cheb_nodes (generic function with 1 method)
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Chebyshev node locations
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Chebyshev node locations
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Chebyshev node locations
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The zeros tend to cluster quadratically towards the edges of the domain
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Chebyshev zeros and alternative rep

The zeros tend to cluster quadratically towards the edges of the domain

You can think about this as projecting sequentially finer uniform grids from a

hemicircle onto the x-axis

Imagine areas of our approximating function near the center of our domain

but not at a node

These areas benefit from having multiple nodes on both the left and right
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Chebyshev node locations

This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions
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This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions

If we moved to an area closer to the edge of the domain, there may only one

node
to the left or right of it providing information on what the value of our

approximating function should be
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Chebyshev node locations

This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions

If we moved to an area closer to the edge of the domain, there may only one

node
to the left or right of it providing information on what the value of our

approximating function should be

Therefore, it's best to put more nodes in these areas to shore up this

informational deficit
and get good approximation quality near the edges of

our domain
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Discrete states

How do we handle a discrete state  when trying to approximate ?Sd V
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Discrete states

How do we handle a discrete state  when trying to approximate ?

Just like you might expect, we effectively have a different approximating

function over the continuous states for each value of 

Sd V

Sd
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Multi-dimensional approximation

Thus far we have displayed the Chebyshev basis in only one dimension
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Multi-dimensional approximation

Thus far we have displayed the Chebyshev basis in only one dimension

We approximate functions of some arbitrary dimension  by taking the

tensor of vectors of the one-dimensional Chebyshev polynomials

Construct a vector of polynomials  for dimensions 1

Construct a vector of polynomials  for dimension 2

N

[ϕ1,1, ϕ1,2, ϕ1,3]

[ϕ2,1, ϕ2,2, ϕ2,3]
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Multi-dimensional approximation

The tensor is just the product of every possibly polynomial pair which results

in:

[ϕ1,1ϕ2,1, ϕ1,1ϕ2,2, ϕ1,1ϕ2,3,

ϕ1,2ϕ2,1, ϕ1,2ϕ2,2, ϕ1,2ϕ2,3,

ϕ1,3ϕ2,1, ϕ1,3ϕ2,2, ϕ1,3ϕ2,3]
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Multi-dimensional approximation

The tensor is just the product of every possibly polynomial pair which results

in:

We can then solve for the 9 coefficients on these two dimensional polynomials

[ϕ1,1ϕ2,1, ϕ1,1ϕ2,2, ϕ1,1ϕ2,3,

ϕ1,2ϕ2,1, ϕ1,2ϕ2,2, ϕ1,2ϕ2,3,

ϕ1,3ϕ2,1, ϕ1,3ϕ2,2, ϕ1,3ϕ2,3]
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Multi-dimensional approximation

The computational complexity here grows exponentially: 

total # points = (points per  state)# states
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Multi-dimensional approximation

The computational complexity here grows exponentially: 

Exponential complexity is costly, often called the Curse of dimensionality

total # points = (points per  state)# states
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An alternative to spectral methods are finite element methods
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Finite element methods

An alternative to spectral methods are finite element methods

Finite element methods use basis functions that are non-zero over

.subintervals of the domain of our grid

For example, we can use splines (piecewise polynomials) over segments of our

domains
where they are spliced together at prespecified breakpoints, which

are called knots
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Finite element methods

The higher the order the polynomial we use, the higher the order of

derivatives that we can preserve continuity at the knots
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continuous,
but its first derivatives are discontinuous step functions unless

the underlying value function happened to be precisely linear
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Finite element methods

The higher the order the polynomial we use, the higher the order of

derivatives that we can preserve continuity at the knots

For example, a linear spline yields an approximating function that is

continuous,
but its first derivatives are discontinuous step functions unless

the underlying value function happened to be precisely linear

If we have a quadratic spline, we can also preserve the first derivative's

continuity at the knots,
but the second derivative will be a discontinuous step

function
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Finite element methods

As we increase the order of the spline polynomial, we have increasing

numbers of coefficients we need to determine
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Finite element methods

As we increase the order of the spline polynomial, we have increasing

numbers of coefficients we need to determine

To determine these additional coefficients using the same number of points,

we require additional conditions that must be satisfied

These are what ensure continuity of higher order derivatives at the knots as

the degree of the spline grows
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Finite element methods

With linear splines, each segment of our approximating function is defined by

a linear function
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Finite element methods

With linear splines, each segment of our approximating function is defined by

a linear function

For each of these linear components, we need to solve for 1 coefficient and 1

intercept term

Each end of a linear segment must equal the function value at the knots
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Finite element methods

We have two conditions and two unknowns for each segment: this is a simple

set of linear equations that we can solve
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Finite element methods

We have two conditions and two unknowns for each segment: this is a simple

set of linear equations that we can solve

In numerical models we typically don't use linear splines because we often

care about the quality
of approximation of higher order derivatives, cubic

splines are more common
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knotsN + 1
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knots

We need  cubic polynomials when entails  coefficients to determine

We can obtain  equations by ensuring that the approximating

function is continuous at all interior knots,
and its first and second derivatives

are continuous at all interior knots 

N + 1

N 4N

3(N − 1)

[3 × (N + 1 − 1 − 1)]
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knots

We need  cubic polynomials when entails  coefficients to determine

We can obtain  equations by ensuring that the approximating

function is continuous at all interior knots,
and its first and second derivatives

are continuous at all interior knots 

This means that the value of the left cubic polynomial equals the value of the

right cubic polynomial at each interior knot

N + 1

N 4N

3(N − 1)

