
Software and stuff

Necessary things to do:

Install Git

Create an account on GitHub

Install GitHub Desktop if you want a GUI for Git

Accept invite to the AEM 7130 classroom repository on GitHub

2 / 48

Why Git?

The classic date your file name method is not good

3 / 48

Why Git?

The classic date your file name method is not good

When did you make changes? Who made them?

How do you undo only some changes from one update to the next?

3 / 48

Why Git?

The classic date your file name method is not good

If you've ever had a disaster managing code changes (you will), Git can help

4 / 48

Git is the smart way to handle code

What is git?

Git is a distributed version control system for tracking

changes in source code during software development. It is

designed for coordinating work among programmers, but it

can be used to track changes in any set of files. Its goals

include speed, data integrity, and support for distributed,

non-linear workflows.

5 / 48

Git is the smart way to handle code

Okay, so what?

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

Easy ways to test out experimental changes (e.g. new specifications,

additional model states) and not have them mess with your main code

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

Easy ways to test out experimental changes (e.g. new specifications,

additional model states) and not have them mess with your main code

Built for versioning code like R, Julia, LaTeX, etc
6 / 48

Git histories in GitHub Desktop

Some apps can give you a pretty visual of the history of

changes to your code (shell can too, but not as nice)

GitHub Desktop

SourceTree

VSCode

RStudio

MATLAB

Atom

7 / 48

GitHub

Git GitHub≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

It's the main location for non-base Julia packages (and tons of other stuff)

to be stored and developed

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

It's the main location for non-base Julia packages (and tons of other stuff)

to be stored and developed

It has services that I used to set up this class, etc

≠

8 / 48

The differences

9 / 48

The differences

Git is the infrastructure for versioning and merging files

9 / 48

The differences

Git is the infrastructure for versioning and merging files

GitHub provides an online service to coordinate working with Git

repositories, and adds some additional features for managing projects

9 / 48

The differences

Git is the infrastructure for versioning and merging files

GitHub provides an online service to coordinate working with Git

repositories, and adds some additional features for managing projects

GitHub stores the project on the cloud, allows for task management, creation

of groups, etc

9 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

10 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

This is the directory for a project

10 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

This is the directory for a project

Local: a directory with a .git subdirectory that stores the history of

changes to the repository

Remote: a website, e.g. see the GitHub repo for the Optim package in Julia

10 / 48

Creating a new repo on GitHub

Let's create a new repo

11 / 48

Creating a new repo on GitHub

Let's create a new repo

This is pretty easy from the GitHub website: just click on that green new

button from the launch page

11 / 48

Creating a new repo on GitHub

Next steps:

1. Choose a name

2. Choose a description

3. Choose whether the repo is public or private

4. Choose whether you want to add a README.md (yes), or a .gitignore or a

LICENSE.md file (more next slide)

12 / 48

Git basics

Repos come with some common files in them

.gitignore : lists files/directories/extensions that Git shouldnt track (raw

data, restricted data, those weird LaTeX files); this is usually a good idea

README.md : a Markdown file that is basically the welcome content on repo's

GitHub website, you should generally initialize a repo with one of these

LICENSE.md : describes the license agreement for the repository

13 / 48

Git basics

14 / 48

Creating a new repo on GitHub

You can find the repo at https://github.com/irudik/example-repo-7130

15 / 48

How do I get a repo on GitHub onto on my computer?

Clone

To get the repository on your local machine you need to clone the repo, you

can do this in a few ways from the repo site

16 / 48

How do I get a repo on GitHub onto on my computer?

Clone

To get the repository on your local machine you need to clone the repo, you

can do this in a few ways from the repo site

Key thing: this will link your local repository to the remote, you'll be able to

update your local when the remote is changed

16 / 48

Cloning

1. If you want to use the GitHub desktop

app instead of command line, click on

"Open in Desktop"

2. You can use command line git clone

https://github.com/irudik/example-

repo-7130.git

17 / 48

Cloning

You're done! Now create and clone your own repository, initialized with a

README.md , and follow along.

