
Software and stuff

Necessary things to do:

Install the QuantEcon Julia package

Install the Optim Julia package

2 / 113

Optimization

All econ problems are optimization problems

3 / 113

Optimization

All econ problems are optimization problems

Min costs

3 / 113

Optimization

All econ problems are optimization problems

Min costs

Max PV E[welfare]

3 / 113

Optimization

Some are harder than others:

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

One input profit maximization problem: easy

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

One input profit maximization problem: easy

N-input profit maximization with learning and forecasts: hard

4 / 113

Things we will do

1. Linear rootfinding

2. Non-linear rootfinding

3. Complementarity problems

4. Non-linear unconstrained maximization/minimization

5. Non-linear constrained maximization/minimization

5 / 113

Linear rootfinding

How do we solve these?

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Ax = b

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Invert

Ax = b

A

x = A−1b

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Invert

THE END

Ax = b

A

x = A−1b

6 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

Fixed point problems are rootfinding problems:

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

Fixed point problems are rootfinding problems:

f(x) = 0, f : R → R
n

g(x) = x ⇒ f(x) ≡ g(x) − x = 0
7 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

8 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

If a continuous real-valued function on a given interval takes on two values

and , it achieves all values in the set somewhere in its domain

a

b [a, b]

8 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

If a continuous real-valued function on a given interval takes on two values

and , it achieves all values in the set somewhere in its domain

How can this motivate an algorithm to find the root of a function?

a

b [a, b]

8 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

9 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

We know a root exists by IVT, what's an efficient way to find it?

9 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

We know a root exists by IVT, what's an efficient way to find it?

Continually bisect the interval!

9 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of , [a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

[a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

3. Check the sign of the midpoint, if it has the same sign as the lower bound a

root must be the right subinterval

[a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

3. Check the sign of the midpoint, if it has the same sign as the lower bound a

root must be the right subinterval

4. Select the midpoint of ...

Write out the code to do it

[a, b] (a + b)/2

[(a + b)/2, b]

10 / 113

The bisection algorithm

bi i (i f i i h h d)

function bisection(f, lower_bound, upper_bound)

 tolerance = 1e-3 # tolerance for solution

 guess = 0.5*(upper_bound + lower_bound) # initial guess, bisect the interval

 difference = (upper_bound - lower_bound)/2 # initialize bound difference

while difference > tolerance # loop until convergence

 println("Intermediate guess of $guess.")

 difference = difference/2

if sign(f(lower_bound)) == sign(f(guess)) # if the guess has the same sign as the lowe

 lower_bound = guess # solution is in the upper half of the inter

 guess = guess + difference

else # else the solution is in the lower half of

 upper_bound = guess

 guess = guess - difference

end

end

 println("The root of f(x) is at $guess.")

end

11 / 113

The bisection method

 f(x) = x^3;

 bisection(f, -4, 1)

Intermediate guess of -1.5.

Intermediate guess of -0.25.

Intermediate guess of 0.375.

Intermediate guess of 0.0625.

Intermediate guess of -0.09375.

Intermediate guess of -0.015625.

Intermediate guess of 0.0234375.

Intermediate guess of 0.00390625.

Intermediate guess of -0.005859375.

Intermediate guess of -0.0009765625.

Intermediate guess of 0.00146484375.

Intermediate guess of 0.000244140625.

The root of f(x) is at -0.0003662109375.

12 / 113

The bisection method

 g(x) = 3x^3 + 2x -4;

 bisection(g, -6, 4)

Intermediate guess of -1.0.

Intermediate guess of 1.5.

Intermediate guess of 0.25.

Intermediate guess of 0.875.

Intermediate guess of 1.1875.

Intermediate guess of 1.03125.

Intermediate guess of 0.953125.

Intermediate guess of 0.9140625.

Intermediate guess of 0.89453125.

Intermediate guess of 0.904296875.

Intermediate guess of 0.8994140625.

Intermediate guess of 0.90185546875.

Intermediate guess of 0.900634765625.

The root of f(x) is at 0.9012451171875.

13 / 113

The bisection method

 h(x) = cos(x);

 bisection(h, -pi, pi)

Intermediate guess of 0.0.

Intermediate guess of -1.5707963267948966.

Intermediate guess of -2.356194490192345.

Intermediate guess of -1.9634954084936207.

Intermediate guess of -1.7671458676442586.

Intermediate guess of -1.6689710972195777.

Intermediate guess of -1.6198837120072371.

Intermediate guess of -1.595340019401067.

Intermediate guess of -1.5830681730979819.

Intermediate guess of -1.5769322499464393.

Intermediate guess of -1.573864288370668.

Intermediate guess of -1.5723303075827824.

The root of f(x) is at -1.5715633171888395.

14 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

f

15 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

A root can be calculated to arbitrary precision

in a maximum of iterations

Robustness comes with drawbacks:

f

ϵ

log([b − a]/ϵ)/log(2)

15 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

A root can be calculated to arbitrary precision

in a maximum of iterations

Robustness comes with drawbacks:

1. It only works in one dimension

2. It is slow because it only uses information about the function's level

f

ϵ

log([b − a]/ϵ)/log(2)

15 / 113

Function iteration

Fixed points can be computed using function iteration

16 / 113

Function iteration

Fixed points can be computed using function iteration

Since we can recast fixed points as rootfinding problems we can use function

iteration to find roots too

16 / 113

Function iteration

17 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

18 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

In general, it can be quite unstable as we will see

18 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

In general, it can be quite unstable as we will see

Code up a function iteration algorithm to find a fixed point of an arbitrary

function f

18 / 113

Function iteration

Function iteration is pretty simple to implement

function function_iteration(f, guess)

 tolerance = 1e-2 # tolerance for solution

 max_it = 10 # maximum number of iterations

 x_old = guess # initialize old x value

 x = guess # initialize current x

 error = 1e10 # initialize error

 it = 1

while abs(error) > tolerance && it < max_it

 println("Intermediate guess of $x.")

 x = f(x_old) # new x = f(old x)

 error = x - x_old # error

 x_old = x

 it = it + 1

end

 println("The fixed point of f(x) is at $x.")

end;

19 / 113

Function iteration

Analytic solution: 1

 f(x) = x^(-0.5);

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 0.7071067811865476.

Intermediate guess of 1.189207115002721.

Intermediate guess of 0.9170040432046712.

Intermediate guess of 1.0442737824274138.

Intermediate guess of 0.9785720620877002.

Intermediate guess of 1.0108892860517005.

Intermediate guess of 0.9945994234836332.

The fixed point of f(x) is at 1.0027112750502025.

Works!

20 / 113

Function iteration

Analytic solution:

 f(x) = 3 + x - x^2;

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 3.0.

Intermediate guess of -3.0.

Intermediate guess of -9.0.

Intermediate guess of -87.0.

Intermediate guess of -7653.0.

Intermediate guess of -5.8576059e7.

Intermediate guess of -3.431154746547537e15.

The fixed point of f(x) is at -1.1772822894755698e31.

=(

√3 ≈ 1.73

21 / 113

Function iteration

Analytic solution:

 f(x) = 3 - x;

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

The fixed point of f(x) is at 1.0.

=(

1.5

22 / 113

Function iteration

Analytic solution: 1 or 0

 f(x) = x^2;

 function_iteration(f, 1.01)

Intermediate guess of 1.01.

Intermediate guess of 1.0201.

Intermediate guess of 1.04060401.

Intermediate guess of 1.0828567056280802.

Intermediate guess of 1.1725786449236988.

Intermediate guess of 1.3749406785310976.

Intermediate guess of 1.890461869479555.

Intermediate guess of 3.573846079956134.

Intermediate guess of 12.772375803217825.

The fixed point of f(x) is at 163.1335836586242.

=(
23 / 113

Function iteration

Is function iteration fundamentally flawed?

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value : f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

Rewrite your algorithm with damping and try again

f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

Rewrite your algorithm with damping and try again

For some , you need to decrease your tolerance by a factor of to account

for how the damped error will be smaller by the same factor

f(x) x xnew = αf(xold) + (1 − α)xold

α 1/α

24 / 113

Function iteration

Function iteration is pretty simple to implement

function function_iteration_damped(f, guess)

 tolerance = 1e-4 # tolerance for solution

 max_it = 1000 # maximum number of iterations

 x_old = guess # initialize old x value

 x = guess # initialize current x

 error = 1e10 # initialize error

 it = 1

while abs(error) > tolerance && it < max_it

 x = 0.1 * f(x_old) + 0.9 * x_old

 error = x - x_old # error

 x_old = x

 it = it + 1

end

 println("The fixed point of f(x) is at $x.")

end;

25 / 113

Function iteration

Analytic solution: 1

 f(x) = x^(-0.5);

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.0005141871702672.

Works!

26 / 113

Function iteration

Analytic solution:

 f(x) = 3 + x - x^2;

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.7322240086832341.

Works!

√3 ≈ 1.73

27 / 113

Function iteration

Analytic solution:

 f(x) = 3 - x;

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.5003961408125717.

Works!

1.5

28 / 113

Function iteration

Analytic solution: 1 or 0

 f(x) = x^2;

 function_iteration_damped(f, 1.01)

The fixed point of f(x) is at Inf.

=(

Function iteration does struggle with some functions even with damping

29 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

Take a hard non-linear problem and replace it with a sequence of linear

problems

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

Take a hard non-linear problem and replace it with a sequence of linear

problems

Under certain conditions the sequence of solutions will converge to the true

solution

30 / 113

Newton's method

Here's a graphical depiction of Newton's method:

31 / 113

Newton's method

Start with an initial guess of the root at

x(0)

32 / 113

Newton's method

Start with an initial guess of the root at

Approximate the non-linear function with

its first-order Taylor expansion about

x(0)

x(0)

32 / 113

Newton's method

Start with an initial guess of the root at

Approximate the non-linear function with

its first-order Taylor expansion about

This is just the tangent line at , solve for

the root of this linear approximation, call

it

x(0)

x(0)

x0

x(1)

32 / 113

Newton's method

Repeat starting at until we converge

to

x(1)

x∗

33 / 113

Newton's method

Repeat starting at until we converge

to

This can be applied to a function with an

arbitrary number of dimensions

x(1)

x∗

33 / 113

Newton's method

Begin with some initial guess of the root vector x(0)

34 / 113

Newton's method

Begin with some initial guess of the root vector

Our new guess given some arbitrary point in the algorithm, , is

obtained by approximating using a first-order Taylor expansion about

 and solving for :

x(0)

x(k+1) x(k)

f(x)

x(k) x

f(x) ≈ f(x(k)) + f ′(x(k))(x(k+1) − x(k)) = 0

⇒ x(k+1) = x(k) − [f ′(x(k))]
−1
f(x(k))

34 / 113

Newton's method

Code up a one variable Newton's method algorithm for an arbitrary function

f

35 / 113

Newton's method

Code up a one variable Newton's method algorithm for an arbitrary function

f

function newtons_method(f, f_prime, guess)

 diff = Inf # Initialize problem

 tol = 1e-5

 x_old = guess

 x = 1e10

while abs(diff) > tol

 x = f(x_old) - f(x_old)/f_prime(x_old) # Root of linear approximation

 diff = x - x_old

 x_old = x

end

 println("The root of f(x) is at $x.")

end;

35 / 113

Newton's method

 f(x) = x^3;

 f_prime(x) = 3x^2;

 newtons_method(f, f_prime, 1.)

