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Building a dynamic economic model

We need 5 things for a dynamic economic model

1. Controls: what variables are we optimizing, what decisions do the

economic agents make?

2. States: What are the variables that change over time and interact with the

controls?

3. Payoff: What is the single-period payoff function? What's our reward?

4. Transition equations: How do the state variables evolve over time?

5. Planning horizon: When does our problem terminate? Never? 100 years?
2 / 36
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Two types of solutions

Dynamic problems can generally be solved in two ways

Open-loop: treat the model as one optimization problem

Transitions act like constraints, solve for optimal controls at each time

Drawback: solutions will be just a function of time so we can't introduce

uncertainty, strategic behavior, etc
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Two types of solutions

Feedback: treat the model as a bunch of single-period optimization problems

with the immediate payoff and the continuation value

Yields a solution that is a function of states

Permits uncertainty, game structures

Drawback: need to solve for the continuation value function or policy

function
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Markov chains

Dynamic models in economic models are typically Markovian

A stochastic process  is said to have the Markov property if for all 

and all 

The distribution of the next vector in the sequence (i.e. the distribution of next

period's state) is a function of only the current vector (state)

The Markov property is necessary for the feedback representation

{xt} k ≥ 1

t

Prob(xt+1|xt, xt−1, . . . , xt−k) = Prob(xt+1|xt)
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Markov chains

We characterize stochastic state transitions with Markov chains

A Markov chain is characterized by:

1. -dimensional state space with vectors ,  where  is an 

unit vector whose th entry is 1 and all others are 0

2. An  transition matrix  which captures the probability of transitioning

from one point of the state space to another point of the state space next

period

3.  vector  whose th value is the probability of being in state  at time

0: 

n ei i = 1, . . . , n ei n × 1

i

n × n P

n × 1 π0 i i

π0i = Prob(x0 = ei)
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Markov chains

 is given by

We need one assumption:

For ,  and  satisfies: 

P

Pij = Prob(xt+1 = ej|xt = ei)

i = 1, . . , n ∑n
j=1 Pij = 1 π0 ∑n

i=1 π0i = 1
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Markov chains

Nice property of Markov chains:


We can use  to determine the probability of moving to another state in two

periods by  since

P

P 2

Prob(xt+2 = ej|xt = ei)

=
n

∑
h=1

Prob(xt+2 = ej|xt+1 = eh)Prob(xt+1 = eh|xt = ei)

=
n

∑
h=1

PihPhj = P 2
ij
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Markov chains

iterate on this to show that

Prob(xt+2 = ej|xt = ei) =
n

∑
h=1

PihPhj = P 2
ij

Prob(xt+k = ej|xt = ei) = P k
ij
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Dynamic programming

Start with a general sequential problem to set up the basic recursive/feedback

dynamic optimization problem

Let , the economic agent selects a sequence of controls,  to

maximize

subject to  and with  given

β ∈ (0, 1) {ut}
∞
t=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut) x0
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Dynamic programming

If we want to maximize the PV of total utility:

we have a tough problem, we need to select a full sequence of s

max
u0,u1,…,un,…

∞

∑
t=0

βtr(xt, ut)

ut
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Dynamic programming

If we want to maximize the PV of total utility:

we have a tough problem, we need to select a full sequence of s

Dynamic programming makes this simpler

max
u0,u1,…,un,…

∞

∑
t=0

βtr(xt, ut)

ut
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Dynamic programming

The idea behind dynamic programmming (like most of what we do) is to

exchange solving one hard problem for solving a bunch of easier problems

The essence of dynamic programming is summed up in Bellman's Principle of

Optimality
Principle of Optimality:

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first

decision

In simpler terms: your current optimal decision is only dependent on the

current state, not your past actions 12 / 36
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Dynamic programming

In dynamic programming we really just solve for one object

This object is a function that tells us what is the optimal action to take given

the current state

The tricky thing about this, is how we actually solve for this function
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Dynamic programming