18 / 48

Cloning

You're done! Now create and clone your own repository, initialized with a

README.md , and follow along.

19 / 48

The flow of Git

Workspace: the actual files on your computer

Repository: your saved local history of changes to the files in the repository

Remote: The remote repository on GitHub that allows for sharing across

collaborators

20 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

21 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

Add/Stage: This adds files to the index, in other words, it takes a snapshot of

the changes you want updated/saved in your local repository (i.e. your

computer)

git add -A Adds all files to the index

21 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

Add/Stage: This adds files to the index, in other words, it takes a snapshot of

the changes you want updated/saved in your local repository (i.e. your

computer)

git add -A Adds all files to the index

Commit: This records the changes to your local repository

git commit -m "Updated some files" Commits the changes added to the

index with the commit message in quotations 21 / 48

Using Git

Push: This sends the changes to the remote repository (i.e. GitHub)

git push origin master Pushes changes on your local repo to a branch

called master on your remote, typically named origin (can often omit

origin master)

22 / 48

Using Git

Push: This sends the changes to the remote repository (i.e. GitHub)

git push origin master Pushes changes on your local repo to a branch

called master on your remote, typically named origin (can often omit

origin master)

Pull: This takes changes on the remote and integrates them with the local

repository (technically two operations are going on: fetch and merge)

git pull origin master Integrates the changes on the master branch of

your remote origin into your local repo (again, can often omit origin

master)
22 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

23 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

1. Open README.md in some text editor and insert the following code: # Hello

World!

2. Save README.md

3. Add the changes to README.md to the index

4. Commit the changes to your local repo with the message: "First

README.md edit."

5. Push the changes to your remote

23 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

1. Open README.md in some text editor and insert the following code: # Hello

World!

2. Save README.md

3. Add the changes to README.md to the index

4. Commit the changes to your local repo with the message: "First

README.md edit."

5. Push the changes to your remote

Did the changes show up your repo's GitHub page?

23 / 48

Using Git: branching

Some more (but not very) advanced operations relate to branching

Branching creates different, but parallel, versions of your code

e.g. If you want to test out a new feature of your model but don't want to

contaminate your master branch, create a new branch and add the feature

there

If it works out, you can bring the changes back into master

If it doesn't, just delete it

24 / 48

Using Git: branching

Branch: This adds/deletes/merges different branches of your repository

git branch Lists all local branches

git branch -a Lists all remote branches

git branch solar-panels Creates a new branch called solar-panels

git branch -d solar-panels Deletes the local solar-panels branch

25 / 48

Using Git: branching

Checkout: This switches you between different commits or branches

git checkout solar-panels Switches you to branch solar-panels

git checkout -b wind-turbines Creates a new branch called wind-

turbines and checks it out

26 / 48

Using Git: branching

Merge: This merges two separate histories together (e.g. merges a separate

branch back into the master)

git checkout master

git merge wind-turbines

Checks out master and then merges wind-turbines back into the master

This brings the changes from wind-turbines since the initial branch back into

the master branch

27 / 48

Using Git

In your own repository do the following:

28 / 48

Using Git

In your own repository do the following:

1. Create and checkout a new branch called test-branch

2. Edit README.md and add the following code: ## your_name_here

3. Save README.md

4. Add the changes to README.md to the index

5. Commit the changes to your local repo with the message: "Test change to

README.md."

6. Merge the changes back into the master branch

7. Push the changes to your remote

28 / 48

Using Git

In your own repository do the following:

1. Create and checkout a new branch called test-branch

2. Edit README.md and add the following code: ## your_name_here

3. Save README.md

4. Add the changes to README.md to the index

5. Commit the changes to your local repo with the message: "Test change to

README.md."