The root of f(x) is at 1.231347218094855e-6.

36 / 113

Newton's method

 f(x) = x^3;

 f_prime(x) = 3x^2;

 newtons_method(f, f_prime, 1.)

The root of f(x) is at 1.231347218094855e-6.

 f(x) = sin(x);

 f_prime(x) = cos(x);

 newtons_method(f, f_prime, pi/4)

The root of f(x) is at 5.941936124988917e-19.

36 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

We need to be invertible so the algorithm above is well defined

f(x)

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

We need to be invertible so the algorithm above is well defined

If is ill-conditioned we can run into problems with rounding error

f(x)

f(x)

f(x)

f ′(x)

37 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

Using our current root guess and our previous root guess :x(k) x(k−1)

f ′(x(k)) ≈
f(x(k))−f(x(k−1))

x(k)−x(k−1)

38 / 113

Quasi-Newton: Secant method

Our new iteration rule then becomes

39 / 113

Quasi-Newton: Secant method

Our new iteration rule then becomes

x(k+1) = x(k) − f(x(k))x(k)−x(k−1)

f(x(k))−f(x(k−1))

39 / 113

Quasi-Newton: Secant method

Our new iteration rule then becomes

Now we require two initial guesses so that we have an initial approximation of

the derivative

x(k+1) = x(k) − f(x(k))x(k)−x(k−1)

f(x(k))−f(x(k−1))

39 / 113

Quasi-Newton: Secant method

40 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

41 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

It is a generalization of the secant method where have a sequence of guesses

of the Jacobian at the root

41 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

It is a generalization of the secant method where have a sequence of guesses

of the Jacobian at the root

We must initially provide a guess of the root, , but also a guess of the

Jacobian,

x(0)

A(0)

41 / 113

Quasi-Newton: Broyden's method

Root guess update is the same as before but with our guess of the Jacobian

substituted in for the actual Jacobian or the finite difference approximation

x(k+1) = x(k) − A−1
(k) f(x(k)).

42 / 113

Quasi-Newton: Broyden's method

Root guess update is the same as before but with our guess of the Jacobian

substituted in for the actual Jacobian or the finite difference approximation

we still need to update : we do this update is performed by making the

smallest change, in terms of the Frobenius matrix norm, that satisfies what is

called the secant condition (under determined if):

x(k+1) = x(k) − A−1
(k) f(x(k)).

A(k)

n > 1

f(x(k+1)) − f(x(k)) = A(k+1) (x(k+1) − x(k))

42 / 113

Quasi-Newton: Broyden's method

The updated differences in root guesses, and the function value at those root

guesses, should align with our estimate of the Jacobian at that point

43 / 113

Quasi-Newton: Broyden's method

The updated differences in root guesses, and the function value at those root

guesses, should align with our estimate of the Jacobian at that point

A(k+1) = A(k) +

[f(x(k+1)) − f(x(k)) − A(k+1) (x(k+1) − x(k))] ×

x(k+1) − x(k)

(x(k+1) − x(k))T (x(k+1) − x(k))

43 / 113

Accelerating Broyden

Why update the Jacobian and then invert when we can just update an

inverted Jacobian

where , and .

B = A−1

B(k+1) = B(k) +
[d(k)−u(k)]d(k)TB(k)

d(k)Tu(k)

d(k) = (x(k+1) − x(k)) u(k) = B(k) [f(x(k+1)) − f(x(k))]

44 / 113

Accelerating Broyden

Broyden converges under relatively weak conditions:

45 / 113

Accelerating Broyden

Broyden converges under relatively weak conditions:

1. is continuously differentiable,

2. is close to the root of

3. is invertible around the root

4. is sufficiently close to the Jacobian

f

x(0) f

f ′

A0

45 / 113

Convergence speed

Rootfinding algorithms will converge at different speeds in terms of the

number of operations

46 / 113

Convergence speed

Rootfinding algorithms will converge at different speeds in terms of the

number of operations

A sequence of iterates is said to converge to at a rate of order if there

is a constant such that

for sufficiently large

x(k) x∗ p

C

||x(k+1) − x∗|| ≤ C||x(k) − x∗||p

k

46 / 113

Convergence speed

If and , the rate of convergence is linear

If , convergence is superlinear, and if convergence is quadratic.

The higher order the convergence rate, the faster it converges

||x(k+1) − x∗|| ≤ C||x(k) − x∗||p

C < 1 p = 1

1 < p < 2 p = 2

47 / 113

Convergence speed

How fast do the methods we've seen converge?

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)C = 0.5

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

C = 0.5

C = ||f ′(x∗)||

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

Secant and Broyden: superlinear rate with

C = 0.5

C = ||f ′(x∗)||

p ≈ 1.62

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

Secant and Broyden: superlinear rate with

Newton:

C = 0.5

C = ||f ′(x∗)||

p ≈ 1.62

p = 2

48 / 113

Convergence speed

Convergence rates only account for the number of iterations of the method

The steps taken in a given iteration of each solution method may vary in

computational cost because of differences in the number of arithmetic

operations

Although an algorithm may take more iterations to solve,

each iteration may be solved faster and the overall algorithm takes less time

49 / 113

Convergence speed

Ex:

Bisection method only requires a single function evaluation during each

iteration

Function iteration only requires a single function evaluation during each

iteration

Broyden's method requires both a function evaluation and matrix

multiplication

Newton's method requires a function evaluation, a derivative evaluation,

and solving a linear system

50 / 113

Convergence speed

Ex:

Bisection method only requires a single function evaluation during each

iteration

Function iteration only requires a single function evaluation during each

iteration

Broyden's method requires both a function evaluation and matrix

multiplication

Newton's method requires a function evaluation, a derivative evaluation,

and solving a linear system

Bisection and function iteration are usually slow
50 / 113

Convergence speed

Consider an example where

What does convergence look like across our main approaches in terms of the

norm if all guesses start at ?

f(x) = x − √(x) = 0

L1− x(0) = 0.5

51 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

Local vs global: are we finding an optimum in a local region, or globally?

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

Local vs global: are we finding an optimum in a local region, or globally?

Derivative-using vs derivative-free: Do we want to use higher-order

information?

52 / 113

Maximization (minimization) methods

I'll focus on local solvers, common global solvers I won't cover:

1. Genetic algorithms

2. Simulated annealing

3. DIRECT

53 / 113

Derivative free optimization: Golden search

Similar to bisection, golden search looks for a solution of a one-dimensional

problem over smaller and smaller brackets

54 / 113

Derivative free optimization: Golden search

Similar to bisection, golden search looks for a solution of a one-dimensional

problem over smaller and smaller brackets

If we have a continuous one dimensional function, , and we want to find a

local minimum in some interval

f(x)

[a, b]

54 / 113

Derivative free optimization: Golden search

1. Select points where x1,x2 ∈ [a, b] x2 > x1

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

x1,x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a,x2] [a, b] [x1, b]

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

3. Repeat until convergence criterion is met

x1,x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a,x2] [a, b] [x1, b]

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

3. Repeat until convergence criterion is met

Replace the endpoint of the interval next to the evaluated point with the

highest value keep the lower evaluated point in the interval guarantees

that a local minimum still exists

x1,x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a,x2] [a, b] [x1, b]

→ →

55 / 113

Derivative free optimization: Golden search

How do we pick and ?x1 x2

56 / 113

Derivative free optimization: Golden search

How do we pick and ?

Achievable goal for selection process:

New interval is independent of whether the upper or lower bound is

replaced

Only requires one function evaluation per iteration

x1 x2

56 / 113

Derivative free optimization: Golden search

How do we pick and ?

Achievable goal for selection process:

New interval is independent of whether the upper or lower bound is

replaced

Only requires one function evaluation per iteration

There's one algorithm that satisfies this

x1 x2

56 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

57 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

The value of is called the golden ratio and is where the algorithm gets its

name

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

α2

57 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

The value of is called the golden ratio and is where the algorithm gets its

name

Write out a golden search algorithm

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

α2

57 / 113

Golden search

function golden_search(f, lower_bound, upper_bound)

 alpha_1 = (3 - sqrt(5))/2 # GS parameter 1

 alpha_2 = (sqrt(5) - 1)/2 # GS parameter 2

 tolerance = 1e-2 # tolerance for convergence

 difference = 1e10

while difference > tolerance

 x_1 = lower_bound + alpha_1*(upper_bound - lower_bound) # new x_1

 x_2 = lower_bound + alpha_2*(upper_bound - lower_bound) # new x_2

if f(x_1) < f(x_2) # reset bounds

 upper_bound = x_2

else

 lower_bound = x_1

end

 difference = x_2 - x_1

end

 println("Minimum is at x = $((lower_bound+upper_bound)/2).")

end;

58 / 113

Golden search

 f(x) = 2x^2 + 9x;

 golden_search(f, -10, 10)

Minimum is at x = -2.2483173872886444.

 f(x) = x^4;

 golden_search(f, -5, 3)

Minimum is at x = -0.003105620015141938.

 f(x) = sin(x);

 golden_search(f, 0, 1)

Minimum is at x = 0.010643118126104103.