Policy functions or value functions tell us how to take optimal actions

They either tell you your optimal action given the state, or your maximized

payoff given the state

Once we have either of these functions we can solve for the optimal action in

any given state of the world and solve our problem

14 / 36

Dynamic programming

Assume  is concave, continuously differentiable, and the state space is

convex and compact
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Dynamic programming

Assume  is concave, continuously differentiable, and the state space is

convex and compact

We want to recover a policy function  which maps the current state  into the

current control , such that the sequence  generated by iterating

starting from , solves our original optimization problem

r

h xt

ut {us}∞
s=0

ut = h(xt)

xt+1 = g(xt, ut),

x0
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Value functions

Consider a function , the continuation value function where

subject to the transition equation: 

The value function defines the maximum value (payoff) of our problem as a

function of the state

V (x)

V (x0) = max
{us}∞

s=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut)
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Value functions

Consider a function , the continuation value function where

subject to the transition equation: 

The value function defines the maximum value (payoff) of our problem as a

function of the state

It's the dynamic indirect utility function

V (x)

V (x0) = max
{us}∞

s=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut)
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Value functions

Suppose we know , then we can solve for the policy function  by solving

for each 

where  and primes on state variables indicate next period

V (x) h

x ∈ X

max
u

r(x, u) + βV (x′)

x′ = g(x, u)
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Value functions

Suppose we know , then we can solve for the policy function  by solving

for each 

where  and primes on state variables indicate next period

Conditional on having  we can solve our dynamic programming problem

Instead of solving for an infinite dimensional set of policies, we instead find

the  and  that solves the continuum of maximization problems, where

there is a unique maximization problem for each 

V (x) h

x ∈ X

max
u

r(x, u) + βV (x′)

x′ = g(x, u)

V (x)

V (x) h

x
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Bellman equations

Issue: How do we know  when it depends on future (optimized) actions?

Define the Bellman equation

 maximizes the right hand side of the Bellman

V (x)

V (x) = max
u

r(x, u) + βV [g(x, u)]

h(x)
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Bellman equations

The policy function satisfies

V (x) = r[x, h(x)] + βV {g[x, h(x)]}
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Bellman equations

The policy function satisfies

Solving the problem yields a solution that is a function, 

This is a recursive problem, one of the workhorse solution methods exploits

this recursion and contraction mapping properties of the Bellman operator to

solve for 

V (x) = r[x, h(x)] + βV {g[x, h(x)]}

V (x)

V (x)
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Solution properties

Under standard assumptions we have that

1. The solution to the Bellman equation, , is strictly concave

2. The solution is approached in the limit as  by iterations on:


, given any bounded and continuous 

and our transition equation

3. There exists a unique and time-invariant optimal policy function 

where  maximizes the right hand side of the Bellman

4. The value function  is differentiable

V (x)

j → ∞

Vj+1(x) = maxu r(x, u) + βVj(x′) V0

ut = h(xt)

h

V (x)

20 / 36

Euler equations

Euler equations are dynamic efficiency conditions: they equalize the marginal

effects of an optimal policy over time

E.g: set the current marginal benefit, energy from burning fossil fuels, with the

future marginal cost, global warming
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Euler equations

Euler equations are dynamic efficiency conditions: they equalize the marginal

effects of an optimal policy over time

E.g: set the current marginal benefit, energy from burning fossil fuels, with the

future marginal cost, global warming

1. We have a stock of capital  that depreciates at rate 

2. We can invest to increase our future capital $I_t$$

3. Per-period payoff  from consuming output 

4. Discount factor is 

Kt δ ∈ (0, 1)

U(Ct) Ct

β ∈ (0, 1)
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Euler equations

The Bellman equation is

V (Kt) = max
Ct

{u(Ct) + βV (Kt+1)}

subject to:  Kt+1 = (1 − δ)Kt − Ct
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The FOC with respect to consumption is

Envelope theorem gives us

V (Kt) = max
Ct

{u(Ct) + βV (Kt+1)}

subject to:  Kt+1 = (1 − δ)Kt − Ct

u′(Ct) = β VK(Kt+1)

VK(Kt) = β δ VK(Kt+1)
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The FOC with respect to consumption is