6. Merge the changes back into the master branch

7. Push the changes to your remote

Did the changes show up your repo's GitHub page?
28 / 48

Teaming up

Find a partner for this next

piece:

One of you invite the other to

collaborate on the project

(GitHub page Settings

Manage access invite a

collaborator)

→ →

→

29 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

3. Have the repo creator push their changes

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

3. Have the repo creator push their changes

4. Have the collaborator push their changes

30 / 48

Can't push changes when you aren't updated

Shell

It turns out that the second person can't push their local changes to the

remote

The second person is pushing their history of changes

But the remote is already one commit ahead because of the first person, so

the second person's changes can't be pushed 31 / 48

Update by pulling after you commit local changes

You need to pull the remote changes first, but then you get the following

message:

And we got a merge conflict in README.md

32 / 48

Update by pulling after you commit local changes

You need to pull the remote changes first, but then you get the following

message:

This means there were differences between the remote and your local that

conflicted 33 / 48

Merge conflicts

Sometimes there will be conflicts between two separate histories

e.g. if you and your collaborator edited the same chunk of code separately

on your local repos

34 / 48

Merge conflicts

Sometimes there will be conflicts between two separate histories

e.g. if you and your collaborator edited the same chunk of code separately

on your local repos

When you try to merge these histories by pushing to the remote, Git will

throw a merge conflict

34 / 48

Merge conflicts

When you get a merge conflict, the conflicted part of the code in your file will

look like:

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

35 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

36 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

======= separates the two different conflicting histories

36 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

======= separates the two different conflicting histories

>>>>>>> lots of numbers and letters indicates the end of the conflicted

code and the hash (don't worry about it) for the specific commit

36 / 48

Fixing the merge conflict

Merge conflicts can be fixed by directly editing the file, then doing an add of

the conflicted file, a commit , and then a push to the remote

37 / 48

Fixing the merge conflict

Merge conflicts can be fixed by directly editing the file, then doing an add of

the conflicted file, a commit , and then a push to the remote

Fixed!

37 / 48

Git help pages are excellent, so is StackExchange

$ git help add

38 / 48

Managing tasks and workflow

GitHub is also very useful for task management in solo or group projects using

issues and pull requests

Issues: task management for you and your collaborators, should be able to

completely replace email

Let's look at the issues for the Optim package in Julia

39 / 48

Issues

The issues tab reports a list

of 56 open issues (286

closed, meaning the task or

problem has been solved)

Each issue has its own title

Lets check out the issue

about the Double64 type

40 / 48

Issues

The issue is because one person has found an

error with the package where it doesn't seem

to work correctly with a certain type of

variable Double64

Someone else has responded with some

feedback

41 / 48

Issues

From the issues tab, click the

green new issue button which

takes you here

You can:

create a title

add some text for the body

of the issue

select people to assign the

issue to

add some labels
42 / 48

Issues

The issue keeps track of

the history of everything

that's happened to it

43 / 48

Issues

You can reference

people with @ which

brings up a dropdown

menu of all

collaborators on the

project

44 / 48

Issues

You can also reference other

issues if they're related by

using # which brings up a

dropdown of all issues for

your repository

45 / 48

Issues

Issues can also be referenced in your commits to your project by adding

#issue_number_here to the commit message

46 / 48

Issues

Then those commits show up in

your issue so you have a history

of what code changes have

been made.

47 / 48

Issues

If you click on the commit, it takes you to the git diff which shows you any

changes to files made in that commit

48 / 48

Lecture 3

Git and GitHub

Ivan Rudik
AEM 7130

https://git-scm.com/downloads
https://github.com/
https://desktop.github.com/
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/irudik/example-repo-7130

Software and stuff

Necessary things to do:

Install Git

Create an account on GitHub

Install GitHub Desktop if you want a GUI for Git

Accept invite to the AEM 7130 classroom repository on GitHub

2 / 48

https://git-scm.com/downloads
https://github.com/
https://desktop.github.com/

Why Git?

The classic date your file name method is not good

3 / 48

Why Git?

The classic date your file name method is not good

When did you make changes? Who made them?

How do you undo only some changes from one update to the next?

3 / 48

Why Git?

The classic date your file name method is not good

If you've ever had a disaster managing code changes (you will), Git can help

4 / 48

Git is the smart way to handle code

What is git?