[3 × (N + 1 − 1 − 1)]
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Cubic splines

Ensuring the approximating function equals the function's value at all of the

nodes adds another  equationsN + 1
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Cubic splines

Ensuring the approximating function equals the function's value at all of the

nodes adds another  equations

We therefore have a total of  equations for  coefficients

We need two more conditions to solve the problem

What is often used is that the approximating function's first or second

derivative matches that of the function at the end points

N + 1

4N − 2 4N
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Splines can potentially handle lots of curvature

If the derivative is of interest for optimization, or to recover some variable of

economic meaning,
then we may need to have these derivatives preserved

well at the knots
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Splines can potentially handle lots of curvature

If the derivative is of interest for optimization, or to recover some variable of

economic meaning,
then we may need to have these derivatives preserved

well at the knots

One large benefit of splines is that they can handle kinks or areas of high

curvature

How?

By having the modeler place many knots in a concentrated region

Useful spline packages out there: Dierckx , Interpolations , QuantEcon
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Code it up!

Let's code up our own linear spline approximation function

linear_spline_approx(f, knots) ,
where f  is the function we are

approximating and knots  are the knots

Have it return a function a function spline_eval  that takes in

evaluation_points  as an argument
where evaluation_points  are the points

we want to evaluate the spline approximating function at

Hint: Linear splines are pretty easy, given two points  and ,

the spline in between these points is given by

(xi+1, yi+1) (xi, yi)

y(x) = yi + (x − xi)
yi+1 − yi

xi+1 − xi 88 / 94

Spline approximator

function linear_spline_approx(f, knots)

function spline_eval(evaluation_points)

         prev_knot = knots[1] # initialize previous knot

if !(typeof(evaluation_points) <: Number) # if using multiple points

             y_eval = similar(evaluation_points)

             y_index = 1

for knot in knots[2:end]

                 current_points = evaluation_points[prev_knot .<= evaluation_points .< knot]

                 y_eval[y_index:y_index + length(current_points) - 1] =

                     f(prev_knot) .+ (f(knot) - f(prev_knot))/(knot - prev_knot)*(current_points 

                 prev_knot = knot

                 y_index += length(current_points)

end

else # if using just a single point

for knot in knots[2:end]

if prev_knot .<= evaluation_points .< knot

                     y_eval = f(prev_knot) + (f(knot) - f(prev_knot))/(knot - prev_knot)*(evaluat

end

                 prev_knot = knot

end

end
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Plot

 f(x) = sin(x)

## f (generic function with 1 method)

 knots_coarse = 0:pi/2:2pi;

 spline_func_coarse = linear_spline_approx(f, knots_coarse);

 knots_fine = 0:pi/4:2pi;

 spline_func_fine = linear_spline_approx(f, knots_fine);

 knots_superfine = 0:pi/12:2pi;

 spline_func_superfine = linear_spline_approx(f, knots_superfine);

 x_vals =0:.05:2pi;

 y_vals_coarse = spline_func_coarse(x_vals);

 y_vals_fine = spline_func_fine(x_vals);

 y_vals_superfine = spline_func_superfine(x_vals);
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Plot
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Plot
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Plot
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Plot
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Lecture 6

Function approximation

Ivan Rudik
AEM 7130

http://docs.juliaplots.org/latest/generated/gr/


Roadmap

1. Projection theory

2. Spectral and finite element methods
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Projection methods

We often need to approximate functions in economics, a common way to do

this is via projection

Main idea: build some function  indexed by coefficients that approximates

the function we are interested in

V̂
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Projection methods

We often need to approximate functions in economics, a common way to do

this is via projection

Main idea: build some function  indexed by coefficients that approximates

the function we are interested in

What do I mean by approximately?

The coefficients of  are selected to minimize some residual function that

tells us how far away our approximation is to the true function on some set of

points

V̂

V̂
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Projection methods

How do we do this?
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Projection methods

How do we do this?

First we specify our approximating function: some linear combination of basis

functions 

with coefficients 

Ψi(S)

V j(S|c) =
j

∑
i=0

ciΨi(S)

c0, . . . , cj
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Projection methods

We then choose some residual function  which is a function of :

and select the coefficient values to minimize the residual, given some measure

of distance

R V j
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Projection methods

We then choose some residual function  which is a function of :

and select the coefficient values to minimize the residual, given some measure

of distance

This step of selecting the coefficients is called projecting  against our basis

What basis do we select?

How do we project (select the coefficients / residual function)?

R V j

R(S|c) = H(V j(S|c))

H
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Projection methods

Let's work a simple example to get intuition

Ordinary least squares linear regression

We can think of the problem as searching for some unknown conditional

expectation , given outcome variable  and regressors E[Y |X] Y X
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Projection methods

We don't know the true functional form of , but we can approximate it

using the first two monomials on :  and 

E[Y |X]

X 1 X

E[Y |X] ≈ c0 + c1X
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Projection methods

We don't know the true functional form of , but we can approximate it

using the first two monomials on :  and 

These are the first two elements of the monomial basis

One residual function is then: , the

absolute error

For OLS we would then square this

OLS is within the class of projection methods

E[Y |X]

X 1 X

E[Y |X] ≈ c0 + c1X

R(Y , X|c0, c1) = abs(Y − c0 − c1X)
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Projection classes are defined by metrics

Projection methods are separated into several broad classes by the type of

residual we're trying to shrink to zero
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Projection classes are defined by metrics