Envelope theorem gives us

u′(Ct) = β VK(Kt+1)

VK(Kt) = β (1 − δ) VK(Kt+1)
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Euler equations

The FOC with respect to consumption is

Envelope theorem gives us

Advance both by one period since they must hold for all 

u′(Ct) = β VK(Kt+1)

VK(Kt) = β (1 − δ) VK(Kt+1)

t

u′(Ct+1) = β VK(Kt+2)

VK(Kt+1) = β (1 − δ) VK(Kt+2)
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Euler equations

Substitute the time  and time  FOCs into our time  envelope

condition

t t + 1 t + 1

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations

Substitute the time  and time  FOCs into our time  envelope

condition

LHS is marginal benefit of consumption, RHS is marginal cost of consumption

along an optimal path

t t + 1 t + 1

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations

LHS: marginal benefit of consumption
RHS: marginal cost of lower utility from

more less output because of a lower future capital stock

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations: no-arbitrage

Euler equations are no-arbitrage conditions

Suppose we're on the optimal capital path and want to deviate by cutting back

consumption
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Euler equations: no-arbitrage

Euler equations are no-arbitrage conditions

Suppose we're on the optimal capital path and want to deviate by cutting back

consumption

Yields a marginal cost today less consumption utility

The benefit is that we have  units of greater capital tomorrow after

depreciation which lets us increase our consumption at some utility discount

rate 

1 − δ

β
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Euler equations: no-arbitrage

If this deviation (or deviating by investing more today) were profitable, we

would do it

 the optimal policy must have zero additional profit opportunities: this is

what the Euler equation defines

→
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We will focus on deterministic problems but this easily ports to stochastic
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Basic theory

Here we finish up the basic theory pieces we need

We will focus on deterministic problems but this easily ports to stochastic

problems

Final two pieces

1. Stationarity: does not depend explicitly on time

2. Discounting: , the future matters but not as much as today

Discounting and bounded payoffs ensures total value is bounded

β ∈ (0, 1)
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Basic theory

The general problem can be written recursively as

V (s0) = max
u0∈U(s0)

r(st, ut) + β V (s1)

subject to: st+1 = g(st, ut)
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Value function existence and uniqueness

Reformulate the problem as,

where  is our set of feasible states next period

V (s) = max
s′∈Γ(s)

r(s, s′) + β V (s′), ∀s ∈ S

Γ(s)
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Value function existence and uniqueness

Reformulate the problem as,

where  is our set of feasible states next period

There exists a solution to the Bellman under a (particular) set of sufficient

conditions

V (s) = max
s′∈Γ(s)

r(s, s′) + β V (s′), ∀s ∈ S

Γ(s)
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Value function existence and uniqueness

If the following are true:

1.  is real-valued, continuous and bounded

2. 

3. the feasible set of states for next period is non-empty, compact, and

continuous

then there exists a unique value function  that solves the Bellman

equation

r(st, ut)

β ∈ (0, 1)

V (s)
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Intuitive sketch of the proof

Define an operator  asT

T (W)(s) = max
s′∈Γ(s)
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Intuitive sketch of the proof

Define an operator  as

This operator takes some value function , maximizes it, and returns

another 

It is easy to see that any  that satisfies  solves the

Bellman equation

T

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S

W(s)

T (W)(s)

V (s) V (s) = T (V )(s) ∀s ∈ S
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Intuitive sketch of the proof

We simply search for the fixed point of  to solve our dynamic problem,

but how do we find the fixed point?

T (W)(s) = max
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Intuitive sketch of the proof

We simply search for the fixed point of  to solve our dynamic problem,

but how do we find the fixed point?

First we must show that a way exists by showing that  is a contraction:


as we iterate using the  operator, we will get closer and closer to the fixed

point

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S

T (W)

T (W)

T
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Blackwell's sufficient conditions for a contraction are

1. Monotonicity: if , then 

2. Discounting: there exists a  such that 

Monotonicity holds under our maximization

Discounting reflects that we must be discounting the future

If these two conditions hold then we have a contraction with modulus 

Why do we care this is a contraction?