59 / 113

Nelder-Mead: Simplex

Golden search is nice and simple but only works in one dimension

There are several derivative free methods for minimization that work in

multiple dimensions,
the most commonly used one is Nelder-Mead (NM)

60 / 113

Nelder-Mead: Simplex

Golden search is nice and simple but only works in one dimension

There are several derivative free methods for minimization that work in

multiple dimensions,
the most commonly used one is Nelder-Mead (NM)

NM works by first constructing a simplex: we evaluate the function at

points in an dimensional problem

It then manipulates the highest value point, similar to golden search

n + 1

n

60 / 113

Nelder-Mead: Simplex

There are six operations:

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex f(x1) ≤. . . ≤ f(xn+1)

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex

Centroid: calculate , the centroid of the non - points

f(x1) ≤. . . ≤ f(xn+1)

x0 xn+1

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex

Centroid: calculate , the centroid of the non - points

Reflection: reflect through the opposite face of the simplex and

evaluate the new point: ,

If this improves upon the second-highest (e.g. its lower) but is not the

lowest value point, replace with and restart

If this is the lowest value point so far, go to step 4

If go to step 5

f(x1) ≤. . . ≤ f(xn+1)

x0 xn+1

xn+1

xr = x0 + α(x0 − xn+1) α > 0

xn+1 xr

f(xr) > f(xn)

61 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

Shrink: shrink the simplex toward the best point

Replace all points but the best one with

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

xi = x1 + σ(xi − x1)

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

Shrink: shrink the simplex toward the best point

Replace all points but the best one with

Nelder-Mead is a pain to code efficiently (i.e. don't spend the time doing it

yourself) but is in the Optim.jl package

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

xi = x1 + σ(xi − x1)

62 / 113

Nelder-Mead: Simplex

Nelder-Mead is commonly used but slow and unreliable, no real useful

convergence properties, avoid using it
63 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function f

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

f

x∗ f(x∗) ≤ f(x) x

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

Problem: most algorithms are local minimizers that find a point

such that for all , where is a neighborhood of

f

x∗ f(x∗) ≤ f(x) x

x∗

f(x∗) ≤ f(x) x ∈ N N x∗

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

Problem: most algorithms are local minimizers that find a point

such that for all , where is a neighborhood of

Typically analytical problems are set up to have a unique minimum so any local

solver can generally find the global optimum

f

x∗ f(x∗) ≤ f(x) x

x∗

f(x∗) ≤ f(x) x ∈ N N x∗

64 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

How do we find a local minimum?

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

How do we find a local minimum?

Do we need to evaluate every single point?

65 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

x0

{xk}∞
k=1

66 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

If the function is smooth, we can take advantage of that information

about the function's shape to figure out which direction to move in next

x0

{xk}∞
k=1

66 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

If the function is smooth, we can take advantage of that information

about the function's shape to figure out which direction to move in next

If is twice continuously differentiable, we can use the gradient and

Hessian to figure out if is a local minimizer

x0

{xk}∞
k=1

f ∇f

∇2f x∗

66 / 113

The general unconstrained approach

Taylor's Theorem tells us that if is twice differentiable, then there exists a

 such that

This is an exact equality

f

t ∈ (0, 1)

f(x∗ + p) = f(x∗) + ∇ f(x∗)T p + pT ∇2 f(x∗ + tp) p
1

2!

67 / 113

The general unconstrained approach

Taylor's Theorem tells us that if is twice differentiable, then there exists a

 such that

This is an exact equality

From here we can prove the usual necessary and sufficient conditions for a

local optimum

f

t ∈ (0, 1)

f(x∗ + p) = f(x∗) + ∇ f(x∗)T p + pT ∇2 f(x∗ + tp) p
1

2!

67 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

68 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

Most modern optimization problems fall into one of two classes:

1. Line search

2. Trust region

68 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

Most modern optimization problems fall into one of two classes:

1. Line search

2. Trust region

The relationship between these two approaches has a lot of similiarities

to the relationship between the constrained problem and the dual Lagrange

problem

68 / 113

Line search algorithms

General idea:

1. Start at some current iterate

2. Select a direction to move in

3. Figure out how far along to move

xk

pk

pk

69 / 113

Line search algorithms

How do we figure out how far to move?

70 / 113

Line search algorithms

How do we figure out how far to move?

"Approximately" solve this problem to figure out the step length α

min
α>0

f(xk + αpk)

70 / 113

Line search algorithms

How do we figure out how far to move?

"Approximately" solve this problem to figure out the step length

We are finding the distance to move, in direction that minimizes our

objective

α

min
α>0

f(xk + αpk)

α pk

f

70 / 113

Line search algorithms

Typically do not perform the full minimization problem since it is costly

We only try a limited number of step lengths before picking the best one

and moving onto our next iterate

α

xk+1

71 / 113

Line search algorithms

Typically do not perform the full minimization problem since it is costly

We only try a limited number of step lengths before picking the best one

and moving onto our next iterate

We still haven't answered, what direction do we decide to move in?

α

xk+1

pk

71 / 113

Line search: direction choice

What's an obvious choice for ?pk

72 / 113

Line search: direction choice

What's an obvious choice for ?

The direction that yields the steepest descent

pk

72 / 113

Line search: direction choice

What's an obvious choice for ?

The direction that yields the steepest descent

 is the direction that makes decrease most rapidly, indicates we are

evaluating at iteration

pk

−∇ fk f k

f k

72 / 113

Line search algorithms

73 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

74 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

For any direction and step length , we have thatp α

f(xk + αp) = f(xk) + αpT ∇ fk + α2pT ∇2 f(xk + tp) p
1

2!

74 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

For any direction and step length , we have that

The rate of change in along at is

p α

f(xk + αp) = f(xk) + αpT ∇ fk + α2pT ∇2 f(xk + tp) p
1

2!

f p xk (α = 0) pT ∇ fk

74 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

min
p

pT ∇ fk subject to: ||p|| = 1

75 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

Re-express the objective as , where is the angle

between and

min
p

pT ∇ fk subject to: ||p|| = 1

minθ,p ||p|| ||∇ fk||cos θ θ

p ∇ fk

75 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

Re-express the objective as , where is the angle

between and

The minimum is attained when and so the direction

of steepest descent is simply

min
p

pT ∇ fk subject to: ||p|| = 1

minθ,p ||p|| ||∇ fk||cos θ θ

p ∇ fk

cos θ = −1 p = − ,∇ fk
||∇ fk||

−∇ fk

75 / 113

Line search: steepest descent

The steepest descent method searches along this direction at every iteration

It may select the step length in several different ways

A benefit of the algorithm is that we only require the gradient of the function,

and no Hessian

However it can be very slow

k

αk

76 / 113

Line search: alternative directions

We can always use search directions other than the steepest descent

77 / 113

Line search: alternative directions

We can always use search directions other than the steepest descent

Any descent direction, i.e. one that is within of ,

is guaranteed to produce a decrease in as long as the step size is sufficiently

small

45∘ −∇ fk

f

77 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

Therefore for positive but sufficiently small

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

f(xk + ϵpk) < f(xk) ϵ

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

Therefore for positive but sufficiently small

Is always the best search direction?

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

f(xk + ϵpk) < f(xk) ϵ

−∇ fk

78 / 113

Newton's method

The most important search direction is not steepest descent but Newton's

direction

79 / 113

Newton's method

The most important search direction is not steepest descent but Newton's

direction

Newton's direction comes out of the second order Taylor series

approximation to

Define this as

f(xk + p)

f(xk + p) ≈ fk + pT ∇ fk + pT ∇2fk p
1

2!

mk(p)

79 / 113

Newton's method

We find the Newton direction by selecting the vector that minimizes p

f(xk + p)

80 / 113

Newton's method

We find the Newton direction by selecting the vector that minimizes

This ends up being

p

f(xk + p)

pNk = −
∇fk

∇2fk

80 / 113

Newton's method

81 / 113

Newton's method

This approximation to the function we are trying to solve has error of

,

so if is small, the quadratic approximation is very accurate

O(||p||3)

p

81 / 113

Newton's method

This approximation to the function we are trying to solve has error of

,

so if is small, the quadratic approximation is very accurate

Drawback: requires explicit computation of the Hessian,

Quasi-Newton solvers also exist (e.g. BFGS, L-BFGS, etc)

O(||p||3)

p

∇2 f(x)

81 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

mk

xk

f

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

mk

xk

f

mk

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

Issue: may not represent well when far away from the current iterate

mk

xk

f

mk

mk f xk

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

Issue: may not represent well when far away from the current iterate

Solution: Restrict the search for a minimizer to be within some region of ,

called a trust region

mk

xk

f

mk

mk f xk

xk

82 / 113

Trust region methods

Trust region problems can be formulated as

where

 is a ball defined by

 is called the trust region radius

min
p

mk(xk + p)

xk + p ∈ Γ

Γ ||p||2 ≤ Δ

Δ

83 / 113

Trust region Methods

Typically the approximating model is a quadratic function (i.e. a second-

order Taylor approximation)

where is the Hessian or an approximation to the Hessian

mk

mk(xk + p) = fk + pT ∇ fk + pT Bk p
1

2!

Bk

84 / 113

Line search vs trust region

Whats the fundamental difference between line search and trust region?

85 / 113

Line search vs trust region

Whats the fundamental difference between line search and trust region?

Line search first picks a direction then searches along that direction for the

optimal step length

Trust region first defines our step length via the trust region radius, then

searches for the optimal direction

85 / 113

Line search vs trust region

There is a special case of the trust region where if we set , the approximate

Hessian, to zero,
the solution to the problem is

This is just the steepest descent solution for the line search problem

Bk

pk = −
Δk ∇ fk

||∇ fk||

86 / 113

Problem scaling

The scaling of a problem matters for optimization performance

87 / 113

Problem scaling

The scaling of a problem matters for optimization performance

A problem is poorly scaled if changes to in a certain direction

produce much bigger changes in than changes to in in another direction

x

f x

87 / 113

Problem scaling

The scaling of a problem matters for optimization performance

A problem is poorly scaled if changes to in a certain direction

produce much bigger changes in than changes to in in another direction

x

f x

87 / 113

Problem scaling

Ex: is poorly scaledf(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

f(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

How do we solve this issue?

f(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

How do we solve this issue?

Rescale the problem: put them in units that are generally within an order of

magnitude of 1

Investment rate in percentage terms:

Consumption in units of trillion dollars instead of dollars

f(x) = 109x2
1 + x2

2

0% − 100%

88 / 113

Constrained optimization

How do we solve constrained optimization problems?

89 / 113

Constrained optimization

How do we solve constrained optimization problems?

Typically as a variant of unconstrained optimization techniques

89 / 113

Constrained optimization

How do we solve constrained optimization problems?

Typically as a variant of unconstrained optimization techniques

We will discuss three types of constrained optimization algorithms

Penalty methods

Active set methods

Interior point methods

89 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: KNITRO

90 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: KNITRO

91 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: fmincon/MATLAB

92 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

min
x

f(x) subject to: ci(x) = 0

93 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

How does an algorithm know to not violate the constraint?

min
x

f(x) subject to: ci(x) = 0

93 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

How does an algorithm know to not violate the constraint?