Git is a distributed version control system for tracking

changes in source code during software development. It is

designed for coordinating work among programmers, but it

can be used to track changes in any set of files. Its goals

include speed, data integrity, and support for distributed,

non-linear workflows.

5 / 48

Git is the smart way to handle code

Okay, so what?

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

Easy ways to test out experimental changes (e.g. new specifications,

additional model states) and not have them mess with your main code

6 / 48

Git is the smart way to handle code

Okay, so what?

Git combines a bunch of very useful features:

Remote storage of code on a host like GitHub/GitLab/Bitbucket/etc, just

like Dropbox

Tracking of changes to files in a very clean way

Easy ways to test out experimental changes (e.g. new specifications,

additional model states) and not have them mess with your main code

Built for versioning code like R, Julia, LaTeX, etc
6 / 48

Git histories in GitHub Desktop

Some apps can give you a pretty visual of the history of

changes to your code (shell can too, but not as nice)

GitHub Desktop

SourceTree

VSCode

RStudio

MATLAB

Atom

7 / 48

GitHub

Git GitHub≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

It's the main location for non-base Julia packages (and tons of other stuff)

to be stored and developed

≠

8 / 48

GitHub

Git GitHub

GitHub hosts a bunch of online services we want when using Git

Allows for people to suggest code changes to existing code

It's the main location for non-base Julia packages (and tons of other stuff)

to be stored and developed

It has services that I used to set up this class, etc

≠

8 / 48

The differences

9 / 48

The differences

Git is the infrastructure for versioning and merging files

9 / 48

The differences

Git is the infrastructure for versioning and merging files

GitHub provides an online service to coordinate working with Git

repositories, and adds some additional features for managing projects

9 / 48

The differences

Git is the infrastructure for versioning and merging files

GitHub provides an online service to coordinate working with Git

repositories, and adds some additional features for managing projects

GitHub stores the project on the cloud, allows for task management, creation

of groups, etc

9 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

10 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

This is the directory for a project

10 / 48

Git basics

Everything on Git is stored in something called a repository or repo for short

This is the directory for a project

Local: a directory with a .git subdirectory that stores the history of

changes to the repository

Remote: a website, e.g. see the GitHub repo for the Optim package in Julia

10 / 48

https://github.com/JuliaNLSolvers/Optim.jl

Creating a new repo on GitHub

Let's create a new repo

11 / 48

Creating a new repo on GitHub

Let's create a new repo

This is pretty easy from the GitHub website: just click on that green new

button from the launch page

11 / 48

Creating a new repo on GitHub

Next steps:

1. Choose a name

2. Choose a description

3. Choose whether the repo is public or private

4. Choose whether you want to add a README.md (yes), or a .gitignore or a

LICENSE.md file (more next slide)

12 / 48

Git basics

Repos come with some common files in them

.gitignore : lists files/directories/extensions that Git shouldnt track (raw

data, restricted data, those weird LaTeX files); this is usually a good idea

README.md : a Markdown file that is basically the welcome content on repo's

GitHub website, you should generally initialize a repo with one of these

LICENSE.md : describes the license agreement for the repository

13 / 48

Git basics

14 / 48

Creating a new repo on GitHub

You can find the repo at https://github.com/irudik/example-repo-7130

15 / 48

https://github.com/irudik/example-repo-7130

How do I get a repo on GitHub onto on my computer?

Clone

To get the repository on your local machine you need to clone the repo, you

can do this in a few ways from the repo site

16 / 48

How do I get a repo on GitHub onto on my computer?

Clone

To get the repository on your local machine you need to clone the repo, you

can do this in a few ways from the repo site

Key thing: this will link your local repository to the remote, you'll be able to

update your local when the remote is changed

16 / 48

Cloning

1. If you want to use the GitHub desktop

app instead of command line, click on

"Open in Desktop"

2. You can use command line git clone

https://github.com/irudik/example-

repo-7130.git

17 / 48

Cloning

You're done! Now create and clone your own repository, initialized with a

README.md , and follow along.