W(s) ≥ Q(s) ∀s ∈ S T (W)(s) ≥ T (Q)(s) ∀s ∈ S

β ∈ (0, 1)

T (W + k)(s) ≤ T (W)(s) + β k

β
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So we can take advantage of the contraction mapping theorem which states:
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Intuitive sketch of the proof

So we can take advantage of the contraction mapping theorem which states:

1.  has a unique fixed point

2. 

3. We can start from any arbitrary initial function , iterate using  and

reach the fixed point

T

T (V ∗) = V ∗

W T
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Function iteration

What this tells us is we can solve for  using a variant of function iterationV
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What this tells us is we can solve for  using a variant of function iteration

Before we were evaluating a function at value , and then updating that value

until it converges to a fixed point 

Here we are evaluating a function  of functions , updating the function 

until it converges to a fixed point 

Even though it seems a bit more complicated the solution concept is exactly

the same
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Function iteration

What this tells us is we can solve for  using a variant of function iteration

Before we were evaluating a function at value , and then updating that value

until it converges to a fixed point 

Here we are evaluating a function  of functions , updating the function 

until it converges to a fixed point 

Even though it seems a bit more complicated the solution concept is exactly

the same

Next we will start learning how to do this

V

x

x∗

T V V

V ∗
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Building a dynamic economic model

We need 5 things for a dynamic economic model

1. Controls: what variables are we optimizing, what decisions do the

economic agents make?

2. States: What are the variables that change over time and interact with the

controls?

3. Payoff: What is the single-period payoff function? What's our reward?

4. Transition equations: How do the state variables evolve over time?

5. Planning horizon: When does our problem terminate? Never? 100 years?
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Open-loop: treat the model as one optimization problem

Transitions act like constraints, solve for optimal controls at each time

Drawback: solutions will be just a function of time so we can't introduce

uncertainty, strategic behavior, etc
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Two types of solutions

Feedback: treat the model as a bunch of single-period optimization problems

with the immediate payoff and the continuation value

Yields a solution that is a function of states

Permits uncertainty, game structures

Drawback: need to solve for the continuation value function or policy

function

4 / 36
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Markov chains

Dynamic models in economic models are typically Markovian

A stochastic process  is said to have the Markov property if for all 

and all 

The distribution of the next vector in the sequence (i.e. the distribution of next

period's state) is a function of only the current vector (state)

The Markov property is necessary for the feedback representation

{xt} k ≥ 1

t

Prob(xt+1|xt, xt−1, . . . , xt−k) = Prob(xt+1|xt)

5 / 36
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Markov chains

We characterize stochastic state transitions with Markov chains

A Markov chain is characterized by:

1. -dimensional state space with vectors ,  where  is an 

unit vector whose th entry is 1 and all others are 0

2. An  transition matrix  which captures the probability of transitioning

from one point of the state space to another point of the state space next

period

3.  vector  whose th value is the probability of being in state  at time

0: 

n ei i = 1, . . . , n ei n × 1

i

n × n P

n × 1 π0 i i

π0i = Prob(x0 = ei)

6 / 36



Markov chains

 is given byP

Pij = Prob(xt+1 = ej|xt = ei)
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Markov chains

 is given by

We need one assumption:

For ,  and  satisfies: 

P

Pij = Prob(xt+1 = ej|xt = ei)

i = 1, . . , n ∑n

j=1 Pij = 1 π0 ∑n

i=1 π0i = 1
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Markov chains

Nice property of Markov chains:


We can use  to determine the probability of moving to another state in two

periods by  since

P

P 2

Prob(xt+2 = ej|xt = ei)

=
n

∑
h=1

Prob(xt+2 = ej|xt+1 = eh)Prob(xt+1 = eh|xt = ei)