One way is to introduce a penalty function into our objective and remove the

constraint:

where is the penalty parameter

min
x

f(x) subject to: ci(x) = 0

Q(x;μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ 93 / 113

Constrained optimization: Penalty methods

Q(x;μ) = f(x) + ∑
i

c2
i (x)

μ

2

94 / 113

Constrained optimization: Penalty methods

The second term increases the value of the function, bigger bigger

penalty from violating the constraint

Q(x;μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ →

94 / 113

Constrained optimization: Penalty methods

The second term increases the value of the function, bigger bigger

penalty from violating the constraint

The penalty terms are smooth use unconstrained optimization techniques

to solve the problem by searching for iterates of

Q(x;μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ →

→

xk

94 / 113

Constrained optimization: Penalty methods

Also generally iterate on sequences of as , to require

satisfying the constraints as we close in

μk → ∞ k → ∞

95 / 113

Constrained optimization: Penalty methods

Also generally iterate on sequences of as , to require

satisfying the constraints as we close in

There are also augmented Lagrangian methods that take the quadratic

penalty method and add in explicit estimates of Lagrange multipliers to help

force binding constraints to bind precisely

μk → ∞ k → ∞

95 / 113

Constrained optimization: Penalty method example

Example:

minx1 + x2 subject to: x2
1 + x2

2 − 2 = 0

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

minx1 + x2 subject to: x2
1 + x2

2 − 2 = 0

(−1, −1)

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

The penalty method function is

minx1 + x2 subject to: x2
1 + x2

2 − 2 = 0

(−1, −1)

Q(x1,x2;μ)

Q(x1,x2;μ) = x1 + x2 + (x2
1 + x2

2 − 2)2μ

2

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

The penalty method function is

Let's ramp up and see what happens to how the function looks

minx1 + x2 subject to: x2
1 + x2

2 − 2 = 0

(−1, −1)

Q(x1,x2;μ)

Q(x1,x2;μ) = x1 + x2 + (x2
1 + x2

2 − 2)2μ

2

μ

96 / 113

Constrained optimization: Penalty method example

, solution is around μ = 1 (−1.1, −1.1)

97 / 113

Constrained optimization: Penalty method example

, solution is very close to , can easily see trough, and rapid

value increase outside

μ = 10 (−1, −1)

x2
1 + x2

2 = 2

98 / 113

Constrained optimization: Active set methods

Active set methods encapsulate sequential quadratic programming (SQP)

methods

99 / 113

Constrained optimization: Active set methods

Active set methods encapsulate sequential quadratic programming (SQP)

methods

Main idea:

1. Replace the large non-linear constrained problem with a constrained

quadratic programming problem

2. Use Newton's method to solve the sequence of simpler quadratic problems

99 / 113

Constrained optimization: Active set methods

The Lagrangian is

L(x,λ) = f(x) − λT c(x)

100 / 113

Constrained optimization: Active set methods

The Lagrangian is

Denote as the Jacobian of the constraints

L(x,λ) = f(x) − λT c(x)

A(x)T

A(x)T = [∇ c1(x), . . . , ∇ cm(x)]

100 / 113

Constrained optimization: Active set methods

The first-order conditions can be written as,

Any solution to the equality constrained problem, where has full rank

also satisfies the first-order necessary conditions

F(x,λ)

∇ f(x) − A(x)T λ = 0

c(x) = 0

A(x∗)

101 / 113

Constrained optimization: Active set methods

The first-order conditions can be written as,

Any solution to the equality constrained problem, where has full rank

also satisfies the first-order necessary conditions

Active set methods use Newton's method to find the solution of

F(x,λ)

∇ f(x) − A(x)T λ = 0

c(x) = 0

A(x∗)

(x∗,λ∗)

F(x,λ)

101 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

102 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

Main idea: recognize that if an inequality constraint is not binding, or active,

then it has no influence on the solution

 in the iteration procedure we can effectively ignore it→

102 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

Main idea: recognize that if an inequality constraint is not binding, or active,

then it has no influence on the solution

 in the iteration procedure we can effectively ignore it

Active set methods find ways to reduce the complexity of the optimization

routine

by selectively ignoring constraints that are not active (i.e. non-positive

Lagrange multipliers) or close to being active

→

102 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

Issue: how do we ensure we are on the interior of the feasible set?

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

Issue: how do we ensure we are on the interior of the feasible set?

Main idea: impose a barrier to stop the solver from letting a constraint bind

103 / 113

Constrained optimization: Interior point methods

Consider the following constrained optimization problem

min
x

f(x)

subject to: cE(x) = 0, cI(x) ≥ 0

104 / 113

Constrained optimization: Interior point methods

Consider the following constrained optimization problem

Reformulate this problem as

where is a vector of slack variables for the constraints

min
x

f(x)

subject to: cE(x) = 0, cI(x) ≥ 0

min
x,s

f(x)

subject to: cE(x) = 0, cI(x) − s = 0, s ≥ 0

s

104 / 113

Constrained optimization: Interior point methods

Final step: introduce a barrier function to eliminate the inequality constraint,

where is a positive barrier parameter

min
x,s

f(x) − μ
m

∑
i=1

log(si)

subject to: cE(x) = 0, cI(x) − s = 0

μ

105 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

s

→

106 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

Interior point methods solve a sequence of barrier problems until

converges to zero

s

→

{μk}

106 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

Interior point methods solve a sequence of barrier problems until

converges to zero

The solution to the barrier problem converges to that of the original problem

s

→

{μk}

106 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

107 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

WRONG

107 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

WRONG

These algorithms are not guaranteed to always find even a local solution, you

need to test and make sure you are converging correctly

107 / 113

Check exitflags: KNITRO-specific numbers here

Exitflags tell you why the solver stopped, exit flags of 0 or -10X are generally

good, anything else is bad

-10X can indicate bad scaling, ill-conditioning, etc

108 / 113

Try alternative algorithms

Optimization is approximately 53% art

109 / 113

Try alternative algorithms

Optimization is approximately 53% art

Not all algorithms are suited for every problem it is useful to check how

different algorithms perform

→

109 / 113

Try alternative algorithms

Optimization is approximately 53% art

Not all algorithms are suited for every problem it is useful to check how

different algorithms perform

Interior-point is usually the default in constrained optimization solvers (low

memory usage, fast), but try other algorithms and see if the solution generally

remains the same

→

109 / 113

Be aware of tolerances

Two main tolerances in optimization:

1. ftol is the tolerance for the change in the function value (absolute and

relative)

2. xtol is the tolerance for the change in the input values (absolute and

relative)

110 / 113

Be aware of tolerances

Two main tolerances in optimization:

1. ftol is the tolerance for the change in the function value (absolute and

relative)

2. xtol is the tolerance for the change in the input values (absolute and

relative)

What is a suitable tolerance?

110 / 113

Be aware of tolerances

It depends

111 / 113

Be aware of tolerances

It depends

Explore sensitivity to tolerance, typically pick a conservative (small) number

Defaults in solvers are usually 1e-6

111 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

112 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

Common bad practice is to pick a larger tolerance (e.g. 1e-3) so the problem

"works" (e.g. so your big MLE converges)

112 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

Common bad practice is to pick a larger tolerance (e.g. 1e-3) so the problem

"works" (e.g. so your big MLE converges)

Issue is that 1e-3 might be pretty big for your problem

if you haven't checked that your solution is not sensitive to the tolerance

112 / 113

Perturb your initial guesses

Initial guesses matter

113 / 113

Perturb your initial guesses

Initial guesses matter

Good ones can improve performance

e.g. initial guess for next iteration of coefficient estimates should be current

iteration estimates

113 / 113

Perturb your initial guesses

Initial guesses matter

Good ones can improve performance

e.g. initial guess for next iteration of coefficient estimates should be current

iteration estimates

Bad ones can give you terrible performance, or wrong answers if your

problem isn't perfect

e.g. bad scaling, not well-conditioned, multiple equilibria

113 / 113

Lecture 04

Optimization

Ivan Rudik
AEM 7130

http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf
http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf
http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf

Software and stuff

Necessary things to do:

Install the QuantEcon Julia package

Install the Optim Julia package

2 / 113

Optimization

All econ problems are optimization problems

3 / 113

Optimization

All econ problems are optimization problems

Min costs

3 / 113

Optimization

All econ problems are optimization problems

Min costs

Max PV E[welfare]

3 / 113

Optimization

Some are harder than others:

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

One input profit maximization problem: easy

4 / 113

Optimization

Some are harder than others:

Individual utility max: easy

Decentralized electricity market with nodal pricing and market power:

hard

One input profit maximization problem: easy

N-input profit maximization with learning and forecasts: hard

4 / 113

Things we will do

1. Linear rootfinding

2. Non-linear rootfinding

3. Complementarity problems

4. Non-linear unconstrained maximization/minimization

5. Non-linear constrained maximization/minimization

5 / 113

Linear rootfinding

How do we solve these?

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Ax = b

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Invert

Ax = b

A

x = A−1b

6 / 113

Linear rootfinding

How do we solve these?

Consider a simple generic problem:

Invert

THE END

Ax = b

A

x = A−1b

6 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

Fixed point problems are rootfinding problems:

f(x) = 0, f : R → R
n

7 / 113

Non-linear rootfinding

With non-linear rootfinding problems we want to solve:

What's a common rootfinding problem?

Can we reframe a common economic problem as rootfinding?

Yes!

Fixed point problems are rootfinding problems:

f(x) = 0, f : R → R
n

g(x) = x ⇒ f(x) ≡ g(x) − x = 0
7 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

8 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

If a continuous real-valued function on a given interval takes on two values

and , it achieves all values in the set somewhere in its domain

a

b [a, b]

8 / 113

Basic non-linear rootfinders: Bisection method

What does the intermediate value theorem tell us?

If a continuous real-valued function on a given interval takes on two values

and , it achieves all values in the set somewhere in its domain

How can this motivate an algorithm to find the root of a function?

a

b [a, b]

8 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

9 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

We know a root exists by IVT, what's an efficient way to find it?

9 / 113

Basic non-linear rootfinders: Bisection method

If we have a continuous, 1 variable function that is positive at some value and

negative at another, a root must fall in between those values

We know a root exists by IVT, what's an efficient way to find it?

Continually bisect the interval!