18 / 48

Cloning

You're done! Now create and clone your own repository, initialized with a

README.md , and follow along.

19 / 48

The flow of Git

Workspace: the actual files on your computer

Repository: your saved local history of changes to the files in the repository

Remote: The remote repository on GitHub that allows for sharing across

collaborators

20 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

21 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

Add/Stage: This adds files to the index, in other words, it takes a snapshot of

the changes you want updated/saved in your local repository (i.e. your

computer)

git add -A Adds all files to the index

21 / 48

Using Git

There are only a few basic Git operations you need to know for versioning solo

economics research efficiently

Add/Stage: This adds files to the index, in other words, it takes a snapshot of

the changes you want updated/saved in your local repository (i.e. your

computer)

git add -A Adds all files to the index

Commit: This records the changes to your local repository

git commit -m "Updated some files" Commits the changes added to the

index with the commit message in quotations 21 / 48

Using Git

Push: This sends the changes to the remote repository (i.e. GitHub)

git push origin master Pushes changes on your local repo to a branch

called master on your remote, typically named origin (can often omit

origin master)

22 / 48

Using Git

Push: This sends the changes to the remote repository (i.e. GitHub)

git push origin master Pushes changes on your local repo to a branch

called master on your remote, typically named origin (can often omit

origin master)

Pull: This takes changes on the remote and integrates them with the local

repository (technically two operations are going on: fetch and merge)

git pull origin master Integrates the changes on the master branch of

your remote origin into your local repo (again, can often omit origin

master)
22 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

23 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

1. Open README.md in some text editor and insert the following code: # Hello

World!

2. Save README.md

3. Add the changes to README.md to the index

4. Commit the changes to your local repo with the message: "First

README.md edit."

5. Push the changes to your remote

23 / 48

Using Git

In your own repository do the following using either shell or GitHub Desktop:

1. Open README.md in some text editor and insert the following code: # Hello

World!

2. Save README.md

3. Add the changes to README.md to the index

4. Commit the changes to your local repo with the message: "First

README.md edit."

5. Push the changes to your remote

Did the changes show up your repo's GitHub page?

23 / 48

Using Git: branching

Some more (but not very) advanced operations relate to branching

Branching creates different, but parallel, versions of your code

e.g. If you want to test out a new feature of your model but don't want to

contaminate your master branch, create a new branch and add the feature

there

If it works out, you can bring the changes back into master

If it doesn't, just delete it

24 / 48

Using Git: branching

Branch: This adds/deletes/merges different branches of your repository

git branch Lists all local branches

git branch -a Lists all remote branches

git branch solar-panels Creates a new branch called solar-panels

git branch -d solar-panels Deletes the local solar-panels branch

25 / 48

Using Git: branching

Checkout: This switches you between different commits or branches

git checkout solar-panels Switches you to branch solar-panels

git checkout -b wind-turbines Creates a new branch called wind-

turbines and checks it out

26 / 48

Using Git: branching

Merge: This merges two separate histories together (e.g. merges a separate

branch back into the master)

git checkout master

git merge wind-turbines

Checks out master and then merges wind-turbines back into the master

This brings the changes from wind-turbines since the initial branch back into

the master branch

27 / 48

Using Git

In your own repository do the following:

28 / 48

Using Git

In your own repository do the following:

1. Create and checkout a new branch called test-branch

2. Edit README.md and add the following code: ## your_name_here

3. Save README.md

4. Add the changes to README.md to the index

5. Commit the changes to your local repo with the message: "Test change to

README.md."

6. Merge the changes back into the master branch

7. Push the changes to your remote

28 / 48

Using Git

In your own repository do the following:

1. Create and checkout a new branch called test-branch

2. Edit README.md and add the following code: ## your_name_here

3. Save README.md

4. Add the changes to README.md to the index

5. Commit the changes to your local repo with the message: "Test change to

README.md."