Projection methods are separated into several broad classes by the type of

residual we're trying to shrink to zero

We need to select some metric function , that determines how we project

 tells us how close our residual function is to zero over the domain of our

state space

ρ

ρ

9 / 94



Example residuals given different projections

Example: The figure shows two different residuals on some capital domain of 

The residual based on the coefficient

vector  is large for small values of capital

but near-zero everywhere else

[0, k̄]

c1
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Example residuals given different projections

Example: The figure shows two different residuals on some capital domain of 

The residual based on the coefficient

vector  is large for small values of capital

but near-zero everywhere else

The residual based on  has medium

values just about everywhere

Which is closer to zero over the interval? It

will depend on our selection of 

[0, k̄]

c1

c2

ρ
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We want to use weighted residuals

We move from the plain residual to  because we want to set a weighted

residual equal to zero

ρ
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Suppose we have some weight functions  that map from our state

space to the real line

The one-dimensional metric is defined as

ρ

ϕi : Ω → R

ρ(R ⋅ |c, 0) = {
0 if  ∫Ω ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1

1 otherwise
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We want to use weighted residuals

We move from the plain residual to  because we want to set a weighted

residual equal to zero

Suppose we have some weight functions  that map from our state

space to the real line

The one-dimensional metric is defined as

Where we want to solve for 

ρ

ϕi : Ω → R

ρ(R ⋅ |c, 0) = {
0 if  ∫Ω ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1

1 otherwise

c = argmin ρ(R(⋅|c), 0)
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We want to use weighted residuals

We can then change our problem to simply solving a system of integrals

ensuring the metric is zero

∫
Ω

ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1.
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We want to use weighted residuals

We can then change our problem to simply solving a system of integrals

ensuring the metric is zero

We can solve this using standard rootfinding techniques

Big remaining question: how do we choose our  weight functions?

First lets begin with a simple example before moving into the most commonly

used weight functions

∫
Ω

ϕi(S)R(⋅|c)dS = 0, i = 1, . . . , j + 1.

j + 1
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Least squares projection

Suppose we selected the weight function to be

ϕi(S) =
∂R(S|c)

∂ci−1
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Least squares projection

Suppose we selected the weight function to be

Then we would be performing least squares! Why?

ϕi(S) =
∂R(S|c)

∂ci−1
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Least squares projection

Recall the objective of least squares is

min
c

∫ R
2(⋅|c)dS
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Least squares projection

Recall the objective of least squares is

The FOC for a minimum is

So the first order condition sets the weighted average residual to zero


where the weights are determined by the partial derivatives of the residual

OLS minimizes residuals weighted by how they change in the coefficients

min
c

∫ R2(⋅|c)dS

∫ R(⋅|c)dS = 0, i = 1, . . . , j + 1
∂R(S|c)

∂ci−1
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Collocation

The simplest weight function gives us a methodology called collocation
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Collocation

The simplest weight function gives us a methodology called collocation

Here our weight function is

Where  is the Dirac delta function and  are j+1 points or nodes selected by

the researcher, called collocation points/nodes

The Dirac delta function is zero at all  except at 

What does this weight function mean?

ϕi(S) = δ(S − Si)

δ Si

S S = Si
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Collocation

Before we even select our coefficients, this means that the residual can only

be non-zero at a finite set of points Si
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Collocation

Before we even select our coefficients, this means that the residual can only

be non-zero at a finite set of points 

So the solution to our problem must set the residual to zero at these

collocation points

Since we have a finite set of points we do not need to solve difficult integrals

but only a system of equations

In class we will mostly be using collocation for function approximation

Si

R(Si|c) = 0, i = 1, . . . , j + 1
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What points in our state space do we select to be collocation points?
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Collocation

What points in our state space do we select to be collocation points?

We do so by selecting a specific finite number of points in our state space and

use them to construct a collocation grid that spans the domain of our problem

We often have continuous states in economics (capital, technology, etc.), so

how does collocation manage to work?

Using our knowledge of how the value function behaves at the limited set of

points on our grid, we can interpolate our approximating function at all points

off the grid points, but within the domain of our grid
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Interpolation

Let  be the function we wish to approximate with some V V̂
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Interpolation

Let  be the function we wish to approximate with some 

 is constructed as a linear combination of  linearly independent (i.e.

orthogonal) basis functions

Each  is a basis function, and the coefficients  determine how they are

combined at some point  to yield our approximation  to 

V V̂

V̂ n

V̂ (x) =
n

∑
j=1

cjψj(x)

ψj(x) cj

x̄ V̂ (x̄) V (x̄)
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Interpolation

The number of basis functions we select, , is the degree of interpolationn
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Interpolation

The number of basis functions we select, , is the degree of interpolation

In order to recover  coefficients, we need at least  equations that must be

satisfied at a solution to the problem

If we have precisely  equations, we are just solving a simple system of linear

equations:
we have a perfectly identified system and are solving a collocation

problem

This is what happens we select our number of grid points in the state space


to be equal to the number of coefficients (which induces a Dirac delta

weighting function)

n

n n

n
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Interpolation

Solve a system of equations, linear in  that equates the approximating

function at the grid points to the recovered values

where  is the matrix of basis functions,  is a vector of coefficients, and  is a

vector of the recovered values

cj

Ψc = v

Ψ c v
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Interpolation

Solve a system of equations, linear in  that equates the approximating

function at the grid points to the recovered values

where  is the matrix of basis functions,  is a vector of coefficients, and  is a

vector of the recovered values

We can recover  by left dividing by  which yields

cj

Ψc = v

Ψ c v

c Ψ

c = Ψ
−1

v
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Interpolation

If we have more equations, or grid points, than coefficients, then we can just

use OLS to solve for the coefficients by minimizing the sum of squared errors
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Interpolation