9 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of , [a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

[a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

3. Check the sign of the midpoint, if it has the same sign as the lower bound a

root must be the right subinterval

[a, b] (a + b)/2

10 / 113

The bisection method

The bisection method works by continually bisecting the interval and only

keeping the half interval with a zero until "convergence"

1. Select the midpoint of ,

2. Zero must be in the lower or upper half

3. Check the sign of the midpoint, if it has the same sign as the lower bound a

root must be the right subinterval

4. Select the midpoint of ...

Write out the code to do it

[a, b] (a + b)/2

[(a + b)/2, b]

10 / 113

The bisection algorithm

bi i (i f i i h h d)

function bisection(f, lower_bound, upper_bound)

 tolerance = 1e-3 # tolerance for solution

 guess = 0.5*(upper_bound + lower_bound) # initial guess, bisect the interval

 difference = (upper_bound - lower_bound)/2 # initialize bound difference

while difference > tolerance # loop until convergence

 println("Intermediate guess of $guess.")

 difference = difference/2

if sign(f(lower_bound)) == sign(f(guess)) # if the guess has the same sign as the lowe

 lower_bound = guess # solution is in the upper half of the inter

 guess = guess + difference

else # else the solution is in the lower half of

 upper_bound = guess

 guess = guess - difference

end

end

 println("The root of f(x) is at $guess.")

end

11 / 113

The bisection method

 f(x) = x^3;

 bisection(f, -4, 1)

Intermediate guess of -1.5.

Intermediate guess of -0.25.

Intermediate guess of 0.375.

Intermediate guess of 0.0625.

Intermediate guess of -0.09375.

Intermediate guess of -0.015625.

Intermediate guess of 0.0234375.

Intermediate guess of 0.00390625.

Intermediate guess of -0.005859375.

Intermediate guess of -0.0009765625.

Intermediate guess of 0.00146484375.

Intermediate guess of 0.000244140625.

The root of f(x) is at -0.0003662109375.

12 / 113

The bisection method

 g(x) = 3x^3 + 2x -4;

 bisection(g, -6, 4)

Intermediate guess of -1.0.

Intermediate guess of 1.5.

Intermediate guess of 0.25.

Intermediate guess of 0.875.

Intermediate guess of 1.1875.

Intermediate guess of 1.03125.

Intermediate guess of 0.953125.

Intermediate guess of 0.9140625.

Intermediate guess of 0.89453125.

Intermediate guess of 0.904296875.

Intermediate guess of 0.8994140625.

Intermediate guess of 0.90185546875.

Intermediate guess of 0.900634765625.

The root of f(x) is at 0.9012451171875.

13 / 113

The bisection method

 h(x) = cos(x);

 bisection(h, -pi, pi)

Intermediate guess of 0.0.

Intermediate guess of -1.5707963267948966.

Intermediate guess of -2.356194490192345.

Intermediate guess of -1.9634954084936207.

Intermediate guess of -1.7671458676442586.

Intermediate guess of -1.6689710972195777.

Intermediate guess of -1.6198837120072371.

Intermediate guess of -1.595340019401067.

Intermediate guess of -1.5830681730979819.

Intermediate guess of -1.5769322499464393.

Intermediate guess of -1.573864288370668.

Intermediate guess of -1.5723303075827824.

The root of f(x) is at -1.5715633171888395.

14 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

f

15 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

A root can be calculated to arbitrary precision

in a maximum of iterations

Robustness comes with drawbacks:

f

ϵ

log([b − a]/ϵ)/log(2)

15 / 113

The bisection method

The bisection method is incredibly robust: if a function satisfies the IVT, it is

guaranteed to converge in a specific number of iterations

A root can be calculated to arbitrary precision

in a maximum of iterations

Robustness comes with drawbacks:

1. It only works in one dimension

2. It is slow because it only uses information about the function's level

f

ϵ

log([b − a]/ϵ)/log(2)

15 / 113

Function iteration

Fixed points can be computed using function iteration

16 / 113

Function iteration

Fixed points can be computed using function iteration

Since we can recast fixed points as rootfinding problems we can use function

iteration to find roots too

16 / 113

Function iteration

17 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

18 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

In general, it can be quite unstable as we will see

18 / 113

Function iteration

Function iteration can be quick, but is not always guaranteed to converge

In general, it can be quite unstable as we will see

Code up a function iteration algorithm to find a fixed point of an arbitrary

function f

18 / 113

Function iteration

Function iteration is pretty simple to implement

function function_iteration(f, guess)

 tolerance = 1e-2 # tolerance for solution

 max_it = 10 # maximum number of iterations

 x_old = guess # initialize old x value

 x = guess # initialize current x

 error = 1e10 # initialize error

 it = 1

while abs(error) > tolerance && it < max_it

 println("Intermediate guess of $x.")

 x = f(x_old) # new x = f(old x)

 error = x - x_old # error

 x_old = x

 it = it + 1

end

 println("The fixed point of f(x) is at $x.")

end;

19 / 113

Function iteration

Analytic solution: 1

 f(x) = x^(-0.5);

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 0.7071067811865476.

Intermediate guess of 1.189207115002721.

Intermediate guess of 0.9170040432046712.

Intermediate guess of 1.0442737824274138.

Intermediate guess of 0.9785720620877002.

Intermediate guess of 1.0108892860517005.

Intermediate guess of 0.9945994234836332.

The fixed point of f(x) is at 1.0027112750502025.

Works!

20 / 113

Function iteration

Analytic solution:

 f(x) = 3 + x - x^2;

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 3.0.

Intermediate guess of -3.0.

Intermediate guess of -9.0.

Intermediate guess of -87.0.

Intermediate guess of -7653.0.

Intermediate guess of -5.8576059e7.

Intermediate guess of -3.431154746547537e15.

The fixed point of f(x) is at -1.1772822894755698e31.

=(

√3 ≈ 1.73

21 / 113

Function iteration

Analytic solution:

 f(x) = 3 - x;

 function_iteration(f, 2.)

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

Intermediate guess of 1.0.

Intermediate guess of 2.0.

The fixed point of f(x) is at 1.0.

=(

1.5

22 / 113

Function iteration

Analytic solution: 1 or 0

 f(x) = x^2;

 function_iteration(f, 1.01)

Intermediate guess of 1.01.

Intermediate guess of 1.0201.

Intermediate guess of 1.04060401.

Intermediate guess of 1.0828567056280802.

Intermediate guess of 1.1725786449236988.

Intermediate guess of 1.3749406785310976.

Intermediate guess of 1.890461869479555.

Intermediate guess of 3.573846079956134.

Intermediate guess of 12.772375803217825.

The fixed point of f(x) is at 163.1335836586242.

=(
23 / 113

Function iteration

Is function iteration fundamentally flawed?

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value : f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

Rewrite your algorithm with damping and try again

f(x) x xnew = αf(xold) + (1 − α)xold

24 / 113

Function iteration

Is function iteration fundamentally flawed? Not quite

Some of these issues can be solved by damping

Damping is where you do not do a full update of x, but a convex combination

of the new value and the old value :

Damping improves the stability of iterative algorithms

Rewrite your algorithm with damping and try again

For some , you need to decrease your tolerance by a factor of to account

for how the damped error will be smaller by the same factor

f(x) x xnew = αf(xold) + (1 − α)xold

α 1/α

24 / 113

Function iteration

Function iteration is pretty simple to implement

function function_iteration_damped(f, guess)

 tolerance = 1e-4 # tolerance for solution

 max_it = 1000 # maximum number of iterations

 x_old = guess # initialize old x value

 x = guess # initialize current x

 error = 1e10 # initialize error

 it = 1

while abs(error) > tolerance && it < max_it

 x = 0.1 * f(x_old) + 0.9 * x_old

 error = x - x_old # error

 x_old = x

 it = it + 1

end

 println("The fixed point of f(x) is at $x.")

end;

25 / 113

Function iteration

Analytic solution: 1

 f(x) = x^(-0.5);

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.0005141871702672.

Works!

26 / 113

Function iteration

Analytic solution:

 f(x) = 3 + x - x^2;

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.7322240086832341.

Works!

√3 ≈ 1.73

27 / 113

Function iteration

Analytic solution:

 f(x) = 3 - x;

 function_iteration_damped(f, 2.)

The fixed point of f(x) is at 1.5003961408125717.

Works!

1.5

28 / 113

Function iteration

Analytic solution: 1 or 0

 f(x) = x^2;

 function_iteration_damped(f, 1.01)

The fixed point of f(x) is at Inf.

=(

Function iteration does struggle with some functions even with damping

29 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

Take a hard non-linear problem and replace it with a sequence of linear

problems

30 / 113

Newton's method

Newton's method and variants are the workhorses of solving n-dimensional

non-linear problems

What's the idea?

Take a hard non-linear problem and replace it with a sequence of linear

problems

Under certain conditions the sequence of solutions will converge to the true

solution

30 / 113

Newton's method

Here's a graphical depiction of Newton's method:

31 / 113

Newton's method

Start with an initial guess of the root at

x
(0)

32 / 113

Newton's method

Start with an initial guess of the root at

Approximate the non-linear function with

its first-order Taylor expansion about

x
(0)

x
(0)

32 / 113

Newton's method

Start with an initial guess of the root at

Approximate the non-linear function with

its first-order Taylor expansion about

This is just the tangent line at , solve for

the root of this linear approximation, call

it

x
(0)

x
(0)

x
0

x
(1)

32 / 113

Newton's method

Repeat starting at until we converge

to

x
(1)

x
∗

33 / 113

Newton's method

Repeat starting at until we converge

to

This can be applied to a function with an

arbitrary number of dimensions

x
(1)

x
∗

33 / 113

Newton's method

Begin with some initial guess of the root vector x(0)

34 / 113

Newton's method

Begin with some initial guess of the root vector

Our new guess given some arbitrary point in the algorithm, , is

obtained by approximating using a first-order Taylor expansion about

 and solving for :

x(0)

x(k+1) x(k)

f(x)

x(k) x

f(x) ≈ f(x(k)) + f ′(x(k))(x(k+1) − x(k)) = 0

⇒ x(k+1) = x(k) − [f ′(x(k))]
−1

f(x(k))

34 / 113

Newton's method

Code up a one variable Newton's method algorithm for an arbitrary function

f

35 / 113

Newton's method

Code up a one variable Newton's method algorithm for an arbitrary function

f

function newtons_method(f, f_prime, guess)

 diff = Inf # Initialize problem

 tol = 1e-5

 x_old = guess

 x = 1e10

while abs(diff) > tol

 x = f(x_old) - f(x_old)/f_prime(x_old) # Root of linear approximation

 diff = x - x_old

 x_old = x

end

 println("The root of f(x) is at $x.")

end;

35 / 113

Newton's method

 f(x) = x^3;

 f_prime(x) = 3x^2;

 newtons_method(f, f_prime, 1.)

The root of f(x) is at 1.231347218094855e-6.

36 / 113

Newton's method

 f(x) = x^3;

 f_prime(x) = 3x^2;

 newtons_method(f, f_prime, 1.)

The root of f(x) is at 1.231347218094855e-6.

 f(x) = sin(x);

 f_prime(x) = cos(x);

 newtons_method(f, f_prime, pi/4)

The root of f(x) is at 5.941936124988917e-19.