=
n

∑
h=1

PihPhj = P 2
ij
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Markov chains
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ij
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Markov chains

iterate on this to show that

Prob(xt+2 = ej|xt = ei) =
n

∑
h=1

PihPhj = P 2
ij
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Markov chains

iterate on this to show that

Prob(xt+2 = ej|xt = ei) =
n

∑
h=1

PihPhj = P 2
ij

Prob(xt+k = ej|xt = ei) = P k
ij

9 / 36



Dynamic programming

Start with a general sequential problem to set up the basic recursive/feedback

dynamic optimization problem
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Dynamic programming

Start with a general sequential problem to set up the basic recursive/feedback

dynamic optimization problem

Let , the economic agent selects a sequence of controls,  to

maximize

subject to  and with  given

β ∈ (0, 1) {ut}
∞
t=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut) x0
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Dynamic programming

If we want to maximize the PV of total utility:

we have a tough problem, we need to select a full sequence of s

max
u0,u1,…,un,…

∞

∑
t=0

βtr(xt, ut)

ut
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Dynamic programming

If we want to maximize the PV of total utility:

we have a tough problem, we need to select a full sequence of s

Dynamic programming makes this simpler

max
u0,u1,…,un,…

∞

∑
t=0

βtr(xt, ut)

ut

11 / 36



Dynamic programming

The idea behind dynamic programmming (like most of what we do) is to

exchange solving one hard problem for solving a bunch of easier problems
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Dynamic programming

The idea behind dynamic programmming (like most of what we do) is to

exchange solving one hard problem for solving a bunch of easier problems

The essence of dynamic programming is summed up in Bellman's Principle of

Optimality
Principle of Optimality:

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first

decision

In simpler terms: your current optimal decision is only dependent on the

current state, not your past actions 12 / 36
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In dynamic programming we really just solve for one object

This object is a function that tells us what is the optimal action to take given

the current state

The tricky thing about this, is how we actually solve for this function
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Dynamic programming

Policy functions or value functions tell us how to take optimal actions

They either tell you your optimal action given the state, or your maximized

payoff given the state

Once we have either of these functions we can solve for the optimal action in

any given state of the world and solve our problem
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Dynamic programming

Assume  is concave, continuously differentiable, and the state space is

convex and compact
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Dynamic programming

Assume  is concave, continuously differentiable, and the state space is

convex and compact

We want to recover a policy function  which maps the current state  into the

current control , such that the sequence  generated by iterating

starting from , solves our original optimization problem

r

h xt

ut {us}∞
s=0

ut = h(xt)

xt+1 = g(xt, ut),

x0
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Value functions

Consider a function , the continuation value function where

subject to the transition equation: 

The value function defines the maximum value (payoff) of our problem as a

function of the state

V (x)

V (x0) = max
{us}∞

s=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut)
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Value functions

Consider a function , the continuation value function where

subject to the transition equation: 

The value function defines the maximum value (payoff) of our problem as a

function of the state

It's the dynamic indirect utility function

V (x)

V (x0) = max
{us}∞

s=0

∞

∑
t=0

βtr(xt, ut)

xt+1 = g(xt, ut)
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Value functions

Suppose we know , then we can solve for the policy function  by solving

for each 

where  and primes on state variables indicate next period

V (x) h

x ∈ X

max
u

r(x, u) + βV (x′)

x′ = g(x, u)
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Value functions

Suppose we know , then we can solve for the policy function  by solving

for each 

where  and primes on state variables indicate next period

Conditional on having  we can solve our dynamic programming problem

Instead of solving for an infinite dimensional set of policies, we instead find

the  and  that solves the continuum of maximization problems, where

there is a unique maximization problem for each 

V (x) h

x ∈ X

max
u

r(x, u) + βV (x′)

x′ = g(x, u)

V (x)

V (x) h

x

17 / 36



Bellman equations

Issue: How do we know  when it depends on future (optimized) actions?V (x)
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Define the Bellman equation

V (x)

V (x) = max
u

r(x, u) + βV [g(x, u)]
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Bellman equations

Issue: How do we know  when it depends on future (optimized) actions?