If we have more equations, or grid points, than coefficients, then we can just

use OLS to solve for the coefficients by minimizing the sum of squared errors

We will learn how to interpolate using two different approaches:

1. Spectral methods

2. Finite element methods

c = (Ψ′Ψ)−1Ψ′
v
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(Pseudo-)spectral methods

Spectral methods apply all of our basis functions to the entire domain of our

grid: they are global
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(Pseudo-)spectral methods

Spectral methods apply all of our basis functions to the entire domain of our

grid: they are global

When using spectral methods we virtually always use polynomials

Why?
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(Pseudo-)spectral methods

The Stone-Weierstrass Theorem which states (for one dimension)

Suppose  is a continuous real-valued function defined on the interval .


For every  a polynomial  such that for all  we have 

f [a, b]

ϵ > 0, ∃ p(x) x ∈ [a, b]

||f(x) − p(x)||sup ≤ ϵ
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(Pseudo-)spectral methods

The Stone-Weierstrass Theorem which states (for one dimension)

Suppose  is a continuous real-valued function defined on the interval .


For every  a polynomial  such that for all  we have 

What does the SW theorem say in words?

f [a, b]

ϵ > 0, ∃ p(x) x ∈ [a, b]

||f(x) − p(x)||sup ≤ ϵ
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(Pseudo-)spectral methods

For any continuous function , we can approximate it arbitrarily well with

some polynomial , as long as  is continuous

f(x)

p(x) f(x)
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(Pseudo-)spectral methods

For any continuous function , we can approximate it arbitrarily well with

some polynomial , as long as  is continuous

Note that the SW theorem does not say what kind of polynomial can

approximate  arbitrarily well, just that some polynomial exists

f(x)

p(x) f(x)

f
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Basis choice

What would be your first choice of basis?
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Basis choice

What would be your first choice of basis?

Logical choice: the monomial basis: 

It is simple, and SW tells us that we can uniformly approximate any continuous

function on a closed interval using them

1, x, x
2, . . .
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Basis choice

Practice

code up a function project_monomial(f, n, lb, ub)  that takes in some

function f ,
degree of approximation n , lower bound lb  and upper bound ub ,

and constructs a monomial approximation on an evenly spaced grid via

collocation
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Basis choice

Practice

code up a function project_monomial(f, n, lb, ub)  that takes in some

function f ,
degree of approximation n , lower bound lb  and upper bound ub ,

and constructs a monomial approximation on an evenly spaced grid via

collocation

We will be plotting stuff, see http://docs.juliaplots.org/latest/generated/gr/ for

example code using the GR  backend
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Approximate sin(x)  with monomials

using Plots

 gr();

 f(x) = sin(x);

 Plots.plot(f, 0, 2pi, line = 4, grid = false, legend = false, size = (500, 250))
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Approximating sin(x)

## project_monomial (generic function with 1 method)

function project_monomial(f, n, lb, ub)

# solves Ψc = y → c = Ψ\y
# Ψ = matrix of monomial basis functions evaluted on the grid

     coll_points = range(lb, ub, length = n)                      # collocation points

     y_values = @. f(coll_points)                                    # function values on the gri

     basis_functions = [coll_points.^degree for degree = 0:n-1]   # vector of basis functions

     basis_matrix = hcat(basis_functions...)                      # basis matrix

     coefficients = basis_matrix\y_values                         # c = Ψ\y

return coefficients

end
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Approximating sin(x)

 coefficients_4 = project_monomial(f, 4, 0, 2pi);

 coefficients_5 = project_monomial(f, 5, 0, 2pi);

 coefficients_10 = project_monomial(f, 10, 0, 2pi)

## 10-element Vector{Float64}:

##   0.0

##   0.9990725797453611

##   0.004015857155746594

##  -0.17384373874058445

##   0.007075663354237428

##   0.004040763229673627

##   0.0016747985986872982

##  -0.0006194667844639566

##   6.485272688675296e-5

##  -2.293696012668126e-6
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Approximating sin(x)

Now we need to construct a function f_approx(coefficients, plot_points)

that takes in the coefficients  vector,
and an arbitrary vector of points to

evaluate the approximating function at (for plotting)
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Approximating sin(x)

Now we need to construct a function f_approx(coefficients, plot_points)

that takes in the coefficients  vector,
and an arbitrary vector of points to

evaluate the approximating function at (for plotting)

function f_approx(coefficients, points)

     n = length(coefficients) - 1

     basis_functions = [coefficients[degree + 1] * points.^degree for degree = 0:n] # evaluate ba

     basis_matrix = hcat(basis_functions...)                                        # transform i

     function_values = sum(basis_matrix, dims = 2)                                  # sum up into

return function_values

end;
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Approximating sin(x)

 plot_points = 0:.01:2pi;

 f_values_4 = f_approx(coefficients_4, plot_points);

 f_values_5 = f_approx(coefficients_5, plot_points);

 f_values_10 = f_approx(coefficients_10, plot_points)

## 629×1 Matrix{Float64}:

##   0.0

##   0.00999095361059282

##   0.019981668333002568

##   0.029971103713540295

##   0.03995822109621549

##   0.04994198367413662

##   0.059921356542025114

##   0.06989530674981242

##   0.07986280335729017

##   0.08982281748978363

##   ⋮

##  -0.08303623493737788

##  -0.07307101015972606

##  -0.06309900382674627

## 0 05312124622679448
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Plot
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Cool!