36 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

We need to be invertible so the algorithm above is well defined

f(x)

f(x)

f(x)

37 / 113

Newton's method

Newton's method has nice properties regarding convergence and speed:

If is continuously differentiable, the initial guess is "sufficiently close" to

the root, and is invertible near the root, then Newton's method

converges to the root

What is "sufficiently close"?

We need to be invertible so the algorithm above is well defined

If is ill-conditioned we can run into problems with rounding error

f(x)

f(x)

f(x)

f ′(x)

37 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

38 / 113

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

38 / 113

http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

38 / 113

http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf

Quasi-Newton: Secant method

We usually don't want to deal with analytic derivatives unless we have access

to autodifferentiation

Why?

1. Coding error / time

2. Can actually be slower to evaluate than finite differences for a nonlinear

problem, see Ken Judd's notes

Using our current root guess and our previous root guess :x(k) x(k−1)

f ′(x(k)) ≈
f(x(k))−f(x(k−1))

x(k)−x(k−1)

38 / 113

http://ice.uchicago.edu/2008%20presentations/Judd/Curse%20in%20Dallas.pdf

Quasi-Newton: Secant method

Our new iteration rule then becomes

39 / 113

Quasi-Newton: Secant method

Our new iteration rule then becomes

x(k+1) = x(k) − f(x(k))x(k)−x(k−1)

f(x(k))−f(x(k−1))

39 / 113

Quasi-Newton: Secant method

Our new iteration rule then becomes

Now we require two initial guesses so that we have an initial approximation of

the derivative

x(k+1) = x(k) − f(x(k))x(k)−x(k−1)

f(x(k))−f(x(k−1))

39 / 113

Quasi-Newton: Secant method

40 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

41 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

It is a generalization of the secant method where have a sequence of guesses

of the Jacobian at the root

41 / 113

Quasi-Newton: Broyden's method

Broyden's method is the most widely used rootfinding method for n-

dimensional problems

It is a generalization of the secant method where have a sequence of guesses

of the Jacobian at the root

We must initially provide a guess of the root, , but also a guess of the

Jacobian,

x(0)

A(0)

41 / 113

Quasi-Newton: Broyden's method

Root guess update is the same as before but with our guess of the Jacobian

substituted in for the actual Jacobian or the finite difference approximation

x(k+1) = x(k) − A−1
(k)

f(x(k)).

42 / 113

Quasi-Newton: Broyden's method

Root guess update is the same as before but with our guess of the Jacobian

substituted in for the actual Jacobian or the finite difference approximation

we still need to update : we do this update is performed by making the

smallest change, in terms of the Frobenius matrix norm, that satisfies what is

called the secant condition (under determined if):

x(k+1) = x(k) − A−1
(k)

f(x(k)).

A(k)

n > 1

f(x(k+1)) − f(x(k)) = A(k+1) (x(k+1) − x(k))

42 / 113

Quasi-Newton: Broyden's method

The updated differences in root guesses, and the function value at those root

guesses, should align with our estimate of the Jacobian at that point

43 / 113

Quasi-Newton: Broyden's method

The updated differences in root guesses, and the function value at those root

guesses, should align with our estimate of the Jacobian at that point

A(k+1) = A(k) +

[f(x(k+1)) − f(x(k)) − A(k+1) (x(k+1) − x(k))] ×

x(k+1) − x(k)

(x(k+1) − x(k))T (x(k+1) − x(k))

43 / 113

Accelerating Broyden

Why update the Jacobian and then invert when we can just update an

inverted Jacobian

where , and .

B = A−1

B(k+1) = B(k) +
[d(k)−u(k)]d(k)TB(k)

d(k)Tu(k)

d(k) = (x(k+1) − x(k)) u(k) = B(k) [f(x(k+1)) − f(x(k))]

44 / 113

Accelerating Broyden

Broyden converges under relatively weak conditions:

45 / 113

Accelerating Broyden

Broyden converges under relatively weak conditions:

1. is continuously differentiable,

2. is close to the root of

3. is invertible around the root

4. is sufficiently close to the Jacobian

f

x(0) f

f ′

A0

45 / 113

Convergence speed

Rootfinding algorithms will converge at different speeds in terms of the

number of operations

46 / 113

Convergence speed

Rootfinding algorithms will converge at different speeds in terms of the

number of operations

A sequence of iterates is said to converge to at a rate of order if there

is a constant such that

for sufficiently large

x(k) x∗ p

C

||x(k+1) − x∗|| ≤ C||x(k) − x∗||
p

k

46 / 113

Convergence speed

If and , the rate of convergence is linear

If , convergence is superlinear, and if convergence is quadratic.

The higher order the convergence rate, the faster it converges

||x(k+1) − x∗|| ≤ C||x(k) − x∗||
p

C < 1 p = 1

1 < p < 2 p = 2

47 / 113

Convergence speed

How fast do the methods we've seen converge?

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)C = 0.5

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

C = 0.5

C = ||f ′(x∗)||

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

Secant and Broyden: superlinear rate with

C = 0.5

C = ||f ′(x∗)||

p ≈ 1.62

48 / 113

Convergence speed

How fast do the methods we've seen converge?

Bisection: linear rate with (kind of obvious once you see it)

Function iteration: linear rate with

Secant and Broyden: superlinear rate with

Newton:

C = 0.5

C = ||f ′(x∗)||

p ≈ 1.62

p = 2

48 / 113

Convergence speed

Convergence rates only account for the number of iterations of the method

The steps taken in a given iteration of each solution method may vary in

computational cost because of differences in the number of arithmetic

operations

Although an algorithm may take more iterations to solve,

each iteration may be solved faster and the overall algorithm takes less time

49 / 113

Convergence speed

Ex:

Bisection method only requires a single function evaluation during each

iteration

Function iteration only requires a single function evaluation during each

iteration

Broyden's method requires both a function evaluation and matrix

multiplication

Newton's method requires a function evaluation, a derivative evaluation,

and solving a linear system

50 / 113

Convergence speed

Ex:

Bisection method only requires a single function evaluation during each

iteration

Function iteration only requires a single function evaluation during each

iteration

Broyden's method requires both a function evaluation and matrix

multiplication

Newton's method requires a function evaluation, a derivative evaluation,

and solving a linear system

Bisection and function iteration are usually slow
50 / 113

Convergence speed

Consider an example where

What does convergence look like across our main approaches in terms of the

norm if all guesses start at ?

f(x) = x − √(x) = 0

L1− x(0) = 0.5

51 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

Local vs global: are we finding an optimum in a local region, or globally?

52 / 113

Maximization (minimization) methods

How we solve maximization problems has many similarities to rootfinding and

complementarity problems

I'll tend to frame problems as minimization problems because it is the

convention the optimization literature

We make two distinctions:

Local vs global: are we finding an optimum in a local region, or globally?

Derivative-using vs derivative-free: Do we want to use higher-order

information?

52 / 113

Maximization (minimization) methods

I'll focus on local solvers, common global solvers I won't cover:

1. Genetic algorithms

2. Simulated annealing

3. DIRECT

53 / 113

Derivative free optimization: Golden search

Similar to bisection, golden search looks for a solution of a one-dimensional

problem over smaller and smaller brackets

54 / 113

Derivative free optimization: Golden search

Similar to bisection, golden search looks for a solution of a one-dimensional

problem over smaller and smaller brackets

If we have a continuous one dimensional function, , and we want to find a

local minimum in some interval

f(x)

[a, b]

54 / 113

Derivative free optimization: Golden search

1. Select points where x1, x2 ∈ [a, b] x2 > x1

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

x1, x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a, x2] [a, b] [x1, b]

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

3. Repeat until convergence criterion is met

x1, x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a, x2] [a, b] [x1, b]

55 / 113

Derivative free optimization: Golden search

1. Select points where

2. If replace with , else replace with

3. Repeat until convergence criterion is met

Replace the endpoint of the interval next to the evaluated point with the

highest value keep the lower evaluated point in the interval guarantees

that a local minimum still exists

x1, x2 ∈ [a, b] x2 > x1

f(x1) < f(x2) [a, b] [a, x2] [a, b] [x1, b]

→ →

55 / 113

Derivative free optimization: Golden search

How do we pick and ?x1 x2

56 / 113

Derivative free optimization: Golden search

How do we pick and ?

Achievable goal for selection process:

New interval is independent of whether the upper or lower bound is

replaced

Only requires one function evaluation per iteration

x1 x2

56 / 113

Derivative free optimization: Golden search

How do we pick and ?

Achievable goal for selection process:

New interval is independent of whether the upper or lower bound is

replaced

Only requires one function evaluation per iteration

There's one algorithm that satisfies this

x1 x2

56 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

57 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

The value of is called the golden ratio and is where the algorithm gets its

name

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

α2

57 / 113

Derivative free optimization: Golden search

Golden search algorithm for point selection:

The value of is called the golden ratio and is where the algorithm gets its

name

Write out a golden search algorithm

xi = a + αi(b − a)

α1 = α2 =
3 − √5

2

√5 − 1

2

α2

57 / 113

Golden search

function golden_search(f, lower_bound, upper_bound)

 alpha_1 = (3 - sqrt(5))/2 # GS parameter 1

 alpha_2 = (sqrt(5) - 1)/2 # GS parameter 2

 tolerance = 1e-2 # tolerance for convergence

 difference = 1e10

while difference > tolerance

 x_1 = lower_bound + alpha_1*(upper_bound - lower_bound) # new x_1

 x_2 = lower_bound + alpha_2*(upper_bound - lower_bound) # new x_2

if f(x_1) < f(x_2) # reset bounds

 upper_bound = x_2

else

 lower_bound = x_1

end

 difference = x_2 - x_1

end

 println("Minimum is at x = $((lower_bound+upper_bound)/2).")

end;

58 / 113

Golden search

 f(x) = 2x^2 + 9x;

 golden_search(f, -10, 10)

Minimum is at x = -2.2483173872886444.

 f(x) = x^4;

 golden_search(f, -5, 3)

Minimum is at x = -0.003105620015141938.

 f(x) = sin(x);

 golden_search(f, 0, 1)

Minimum is at x = 0.010643118126104103.