Define the Bellman equation

 maximizes the right hand side of the Bellman

V (x)

V (x) = max
u

r(x, u) + βV [g(x, u)]

h(x)

18 / 36



Bellman equations

The policy function satisfies

V (x) = r[x, h(x)] + βV {g[x, h(x)]}
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Solving the problem yields a solution that is a function, 
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Bellman equations

The policy function satisfies

Solving the problem yields a solution that is a function, 

This is a recursive problem, one of the workhorse solution methods exploits

this recursion and contraction mapping properties of the Bellman operator to

solve for 

V (x) = r[x, h(x)] + βV {g[x, h(x)]}

V (x)

V (x)

19 / 36



Solution properties

Under standard assumptions we have that

1. The solution to the Bellman equation, , is strictly concave

2. The solution is approached in the limit as  by iterations on:


, given any bounded and continuous 

and our transition equation

3. There exists a unique and time-invariant optimal policy function 

where  maximizes the right hand side of the Bellman

4. The value function  is differentiable

V (x)

j → ∞

Vj+1(x) = maxu r(x, u) + βVj(x′) V0

ut = h(xt)

h

V (x)

20 / 36



Euler equations

Euler equations are dynamic efficiency conditions: they equalize the marginal

effects of an optimal policy over time

E.g: set the current marginal benefit, energy from burning fossil fuels, with the

future marginal cost, global warming
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Euler equations

Euler equations are dynamic efficiency conditions: they equalize the marginal

effects of an optimal policy over time

E.g: set the current marginal benefit, energy from burning fossil fuels, with the

future marginal cost, global warming

1. We have a stock of capital  that depreciates at rate 

2. We can invest to increase our future capital $I_t$$

3. Per-period payoff  from consuming output 

4. Discount factor is 

Kt δ ∈ (0, 1)

U(Ct) Ct

β ∈ (0, 1)

21 / 36



Euler equations

The Bellman equation is

V (Kt) = max
Ct

{u(Ct) + βV (Kt+1)}

subject to:  Kt+1 = (1 − δ)Kt − Ct
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Euler equations

The Bellman equation is

The FOC with respect to consumption is

Envelope theorem gives us

V (Kt) = max
Ct

{u(Ct) + βV (Kt+1)}

subject to:  Kt+1 = (1 − δ)Kt − Ct

u′(Ct) = β VK(Kt+1)

VK(Kt) = β δ VK(Kt+1)
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Euler equations

The FOC with respect to consumption is

Envelope theorem gives us

u′(Ct) = β VK(Kt+1)

VK(Kt) = β (1 − δ) VK(Kt+1)
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Euler equations

The FOC with respect to consumption is

Envelope theorem gives us

Advance both by one period since they must hold for all 

u′(Ct) = β VK(Kt+1)

VK(Kt) = β (1 − δ) VK(Kt+1)

t

u′(Ct+1) = β VK(Kt+2)

VK(Kt+1) = β (1 − δ) VK(Kt+2)
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Euler equations

Substitute the time  and time  FOCs into our time  envelope

condition

t t + 1 t + 1

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations

Substitute the time  and time  FOCs into our time  envelope

condition

LHS is marginal benefit of consumption, RHS is marginal cost of consumption

along an optimal path

t t + 1 t + 1

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations

LHS: marginal benefit of consumption
RHS: marginal cost of lower utility from

more less output because of a lower future capital stock

u′(Ct) = β (1 − δ) u′(Ct+1)
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Euler equations: no-arbitrage

Euler equations are no-arbitrage conditions

Suppose we're on the optimal capital path and want to deviate by cutting back

consumption
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Euler equations: no-arbitrage

Euler equations are no-arbitrage conditions

Suppose we're on the optimal capital path and want to deviate by cutting back

consumption

Yields a marginal cost today less consumption utility

The benefit is that we have  units of greater capital tomorrow after

depreciation which lets us increase our consumption at some utility discount

rate 

1 − δ

β
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Euler equations: no-arbitrage