We just wrote some code that exploits Stone-Weierstrauss and allows us to

(potentially) approximate
any continuous function arbitrarily well as n  goes to

infinity
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Cool!

We just wrote some code that exploits Stone-Weierstrauss and allows us to

(potentially) approximate
any continuous function arbitrarily well as n  goes to

infinity

To approximate any function we'd need to feed in some basis function g(x, n)

as opposed to hard-coding it like I did in the previous slides

Now try approximating Runge's function: f(x) = 1/(1 + 25x^2)
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Runge's function

 runge(x) = 1 ./ (1 .+ 25x.^2);

 coefficients_5 = project_monomial(runge, 5, -1, 1);

 coefficients_10 = project_monomial(runge, 10, -1, 1);

 plot_points = -1:.01:1;

 runge_values_5 = f_approx(coefficients_5, plot_points);

 runge_values_10 = f_approx(coefficients_10, plot_points);
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Runge's function
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Runge's function
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Runge's function
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Maybe we can just crank up n?
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Monomials are not good

What's the deal?
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Monomials are not good

What's the deal?

The matrix of monomials, , is often ill-conditioned, especially as the degree

of the monomials increases

The first 6 monomials can induce a condition number of , a substantial loss

of precision

Second, they can vary dramatically in size, which leads to scaling/truncation

errors

Φ

10
10
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Monomials are not good

 runge(x) = 1 ./ (1 .+ 25x.^2);

 coefficients_10 = project_monomial(runge, 10, -1, 1);

 points = rand(10);

 n = length(coefficients_10) - 1;

 basis_functions = [coefficients_10[degree + 1] * points.^degree for degree = 0:n];

 basis_matrix = hcat(basis_functions...);

 println("Condition number: $(cond(basis_matrix))")

## Condition number: 2.03519978200562e22
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Monomials are not good

Example:  goes from .0001 to about 90 when moving x from 0.5 to 1.5x
11
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Monomials are not good

Example:  goes from .0001 to about 90 when moving x from 0.5 to 1.5

Ideally we want an orthogonal basis: when we add another element of the

basis,
it has sufficiently different behavior than the elements before it so it can

capture
features of the unknown function that the previous elements couldn't

x
11
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The Chebyshev basis

Most frequently used is the Chebyshev basis
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The Chebyshev basis

Most frequently used is the Chebyshev basis

It has nice approximation properties:

1. They are easy to compute

2. They are orthogonal

3. They are bounded between [−1, 1]
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The Chebyshev basis

Chebyshev polynomials are often selected because they minimize the

oscillations that occur when approximating functions like Runge's function
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The Chebyshev basis

Chebyshev polynomials are often selected because they minimize the

oscillations that occur when approximating functions like Runge's function

The Chebyshev polynomial closely approximates the minimax polynomial:

the polynomial, given degree ,
that minimizes any approximation error to the

true function

d
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

[−1, 1]
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

In practice this is easy to expand to any interval 
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

and are defined on the domain 

In practice this is easy to expand to any interval 

Chebyshev polynomials look similar to monomials but have better properties

that are visually distinctive

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

[−1, 1]

[a, b]
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The Chebyshev basis

Chebyshev polynomials are defined by a recurrence relation,

Write two functions: cheb_polys(n, x)  and monomials(n, x)  with a degree of

approximation n  and vector of points x ,
that return the values of the

approximating function at x

If you can't get the recurrence relation to work, you can use an alternative:

T0(x) = 1

T1(x) = x

Tn+1 = 2xTn(x) − Tn−1(x)

Tn(x) = cos(n arccos(x))
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The Chebyshev basis

Next, a plotting function plot_function(basis_function, x, n)  that takes an

arbitrary basis function basis_function  and plots all basis functions up to

degree n
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The two basis functions

# Chebyshev polynomial function

function cheb_polys(x, n)

if n == 0

return x ./ x               # T_0(x) = 1

elseif n == 1

return x                    # T_1(x) = x

else

         cheb_recursion(x, n) =

2x .* cheb_polys.(x, n-1) .- cheb_polys.(x, n-2)

return cheb_recursion(x, n) # T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)

end

end;

# Monomial function

 monomials(x, n) = x.^n;
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The plotting function

function plot_function(basis_function, x, n)

for i = 1:n-1

         f_data = basis_function(x, i)

if i == 1

             plot(x, f_data, linewidth = 4.0, xlabel = "x", ylabel = "Basis functions", label = "

                  tickfontsize = 14, guidefontsize = 14, grid = false);

else

             plot!(x, f_data, linewidth = 4.0, label = "");

end

end

     f_data = basis_function(x, n)

     plot!(x, f_data, linewidth = 4.0, label = "")

end;

 x = -1:.01:1;
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Monomials up to degree 5

 plot_function(monomials, x, 5)
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Chebyshev polynomials up to degree 5

 plot_function(cheb_polys, x, 5)

55 / 94



Monomials up to degree 10

 plot_function(monomials, x, 10)

56 / 94



Chebyshev polynomials up to degree 10

 plot_function(cheb_polys, x, 10)
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Chebyshev polynomials

Chebyshev polynomials span the space
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orthogonal and they span the polynomial vector space

This means that you can form any polynomial of degree equal to less than the

Chebyshev polynomial you are using
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Chebyshev polynomials