59 / 113

Nelder-Mead: Simplex

Golden search is nice and simple but only works in one dimension

There are several derivative free methods for minimization that work in

multiple dimensions,
the most commonly used one is Nelder-Mead (NM)

60 / 113

Nelder-Mead: Simplex

Golden search is nice and simple but only works in one dimension

There are several derivative free methods for minimization that work in

multiple dimensions,
the most commonly used one is Nelder-Mead (NM)

NM works by first constructing a simplex: we evaluate the function at

points in an dimensional problem

It then manipulates the highest value point, similar to golden search

n + 1

n

60 / 113

Nelder-Mead: Simplex

There are six operations:

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex f(x1) ≤. . . ≤ f(xn+1)

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex

Centroid: calculate , the centroid of the non - points

f(x1) ≤. . . ≤ f(xn+1)

x0 xn+1

61 / 113

Nelder-Mead: Simplex

There are six operations:

Order: order the value at the vertices of the simplex

Centroid: calculate , the centroid of the non - points

Reflection: reflect through the opposite face of the simplex and

evaluate the new point: ,

If this improves upon the second-highest (e.g. its lower) but is not the

lowest value point, replace with and restart

If this is the lowest value point so far, go to step 4

If go to step 5

f(x1) ≤. . . ≤ f(xn+1)

x0 xn+1

xn+1

xr = x0 + α(x0 − xn+1) α > 0

xn+1 xr

f(xr) > f(xn)

61 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

Shrink: shrink the simplex toward the best point

Replace all points but the best one with

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

xi = x1 + σ(xi − x1)

62 / 113

Nelder-Mead: Simplex

Expansion: push the reflected point further in the same direction

Contract: Contract the highest value point toward the middle

Compute ,

If is better than the worst point replace with and restart

Else go to step 6

Shrink: shrink the simplex toward the best point

Replace all points but the best one with

Nelder-Mead is a pain to code efficiently (i.e. don't spend the time doing it

yourself) but is in the Optim.jl package

xc = x0 + γ(x0 − xn+1) 0 < γ ≤ 0.5

xc xn+1 xc

xi = x1 + σ(xi − x1)

62 / 113

Nelder-Mead: Simplex

Nelder-Mead is commonly used but slow and unreliable, no real useful

convergence properties, avoid using it
63 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function f

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

f

x∗ f(x∗) ≤ f(x) x

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

Problem: most algorithms are local minimizers that find a point

such that for all , where is a neighborhood of

f

x∗ f(x∗) ≤ f(x) x

x∗

f(x∗) ≤ f(x) x ∈ N N x∗

64 / 113

What is a solution?

We typically want to find a global extremum, here a minimum,

of our objective function

 is a global minimizer if for all over the domain of the

function

Problem: most algorithms are local minimizers that find a point

such that for all , where is a neighborhood of

Typically analytical problems are set up to have a unique minimum so any local

solver can generally find the global optimum

f

x∗ f(x∗) ≤ f(x) x

x∗

f(x∗) ≤ f(x) x ∈ N N x∗

64 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

How do we find a local minimum?

65 / 113

What is a solution?

Lots of problems have properties that don't satisfy the typical sufficiency

conditions for a unique minimum (strictly decreasing and convex), like

Concave transitions

Games with multiple equilibria

Etc

How do we find a local minimum?

Do we need to evaluate every single point?

65 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

x0

{xk}∞
k=1

66 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

If the function is smooth, we can take advantage of that information

about the function's shape to figure out which direction to move in next

x0

{xk}∞
k=1

66 / 113

The general unconstrained approach

Optimization algorithms typically have the following set up:

1. Start at some

2. Work through a series of iterates until we have "converged" with

sufficient accuracy

If the function is smooth, we can take advantage of that information

about the function's shape to figure out which direction to move in next

If is twice continuously differentiable, we can use the gradient and

Hessian to figure out if is a local minimizer

x0

{xk}∞
k=1

f ∇f

∇2f x∗

66 / 113

The general unconstrained approach

Taylor's Theorem tells us that if is twice differentiable, then there exists a

 such that

This is an exact equality

f

t ∈ (0, 1)

f(x∗ + p) = f(x∗) + ∇ f(x∗)T p + pT ∇2 f(x∗ + tp) p
1

2!

67 / 113

The general unconstrained approach

Taylor's Theorem tells us that if is twice differentiable, then there exists a

 such that

This is an exact equality

From here we can prove the usual necessary and sufficient conditions for a

local optimum

f

t ∈ (0, 1)

f(x∗ + p) = f(x∗) + ∇ f(x∗)T p + pT ∇2 f(x∗ + tp) p
1

2!

67 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

68 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

Most modern optimization problems fall into one of two classes:

1. Line search

2. Trust region

68 / 113

Two large classes of algorithms

All modern algorithms have that general set up but may go about it in different

ways

Most modern optimization problems fall into one of two classes:

1. Line search

2. Trust region

The relationship between these two approaches has a lot of similiarities

to the relationship between the constrained problem and the dual Lagrange

problem

68 / 113

Line search algorithms

General idea:

1. Start at some current iterate

2. Select a direction to move in

3. Figure out how far along to move

xk

pk

pk

69 / 113

Line search algorithms

How do we figure out how far to move?

70 / 113

Line search algorithms

How do we figure out how far to move?

"Approximately" solve this problem to figure out the step length α

min
α>0

f(xk + αpk)

70 / 113

Line search algorithms

How do we figure out how far to move?

"Approximately" solve this problem to figure out the step length

We are finding the distance to move, in direction that minimizes our

objective

α

min
α>0

f(xk + αpk)

α pk

f

70 / 113

Line search algorithms

Typically do not perform the full minimization problem since it is costly

We only try a limited number of step lengths before picking the best one

and moving onto our next iterate

α

xk+1

71 / 113

Line search algorithms

Typically do not perform the full minimization problem since it is costly

We only try a limited number of step lengths before picking the best one

and moving onto our next iterate

We still haven't answered, what direction do we decide to move in?

α

xk+1

pk

71 / 113

Line search: direction choice

What's an obvious choice for ?pk

72 / 113

Line search: direction choice

What's an obvious choice for ?

The direction that yields the steepest descent

pk

72 / 113

Line search: direction choice

What's an obvious choice for ?

The direction that yields the steepest descent

 is the direction that makes decrease most rapidly, indicates we are

evaluating at iteration

pk

−∇ fk f k

f k

72 / 113

Line search algorithms

73 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

74 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

For any direction and step length , we have thatp α

f(xk + αp) = f(xk) + α pT ∇ fk + α2pT ∇2 f(xk + tp) p
1

2!

74 / 113

Line search: steepest descent

We can verify this is the direction of steepest descent by referring to Taylor's

theorem

For any direction and step length , we have that

The rate of change in along at is

p α

f(xk + αp) = f(xk) + α pT ∇ fk + α2pT ∇2 f(xk + tp) p
1

2!

f p xk (α = 0) pT ∇ fk

74 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

min
p

pT ∇ fk subject to: ||p|| = 1

75 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

Re-express the objective as , where is the angle

between and

min
p

pT ∇ fk subject to: ||p|| = 1

minθ,p ||p|| ||∇ fk||cos θ θ

p ∇ fk

75 / 113

Line search: steepest descent

The the unit vector of quickest descent solves

Re-express the objective as , where is the angle

between and

The minimum is attained when and so the direction

of steepest descent is simply

min
p

pT ∇ fk subject to: ||p|| = 1

minθ,p ||p|| ||∇ fk||cos θ θ

p ∇ fk

cos θ = −1 p = − ,∇ fk

||∇ fk||

−∇ fk

75 / 113

Line search: steepest descent

The steepest descent method searches along this direction at every iteration

It may select the step length in several different ways

A benefit of the algorithm is that we only require the gradient of the function,

and no Hessian

However it can be very slow

k

αk

76 / 113

Line search: alternative directions

We can always use search directions other than the steepest descent

77 / 113

Line search: alternative directions

We can always use search directions other than the steepest descent

Any descent direction, i.e. one that is within of ,

is guaranteed to produce a decrease in as long as the step size is sufficiently

small

45
∘

−∇ fk

f

77 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

Therefore for positive but sufficiently small

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

f(xk + ϵpk) < f(xk) ϵ

78 / 113

Line search: alternative directions

We can actually verify this with Taylor's theorem

If is in a descending direction, will be of an angle such that

This gives us

Therefore for positive but sufficiently small

Is always the best search direction?

f(xk + ϵpk) = f(xk) + ϵ pT
k

∇ fk + O(ϵ2)

pk θk cos θk < 0

pT
k

∇fk = ||pk|| ||∇ fk||cos θk < 0

f(xk + ϵpk) < f(xk) ϵ

−∇ fk

78 / 113

Newton's method

The most important search direction is not steepest descent but Newton's

direction

79 / 113

Newton's method

The most important search direction is not steepest descent but Newton's

direction

Newton's direction comes out of the second order Taylor series

approximation to

Define this as

f(xk + p)

f(xk + p) ≈ fk + pT ∇ fk + pT ∇2fk p
1

2!

mk(p)

79 / 113

Newton's method

We find the Newton direction by selecting the vector that minimizes p

f(xk + p)

80 / 113

Newton's method

We find the Newton direction by selecting the vector that minimizes

This ends up being

p

f(xk + p)

pN
k

= −
∇fk

∇2fk

80 / 113

Newton's method

81 / 113

Newton's method

This approximation to the function we are trying to solve has error of

,

so if is small, the quadratic approximation is very accurate

O(||p||
3
)

p

81 / 113

Newton's method

This approximation to the function we are trying to solve has error of

,

so if is small, the quadratic approximation is very accurate

Drawback: requires explicit computation of the Hessian,

Quasi-Newton solvers also exist (e.g. BFGS, L-BFGS, etc)

O(||p||
3
)

p

∇2 f(x)

81 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

mk

xk

f

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

mk

xk

f

mk

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

Issue: may not represent well when far away from the current iterate

mk

xk

f

mk

mk f xk

82 / 113

Trust region methods

Trust region methods construct an approximating model,

whose behavior near the current iterate is close to that of the actual

function

We then search for a minimizer of

Issue: may not represent well when far away from the current iterate

Solution: Restrict the search for a minimizer to be within some region of ,

called a trust region

mk

xk

f

mk

mk f xk

xk

82 / 113

Trust region methods

Trust region problems can be formulated as

where

 is a ball defined by

 is called the trust region radius

min
p

mk(xk + p)

xk + p ∈ Γ

Γ ||p||2 ≤ Δ

Δ

83 / 113

Trust region Methods

Typically the approximating model is a quadratic function (i.e. a second-

order Taylor approximation)

where is the Hessian or an approximation to the Hessian

mk

mk(xk + p) = fk + pT ∇ fk + pT Bk p
1

2!

Bk

84 / 113

Line search vs trust region

Whats the fundamental difference between line search and trust region?

85 / 113

Line search vs trust region

Whats the fundamental difference between line search and trust region?