If this deviation (or deviating by investing more today) were profitable, we

would do it

 the optimal policy must have zero additional profit opportunities: this is

what the Euler equation defines

→
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Basic theory

Here we finish up the basic theory pieces we need

We will focus on deterministic problems but this easily ports to stochastic

problems
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Basic theory

Here we finish up the basic theory pieces we need

We will focus on deterministic problems but this easily ports to stochastic

problems

Final two pieces

1. Stationarity: does not depend explicitly on time

2. Discounting: , the future matters but not as much as today

Discounting and bounded payoffs ensures total value is bounded

β ∈ (0, 1)
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Basic theory

The general problem can be written recursively as

V (s0) = max
u0∈U(s0)

r(st, ut) + β V (s1)

subject to: st+1 = g(st, ut)

29 / 36



Value function existence and uniqueness

Reformulate the problem as,

where  is our set of feasible states next period

V (s) = max
s′∈Γ(s)

r(s, s′) + β V (s′), ∀s ∈ S

Γ(s)
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Value function existence and uniqueness

Reformulate the problem as,

where  is our set of feasible states next period

There exists a solution to the Bellman under a (particular) set of sufficient

conditions

V (s) = max
s′∈Γ(s)

r(s, s′) + β V (s′), ∀s ∈ S

Γ(s)
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Value function existence and uniqueness

If the following are true:
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Value function existence and uniqueness

If the following are true:

1.  is real-valued, continuous and bounded

2. 

3. the feasible set of states for next period is non-empty, compact, and

continuous

r(st, ut)
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Value function existence and uniqueness

If the following are true:

1.  is real-valued, continuous and bounded

2. 

3. the feasible set of states for next period is non-empty, compact, and

continuous

then there exists a unique value function  that solves the Bellman

equation

r(st, ut)

β ∈ (0, 1)

V (s)
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Intuitive sketch of the proof

Define an operator  asT

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S
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Intuitive sketch of the proof

Define an operator  as

This operator takes some value function , maximizes it, and returns

another 

It is easy to see that any  that satisfies  solves the

Bellman equation

T

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S

W(s)

T (W)(s)

V (s) V (s) = T (V )(s) ∀s ∈ S
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Intuitive sketch of the proof

We simply search for the fixed point of  to solve our dynamic problem,

but how do we find the fixed point?

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S

T (W)
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Intuitive sketch of the proof

We simply search for the fixed point of  to solve our dynamic problem,

but how do we find the fixed point?

First we must show that a way exists by showing that  is a contraction:


as we iterate using the  operator, we will get closer and closer to the fixed

point

T (W)(s) = max
s′∈Γ(s)

r(s, s′) + β W(s′), ∀s ∈ S

T (W)

T (W)

T
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Blackwell's sufficient conditions for a contraction are
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Intuitive sketch of the proof

Blackwell's sufficient conditions for a contraction are

1. Monotonicity: if , then 

2. Discounting: there exists a  such that 

Monotonicity holds under our maximization

Discounting reflects that we must be discounting the future

If these two conditions hold then we have a contraction with modulus 

Why do we care this is a contraction?

W(s) ≥ Q(s) ∀s ∈ S T (W)(s) ≥ T (Q)(s) ∀s ∈ S

β ∈ (0, 1)

T (W + k)(s) ≤ T (W)(s) + β k

β
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Intuitive sketch of the proof

So we can take advantage of the contraction mapping theorem which states:
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Intuitive sketch of the proof

So we can take advantage of the contraction mapping theorem which states:

1.  has a unique fixed point

2. 

3. We can start from any arbitrary initial function , iterate using  and

reach the fixed point

T

T (V ∗) = V
∗

W T
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Function iteration

What this tells us is we can solve for  using a variant of function iterationV
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until it converges to a fixed point 
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until it converges to a fixed point 

Even though it seems a bit more complicated the solution concept is exactly
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Function iteration

What this tells us is we can solve for  using a variant of function iteration

Before we were evaluating a function at value , and then updating that value

until it converges to a fixed point 

Here we are evaluating a function  of functions , updating the function 

until it converges to a fixed point 

Even though it seems a bit more complicated the solution concept is exactly

the same

Next we will start learning how to do this

V

x

x
∗

T V V

V
∗
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