Chebyshev polynomials span the space

Monomials clump together

Chebyshev polynomials are nice for approximation because they are

orthogonal and they span the polynomial vector space

This means that you can form any polynomial of degree equal to less than the

Chebyshev polynomial you are using

It also guarantees that  has full rank and is invertibleΦ
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Two important theorems

There are two important theorems to know about Chebyshev polynomials
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Two important theorems

There are two important theorems to know about Chebyshev polynomials

Chebyshev interpolation theorem: If , if  is a

system of polynomials (where  is of exact degree i) orthogonal with respect to 

 on  and if  interpolates  in the zeros of ,

then:

f(x) ∈ C[a, b] {ψi(x), i = 0, . . . }

ψi(x)

ϕ(x) [a, b] pj = ∑j

i=0 ciψi(x) f(x) ψn+1(x)

lim
j→∞

(||f − pj||2)
2

= lim
j→∞

∫
b

a

ϕ(x)(f(x) − pj)
2
dx = 0
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Two important theorems

There are two important theorems to know about Chebyshev polynomials

Chebyshev interpolation theorem: If , if  is a

system of polynomials (where  is of exact degree i) orthogonal with respect to 

 on  and if  interpolates  in the zeros of ,

then:

What does this say?

f(x) ∈ C[a, b] {ψi(x), i = 0, . . . }

ψi(x)

ϕ(x) [a, b] pj = ∑j

i=0 ciψi(x) f(x) ψn+1(x)

lim
j→∞

(||f − pj||2)
2

= lim
j→∞

∫
b

a

ϕ(x)(f(x) − pj)
2
dx = 0
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Two important theorems

If we have an approximation set of basis functions that are exact at the roots

of the  order polynomials,
then as  goes to infinity the approximation

error becomes arbitrarily small and converges at a quadratic rate

n
th

n
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If we have an approximation set of basis functions that are exact at the roots
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then as  goes to infinity the approximation

error becomes arbitrarily small and converges at a quadratic rate

This holds for any type of polynomial, but if they are Chebyshev then

convergence is uniform
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th
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Two important theorems

If we have an approximation set of basis functions that are exact at the roots

of the  order polynomials,
then as  goes to infinity the approximation

error becomes arbitrarily small and converges at a quadratic rate

This holds for any type of polynomial, but if they are Chebyshev then

convergence is uniform

Unfortunately we cant store an infinite number of polynomials in our

computer, we would like to know how big our error is after truncating our

sequence of polynomials

n
th

n
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Two important theorems

Chebyshev truncation theorem: The error in approximating  is bounded by

the sum of all the neglected coefficients

f
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sequence of them can perfectly approximate any continuous function
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Two important theorems

Chebyshev truncation theorem: The error in approximating  is bounded by

the sum of all the neglected coefficients

Since Chebyshev polynomials satisfy Stone-Weierstrauss, an infinite

sequence of them can perfectly approximate any continuous function

Since Chebyshev polynomials are bounded between , the sum of the

omitted terms is bounded by the sum of the magnitude of the coefficients

f

[−1, 1]
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Two important theorems

Chebyshev truncation theorem: The error in approximating  is bounded by

the sum of all the neglected coefficients

Since Chebyshev polynomials satisfy Stone-Weierstrauss, an infinite

sequence of them can perfectly approximate any continuous function

Since Chebyshev polynomials are bounded between , the sum of the

omitted terms is bounded by the sum of the magnitude of the coefficients

So the error in the approximation is as well!

f

[−1, 1]
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Two important theorems

We often also have that Chebyshev approximations geometrically converge

which give us the following convenient property:

The truncation error by stopping at polynomial  is of the same order as the

magnitude of the coefficient  on the last polynomial

|f(x) − f j(x|c)| ∼ O(cj)

j

cj
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Two important theorems

We often also have that Chebyshev approximations geometrically converge

which give us the following convenient property:

The truncation error by stopping at polynomial  is of the same order as the

magnitude of the coefficient  on the last polynomial

Thus in many situations we can simply check the size of the last polynomial to

gauge how accurate our approximation is

|f(x) − f j(x|c)| ∼ O(cj)

j

cj
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Boyd's moral principle

Chebyshev polynomials are the most widely used basis

63 / 94



Boyd's moral principle

Chebyshev polynomials are the most widely used basis

This is not purely theoretical but also from practical experience

63 / 94



Boyd's moral principle

John Boyd summarizes decades of experience with function approximation

with his moral principle:

When in doubt, use Chebyshev polynomials unless the solution is spatially

periodic, in which case an ordinary fourier series is better

Unless you are sure another set of basis functions is better, use Chebyshev

polynomials

Unless you are really, really sure another set of basis functions is better use

Chebyshev polynomials
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Grid point selection

We construct the approximating function by evaluating the basis functions on

a predefined grid in the domain of V
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Grid point selection

We construct the approximating function by evaluating the basis functions on

a predefined grid in the domain of 

If we have precisely  nodes, , we then have

V

n xi

n

∑
j=1

cjϕj(xi) = V (xi) ∀i = 1, 2, . . . , n
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

If we recover a set of values at our interpolation nodes, ,
we can then

simply invert  and right multiply it by  to recover our coefficients

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n

V ∗(xi)

Φ y
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Grid point selection

We can write this problem more compactly as

where

 is the column vector of 

 is the column vector of coefficients 

 is an  matrix of the  basis functions evaluated at the  points

If we recover a set of values at our interpolation nodes, ,
we can then

simply invert  and right multiply it by  to recover our coefficients

How do we select our set of nodes ?