Line search first picks a direction then searches along that direction for the

optimal step length

Trust region first defines our step length via the trust region radius, then

searches for the optimal direction

85 / 113

Line search vs trust region

There is a special case of the trust region where if we set , the approximate

Hessian, to zero,
the solution to the problem is

This is just the steepest descent solution for the line search problem

Bk

pk = −
Δk ∇ fk

||∇ fk||

86 / 113

Problem scaling

The scaling of a problem matters for optimization performance

87 / 113

Problem scaling

The scaling of a problem matters for optimization performance

A problem is poorly scaled if changes to in a certain direction

produce much bigger changes in than changes to in in another direction

x

f x

87 / 113

Problem scaling

The scaling of a problem matters for optimization performance

A problem is poorly scaled if changes to in a certain direction

produce much bigger changes in than changes to in in another direction

x

f x

87 / 113

Problem scaling

Ex: is poorly scaledf(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

f(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

How do we solve this issue?

f(x) = 109x2
1 + x2

2

88 / 113

Problem scaling

Ex: is poorly scaled

This happens when things change at different rates:

Investment rates between 0 and 1, but global consumption is in dollars

How do we solve this issue?

Rescale the problem: put them in units that are generally within an order of

magnitude of 1

Investment rate in percentage terms:

Consumption in units of trillion dollars instead of dollars

f(x) = 109x2
1 + x2

2

0% − 100%

88 / 113

Constrained optimization

How do we solve constrained optimization problems?

89 / 113

Constrained optimization

How do we solve constrained optimization problems?

Typically as a variant of unconstrained optimization techniques

89 / 113

Constrained optimization

How do we solve constrained optimization problems?

Typically as a variant of unconstrained optimization techniques

We will discuss three types of constrained optimization algorithms

Penalty methods

Active set methods

Interior point methods

89 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: KNITRO

90 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: KNITRO

91 / 113

Constrained optimization

These are the algorithms in workhorse commercial solvers: fmincon/MATLAB

92 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

min
x

f(x) subject to: ci(x) = 0

93 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

How does an algorithm know to not violate the constraint?

min
x

f(x) subject to: ci(x) = 0

93 / 113

Constrained optimization: Penalty methods

Suppose we wish to minimize some function subject to equality constraints

(easily generalizes to inequality)

How does an algorithm know to not violate the constraint?

One way is to introduce a penalty function into our objective and remove the

constraint:

where is the penalty parameter

min
x

f(x) subject to: ci(x) = 0

Q(x; μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ 93 / 113

Constrained optimization: Penalty methods

Q(x;μ) = f(x) + ∑
i

c2i (x)
μ

2

94 / 113

Constrained optimization: Penalty methods

The second term increases the value of the function, bigger bigger

penalty from violating the constraint

Q(x; μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ →

94 / 113

Constrained optimization: Penalty methods

The second term increases the value of the function, bigger bigger

penalty from violating the constraint

The penalty terms are smooth use unconstrained optimization techniques

to solve the problem by searching for iterates of

Q(x; μ) = f(x) + ∑
i

c2
i (x)

μ

2

μ →

→

xk

94 / 113

Constrained optimization: Penalty methods

Also generally iterate on sequences of as , to require

satisfying the constraints as we close in

μk → ∞ k → ∞

95 / 113

Constrained optimization: Penalty methods

Also generally iterate on sequences of as , to require

satisfying the constraints as we close in

There are also augmented Lagrangian methods that take the quadratic

penalty method and add in explicit estimates of Lagrange multipliers to help

force binding constraints to bind precisely

μk → ∞ k → ∞

95 / 113

Constrained optimization: Penalty method example

Example:

min x1 + x2 subject to: x
2
1 + x

2
2 − 2 = 0

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

min x1 + x2 subject to: x
2
1 + x

2
2 − 2 = 0

(−1, −1)

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

The penalty method function is

min x1 + x2 subject to: x2
1 + x2

2 − 2 = 0

(−1, −1)

Q(x1, x2; μ)

Q(x1, x2; μ) = x1 + x2 + (x2
1 + x2

2 − 2)2μ

2

96 / 113

Constrained optimization: Penalty method example

Example:

Solution is pretty easy to show to be

The penalty method function is

Let's ramp up and see what happens to how the function looks

min x1 + x2 subject to: x2
1 + x2

2 − 2 = 0

(−1, −1)

Q(x1, x2; μ)

Q(x1, x2; μ) = x1 + x2 + (x2
1 + x2

2 − 2)2μ

2

μ

96 / 113

Constrained optimization: Penalty method example

, solution is around μ = 1 (−1.1, −1.1)

97 / 113

Constrained optimization: Penalty method example

, solution is very close to , can easily see trough, and rapid

value increase outside

μ = 10 (−1, −1)

x2
1 + x2

2 = 2

98 / 113

Constrained optimization: Active set methods

Active set methods encapsulate sequential quadratic programming (SQP)

methods

99 / 113

Constrained optimization: Active set methods

Active set methods encapsulate sequential quadratic programming (SQP)

methods

Main idea:

1. Replace the large non-linear constrained problem with a constrained

quadratic programming problem

2. Use Newton's method to solve the sequence of simpler quadratic problems

99 / 113

Constrained optimization: Active set methods

The Lagrangian is

L(x, λ) = f(x) − λT c(x)

100 / 113

Constrained optimization: Active set methods

The Lagrangian is

Denote as the Jacobian of the constraints

L(x, λ) = f(x) − λT c(x)

A(x)T

A(x)T = [∇ c1(x), . . . , ∇ cm(x)]

100 / 113

Constrained optimization: Active set methods

The first-order conditions can be written as,

Any solution to the equality constrained problem, where has full rank

also satisfies the first-order necessary conditions

F(x, λ)

∇ f(x) − A(x)T λ = 0

c(x) = 0

A(x∗)

101 / 113

Constrained optimization: Active set methods

The first-order conditions can be written as,

Any solution to the equality constrained problem, where has full rank

also satisfies the first-order necessary conditions

Active set methods use Newton's method to find the solution of

F(x, λ)

∇ f(x) − A(x)T λ = 0

c(x) = 0

A(x∗)

(x∗, λ∗)

F(x, λ)

101 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

102 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

Main idea: recognize that if an inequality constraint is not binding, or active,

then it has no influence on the solution

 in the iteration procedure we can effectively ignore it→

102 / 113

Constrained optimization: Active set methods

Issue: if we have many constraints, keeping track of all of them can be

expensive

Main idea: recognize that if an inequality constraint is not binding, or active,

then it has no influence on the solution

 in the iteration procedure we can effectively ignore it

Active set methods find ways to reduce the complexity of the optimization

routine

by selectively ignoring constraints that are not active (i.e. non-positive

Lagrange multipliers) or close to being active

→

102 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

Issue: how do we ensure we are on the interior of the feasible set?

103 / 113

Constrained optimization: Interior point methods

Interior point methods are also called barrier methods

These are typically used for inequality constrained problems

The name interior point comes from the algorithm traversing the domain

along the interior of the inequality constraints

Issue: how do we ensure we are on the interior of the feasible set?

Main idea: impose a barrier to stop the solver from letting a constraint bind

103 / 113

Constrained optimization: Interior point methods

Consider the following constrained optimization problem

min
x

f(x)

subject to: cE(x) = 0, cI(x) ≥ 0

104 / 113

Constrained optimization: Interior point methods

Consider the following constrained optimization problem

Reformulate this problem as

where is a vector of slack variables for the constraints

min
x

f(x)

subject to: cE(x) = 0, cI(x) ≥ 0

min
x,s

f(x)

subject to: cE(x) = 0, cI(x) − s = 0, s ≥ 0

s

104 / 113

Constrained optimization: Interior point methods

Final step: introduce a barrier function to eliminate the inequality constraint,

where is a positive barrier parameter

min
x,s

f(x) − μ
m

∑
i=1

log(si)

subject to: cE(x) = 0, cI(x) − s = 0

μ

105 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

s

→

106 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

Interior point methods solve a sequence of barrier problems until

converges to zero

s

→

{μk}

106 / 113

Constrained optimization: Interior point methods

The barrier function prevents the components of from approaching

zero by imposing a logarithmic barrier it maintains slack in the constraints

Interior point methods solve a sequence of barrier problems until

converges to zero

The solution to the barrier problem converges to that of the original problem

s

→

{μk}

106 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

107 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

WRONG

107 / 113

Best practices for optimization

Plug in your guess, let the solver go, and you're done right?

WRONG

These algorithms are not guaranteed to always find even a local solution, you

need to test and make sure you are converging correctly

107 / 113

Check exitflags: KNITRO-specific numbers here

Exitflags tell you why the solver stopped, exit flags of 0 or -10X are generally

good, anything else is bad

-10X can indicate bad scaling, ill-conditioning, etc

108 / 113

Try alternative algorithms

Optimization is approximately 53% art

109 / 113

Try alternative algorithms

Optimization is approximately 53% art

Not all algorithms are suited for every problem it is useful to check how

different algorithms perform

→

109 / 113

Try alternative algorithms

Optimization is approximately 53% art

Not all algorithms are suited for every problem it is useful to check how

different algorithms perform

Interior-point is usually the default in constrained optimization solvers (low

memory usage, fast), but try other algorithms and see if the solution generally

remains the same

→

109 / 113

Be aware of tolerances

Two main tolerances in optimization:

1. ftol is the tolerance for the change in the function value (absolute and

relative)

2. xtol is the tolerance for the change in the input values (absolute and

relative)

110 / 113

Be aware of tolerances

Two main tolerances in optimization:

1. ftol is the tolerance for the change in the function value (absolute and

relative)

2. xtol is the tolerance for the change in the input values (absolute and

relative)

What is a suitable tolerance?

110 / 113

Be aware of tolerances

It depends

111 / 113

Be aware of tolerances

It depends

Explore sensitivity to tolerance, typically pick a conservative (small) number

Defaults in solvers are usually 1e-6

111 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

112 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

Common bad practice is to pick a larger tolerance (e.g. 1e-3) so the problem

"works" (e.g. so your big MLE converges)

112 / 113

Be aware of tolerances

May be a substantial tradeoff between accuracy of your solution and speed

Common bad practice is to pick a larger tolerance (e.g. 1e-3) so the problem

"works" (e.g. so your big MLE converges)

Issue is that 1e-3 might be pretty big for your problem

if you haven't checked that your solution is not sensitive to the tolerance

112 / 113

Perturb your initial guesses

Initial guesses matter

113 / 113

Perturb your initial guesses

Initial guesses matter

Good ones can improve performance

e.g. initial guess for next iteration of coefficient estimates should be current

iteration estimates

113 / 113

Perturb your initial guesses

Initial guesses matter

Good ones can improve performance

e.g. initial guess for next iteration of coefficient estimates should be current

iteration estimates

Bad ones can give you terrible performance, or wrong answers if your

problem isn't perfect

e.g. bad scaling, not well-conditioned, multiple equilibria

113 / 113