6. Merge the changes back into the master branch

7. Push the changes to your remote

Did the changes show up your repo's GitHub page?
28 / 48

Teaming up

Find a partner for this next

piece:

One of you invite the other to

collaborate on the project

(GitHub page Settings

Manage access invite a

collaborator)

→ →

→

29 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

3. Have the repo creator push their changes

30 / 48

Teaming up

If you were the one being invited, accept the invite, and clone the repo to your

local

Now do the following:

1. Each of you edit the # Hello World! line of code to be something else and

different from each other

2. Commit the changes to your local

3. Have the repo creator push their changes

4. Have the collaborator push their changes

30 / 48

Can't push changes when you aren't updated

Shell

It turns out that the second person can't push their local changes to the

remote

The second person is pushing their history of changes

But the remote is already one commit ahead because of the first person, so

the second person's changes can't be pushed 31 / 48

Update by pulling after you commit local changes

You need to pull the remote changes first, but then you get the following

message:

And we got a merge conflict in README.md

32 / 48

Update by pulling after you commit local changes

You need to pull the remote changes first, but then you get the following

message:

This means there were differences between the remote and your local that

conflicted 33 / 48

Merge conflicts

Sometimes there will be conflicts between two separate histories

e.g. if you and your collaborator edited the same chunk of code separately

on your local repos

34 / 48

Merge conflicts

Sometimes there will be conflicts between two separate histories

e.g. if you and your collaborator edited the same chunk of code separately

on your local repos

When you try to merge these histories by pushing to the remote, Git will

throw a merge conflict

34 / 48

Merge conflicts

When you get a merge conflict, the conflicted part of the code in your file will

look like:

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

35 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

36 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

======= separates the two different conflicting histories

36 / 48

Merge conflicts

$ <<<<<<< HEAD

$ # nascar_and_unleaded <-- my local version

$ =======

$ # nascar_and_leaded <-- the remote version

$ >>>>>>> 03c774b0e9baff0230855822a11e6ed24a0aa6b2

<<<<<<< HEAD indicates the start of the conflicted code

======= separates the two different conflicting histories

>>>>>>> lots of numbers and letters indicates the end of the conflicted

code and the hash (don't worry about it) for the specific commit

36 / 48

Fixing the merge conflict

Merge conflicts can be fixed by directly editing the file, then doing an add of

the conflicted file, a commit , and then a push to the remote

37 / 48

Fixing the merge conflict

Merge conflicts can be fixed by directly editing the file, then doing an add of

the conflicted file, a commit , and then a push to the remote

Fixed!

37 / 48

Git help pages are excellent, so is StackExchange

$ git help add

38 / 48

Managing tasks and workflow

GitHub is also very useful for task management in solo or group projects using

issues and pull requests

Issues: task management for you and your collaborators, should be able to

completely replace email

Let's look at the issues for the Optim package in Julia

39 / 48

Issues

The issues tab reports a list

of 56 open issues (286

closed, meaning the task or

problem has been solved)

Each issue has its own title

Lets check out the issue

about the Double64 type

40 / 48

Issues

The issue is because one person has found an

error with the package where it doesn't seem

to work correctly with a certain type of

variable Double64

Someone else has responded with some

feedback

41 / 48

Issues

From the issues tab, click the

green new issue button which

takes you here

You can:

create a title

add some text for the body

of the issue

select people to assign the

issue to

add some labels
42 / 48

Issues

The issue keeps track of

the history of everything

that's happened to it

43 / 48

Issues

You can reference

people with @ which

brings up a dropdown

menu of all

collaborators on the

project

44 / 48

Issues

You can also reference other

issues if they're related by

using # which brings up a

dropdown of all issues for

your repository

45 / 48

Issues

Issues can also be referenced in your commits to your project by adding

#issue_number_here to the commit message

46 / 48

Issues

Then those commits show up in

your issue so you have a history

of what code changes have

been made.

47 / 48

Issues

If you click on the commit, it takes you to the git diff which shows you any

changes to files made in that commit

48 / 48