Φc = y (interpolation equation)

y V (xi)

c cj

Φ n × n n n

V ∗(xi)

Φ y

xi
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Chebyshev strikes again

A good selection of points are called Chebyshev nodes
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Chebyshev strikes again

A good selection of points are called Chebyshev nodes

These are simply the roots of the Chebyshev polynomials on the domain 

[−1, 1]

67 / 94



Chebyshev strikes again

A good selection of points are called Chebyshev nodes

These are simply the roots of the Chebyshev polynomials on the domain 

They are given by

for some Chebyshev polynomial of degree 

[−1, 1]

xk = cos( π) , k = 1, . . . , n
2k − 1

2n

n
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Chebyshev strikes again

Mathematically, these also help reduce error in our approximation

xk = cos( π) , k = 1, . . . , n
2k − 1

2n
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Chebyshev strikes again

Mathematically, these also help reduce error in our approximation

We can gain intuition by looking at a graph of where Chebyshev nodes are

located, plot them yourself!

xk = cos( π) , k = 1, . . . , n
2k − 1

2n
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Chebyshev node function

 cheb_nodes(n) = cos.(pi * (2*(1:n) .- 1)./(2n))

## cheb_nodes (generic function with 1 method)
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Chebyshev node locations
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Chebyshev node locations
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Chebyshev node locations
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Chebyshev zeros and alternative rep

The zeros tend to cluster quadratically towards the edges of the domain
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but not at a node
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Chebyshev zeros and alternative rep

The zeros tend to cluster quadratically towards the edges of the domain

You can think about this as projecting sequentially finer uniform grids from a

hemicircle onto the x-axis

Imagine areas of our approximating function near the center of our domain

but not at a node

These areas benefit from having multiple nodes on both the left and right
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Chebyshev node locations

This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions
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Chebyshev node locations

This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions

If we moved to an area closer to the edge of the domain, there may only one

node
to the left or right of it providing information on what the value of our

approximating function should be
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Chebyshev node locations

This provides more information for these off-node areas and allows them to

be better approximated
because we know whats happening nearby in several

different directions

If we moved to an area closer to the edge of the domain, there may only one

node
to the left or right of it providing information on what the value of our

approximating function should be

Therefore, it's best to put more nodes in these areas to shore up this

informational deficit
and get good approximation quality near the edges of

our domain
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Discrete states

How do we handle a discrete state  when trying to approximate ?Sd V
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Discrete states

How do we handle a discrete state  when trying to approximate ?

Just like you might expect, we effectively have a different approximating

function over the continuous states for each value of 

Sd V

Sd
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Multi-dimensional approximation

Thus far we have displayed the Chebyshev basis in only one dimension
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Multi-dimensional approximation

Thus far we have displayed the Chebyshev basis in only one dimension

We approximate functions of some arbitrary dimension  by taking the

tensor of vectors of the one-dimensional Chebyshev polynomials

Construct a vector of polynomials  for dimensions 1

N

[ϕ1,1, ϕ1,2, ϕ1,3]
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Multi-dimensional approximation

Thus far we have displayed the Chebyshev basis in only one dimension

We approximate functions of some arbitrary dimension  by taking the

tensor of vectors of the one-dimensional Chebyshev polynomials

Construct a vector of polynomials  for dimensions 1

Construct a vector of polynomials  for dimension 2

N

[ϕ1,1, ϕ1,2, ϕ1,3]

[ϕ2,1, ϕ2,2, ϕ2,3]
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Multi-dimensional approximation

The tensor is just the product of every possibly polynomial pair which results

in:

[ϕ1,1ϕ2,1, ϕ1,1ϕ2,2, ϕ1,1ϕ2,3,

ϕ1,2ϕ2,1, ϕ1,2ϕ2,2, ϕ1,2ϕ2,3,

ϕ1,3ϕ2,1, ϕ1,3ϕ2,2, ϕ1,3ϕ2,3]
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Multi-dimensional approximation

The tensor is just the product of every possibly polynomial pair which results

in:

We can then solve for the 9 coefficients on these two dimensional polynomials

[ϕ1,1ϕ2,1, ϕ1,1ϕ2,2, ϕ1,1ϕ2,3,

ϕ1,2ϕ2,1, ϕ1,2ϕ2,2, ϕ1,2ϕ2,3,

ϕ1,3ϕ2,1, ϕ1,3ϕ2,2, ϕ1,3ϕ2,3]
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Multi-dimensional approximation

The computational complexity here grows exponentially: 

total # points = (points per  state)# states
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Multi-dimensional approximation

The computational complexity here grows exponentially: 

Exponential complexity is costly, often called the Curse of dimensionality

total # points = (points per  state)# states
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Finite element methods

An alternative to spectral methods are finite element methods

80 / 94
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An alternative to spectral methods are finite element methods

Finite element methods use basis functions that are non-zero over

.subintervals of the domain of our grid
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Finite element methods

An alternative to spectral methods are finite element methods

Finite element methods use basis functions that are non-zero over

.subintervals of the domain of our grid

For example, we can use splines (piecewise polynomials) over segments of our

domains
where they are spliced together at prespecified breakpoints, which

are called knots
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Finite element methods

The higher the order the polynomial we use, the higher the order of

derivatives that we can preserve continuity at the knots
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Finite element methods

The higher the order the polynomial we use, the higher the order of

derivatives that we can preserve continuity at the knots

For example, a linear spline yields an approximating function that is

continuous,
but its first derivatives are discontinuous step functions unless

the underlying value function happened to be precisely linear
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Finite element methods

The higher the order the polynomial we use, the higher the order of

derivatives that we can preserve continuity at the knots

For example, a linear spline yields an approximating function that is

continuous,
but its first derivatives are discontinuous step functions unless

the underlying value function happened to be precisely linear

If we have a quadratic spline, we can also preserve the first derivative's

continuity at the knots,
but the second derivative will be a discontinuous step

function
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Finite element methods

As we increase the order of the spline polynomial, we have increasing

numbers of coefficients we need to determine
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Finite element methods

As we increase the order of the spline polynomial, we have increasing

numbers of coefficients we need to determine

To determine these additional coefficients using the same number of points,

we require additional conditions that must be satisfied

These are what ensure continuity of higher order derivatives at the knots as

the degree of the spline grows
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Finite element methods

With linear splines, each segment of our approximating function is defined by

a linear function
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Finite element methods

With linear splines, each segment of our approximating function is defined by

a linear function

For each of these linear components, we need to solve for 1 coefficient and 1

intercept term
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Finite element methods

With linear splines, each segment of our approximating function is defined by

a linear function

For each of these linear components, we need to solve for 1 coefficient and 1

intercept term

Each end of a linear segment must equal the function value at the knots
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Finite element methods

We have two conditions and two unknowns for each segment: this is a simple

set of linear equations that we can solve
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Finite element methods

We have two conditions and two unknowns for each segment: this is a simple

set of linear equations that we can solve

In numerical models we typically don't use linear splines because we often

care about the quality
of approximation of higher order derivatives, cubic

splines are more common
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knotsN + 1
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knots

We need  cubic polynomials when entails  coefficients to determine

We can obtain  equations by ensuring that the approximating

function is continuous at all interior knots,
and its first and second derivatives

are continuous at all interior knots 

N + 1

N 4N

3(N − 1)

[3 × (N + 1 − 1 − 1)]
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Cubic splines

Suppose we wish to approximate using a cubic spline on  knots

We need  cubic polynomials when entails  coefficients to determine

We can obtain  equations by ensuring that the approximating

function is continuous at all interior knots,
and its first and second derivatives

are continuous at all interior knots 

This means that the value of the left cubic polynomial equals the value of the

right cubic polynomial at each interior knot

N + 1

N 4N

3(N − 1)

[3 × (N + 1 − 1 − 1)]
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Cubic splines

Ensuring the approximating function equals the function's value at all of the

nodes adds another  equationsN + 1
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N + 1

4N − 2 4N

86 / 94



Cubic splines

Ensuring the approximating function equals the function's value at all of the

nodes adds another  equations

We therefore have a total of  equations for  coefficients

We need two more conditions to solve the problem
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Cubic splines

Ensuring the approximating function equals the function's value at all of the

nodes adds another  equations

We therefore have a total of  equations for  coefficients

We need two more conditions to solve the problem

What is often used is that the approximating function's first or second

derivative matches that of the function at the end points

N + 1

4N − 2 4N
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Splines can potentially handle lots of curvature

If the derivative is of interest for optimization, or to recover some variable of

economic meaning,
then we may need to have these derivatives preserved

well at the knots
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Splines can potentially handle lots of curvature

If the derivative is of interest for optimization, or to recover some variable of

economic meaning,
then we may need to have these derivatives preserved

well at the knots

One large benefit of splines is that they can handle kinks or areas of high

curvature

How?

By having the modeler place many knots in a concentrated region

Useful spline packages out there: Dierckx , Interpolations , QuantEcon

87 / 94



Code it up!

Let's code up our own linear spline approximation function

linear_spline_approx(f, knots) ,
where f  is the function we are

approximating and knots  are the knots

Have it return a function a function spline_eval  that takes in

evaluation_points  as an argument
where evaluation_points  are the points

we want to evaluate the spline approximating function at

Hint: Linear splines are pretty easy, given two points  and ,

the spline in between these points is given by

(xi+1, yi+1) (xi, yi)

y(x) = yi + (x − xi)
yi+1 − yi

xi+1 − xi 88 / 94



Spline approximator

function linear_spline_approx(f, knots)

function spline_eval(evaluation_points)

         prev_knot = knots[1] # initialize previous knot

if !(typeof(evaluation_points) <: Number) # if using multiple points

             y_eval = similar(evaluation_points)

             y_index = 1

for knot in knots[2:end]

                 current_points = evaluation_points[prev_knot .<= evaluation_points .< knot]

                 y_eval[y_index:y_index + length(current_points) - 1] =

                     f(prev_knot) .+ (f(knot) - f(prev_knot))/(knot - prev_knot)*(current_points 

                 prev_knot = knot

                 y_index += length(current_points)

end

else # if using just a single point

for knot in knots[2:end]

if prev_knot .<= evaluation_points .< knot

                     y_eval = f(prev_knot) + (f(knot) - f(prev_knot))/(knot - prev_knot)*(evaluat

end

                 prev_knot = knot

end

end
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Plot

 f(x) = sin(x)

## f (generic function with 1 method)

 knots_coarse = 0:pi/2:2pi;

 spline_func_coarse = linear_spline_approx(f, knots_coarse);

 knots_fine = 0:pi/4:2pi;

 spline_func_fine = linear_spline_approx(f, knots_fine);

 knots_superfine = 0:pi/12:2pi;

 spline_func_superfine = linear_spline_approx(f, knots_superfine);

 x_vals =0:.05:2pi;

 y_vals_coarse = spline_func_coarse(x_vals);

 y_vals_fine = spline_func_fine(x_vals);

 y_vals_superfine = spline_func_superfine(x_vals);
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Plot
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