
Software and stuff

Necessary things to do:

Install VSCode with these extensions: Julia, Git Graph, Project Manager

Windows users: Install Windows Subsystem for Linux and a Unix

distribution or use https://repl.it

Install Julia with these Julia packages: Expectations, Distributions,

LinearAlgebra, BenchmarkTools

Or use homebrew/other package manager

2 / 160

Visual Studio Code

VSCode

Extensions

Terminal/command line

Julia (interactive)

Project manager

Git

4 / 160

The shell

Why learn the shell?

What is the shell?

The shell is the interface for interacting with your operating system,
typically

we are referring to the command line interface (terminal, command prompt,

bash, etc)

6 / 160

Why learn the shell?

What is the shell?

The shell is the interface for interacting with your operating system,
typically

we are referring to the command line interface (terminal, command prompt,

bash, etc)

A lot of what you can do in the shell can be done in Julia itself, why bother with

it?

6 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

Writing shell scripts is reproducible and fast, unlike clicking buttons on a GUI

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

Writing shell scripts is reproducible and fast, unlike clicking buttons on a GUI

If you want to use servers or any high performance computing you are likely to

need to use shell

7 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

8 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

It really gets to the fundamentals of interacting with a computer (loops, tab-

completions, saving scripts, etc)

8 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

It really gets to the fundamentals of interacting with a computer (loops, tab-

completions, saving scripts, etc)

It gets you understanding how to write code in terms of functions which will

be important for any programming you do in scripting languages like Julia, R,

MATLAB, or Stata

8 / 160

What is the shell?

The shell is basically just a program where you can
type in commands to

interact with the kernel and hardware

9 / 160

What is the shell?

The most common one is bash, Bourne again shell, because it comes default

on Linux and old Macs

10 / 160

What is the shell?

The most common one is bash, Bourne again shell, because it comes default

on Linux and old Macs

I use fish, friendly interactive shell, because it comes default with a lot of nice

features,
all the commands still work identically to bash

10 / 160

Shell basics

When you open up the shell you should see a prompt, usually starting with $

(don't type this)

$

11 / 160

Shell basics

We can type in one command, ls which lists the contents of your current

directory

12 / 160

Shell basics

We can type in one command, ls which lists the contents of your current

directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

My current directory is the one for this set of slides

12 / 160

Shell basics

Commands come with potential options or flags that modify how they act

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

$ ls -l # long form command

total 368

-rw-r--r-- 1 ir229 CORNELL\Domain Users 44780 Jan 31 15:42 02-coding.Rmd

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 125586 Jan 31 15:44 02-coding.html

drwxr-xr-x 4 ir229 CORNELL\Domain Users 128 Jan 31 15:44 02-coding_files

drwxr-xr-x 8 ir229 CORNELL\Domain Users 256 Jul 12 2022 figures

@ 1 i 229 CORNELL\D i U 8387 J 22 17 44

13 / 160

Shell basics

Options start with a dash and then a sequence of letters denoting which

options you want

e.g. this lists files in long form l , sorted descending by size (S), with sizes in a

human-readable format (h)

$ ls -lSh

total 368

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 123K Jan 31 15:44 02-coding.html

-rw-r--r-- 1 ir229 CORNELL\Domain Users 44K Jan 31 15:42 02-coding.Rmd

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 8.2K Jan 22 17:44 my-css.css

drwxr-xr-x 10 ir229 CORNELL\Domain Users 320B Jan 31 15:40 sandbox

drwxr-xr-x 8 ir229 CORNELL\Domain Users 256B Jul 12 2022 figures

drwxr-xr-x 4 ir229 CORNELL\Domain Users 128B Jan 31 15:44 02-coding_files

14 / 160

Shell basics

Finally commands have an argument that the command operates on

15 / 160

Shell basics

Finally commands have an argument that the command operates on

The previous ls calls were operating on the current directory,

but we could use it on any directory we want

15 / 160

Shell basics

Finally commands have an argument that the command operates on

The previous ls calls were operating on the current directory,

but we could use it on any directory we want

$ ls -lSh ~/Desktop/git

total 0

drwxr-xr-x 73 ir229 CORNELL\Domain Users 2.3K Jan 29 09:05 climate-trade

drwxr-xr-x 26 ir229 CORNELL\Domain Users 832B Mar 22 2022 aem2850

drwxr-xr-x@ 26 ir229 CORNELL\Domain Users 832B Jan 23 10:54 aem4510

drwxr-xr-x 20 ir229 CORNELL\Domain Users 640B Nov 30 15:21 irudik.github.io

drwxr-xr-x 19 ir229 CORNELL\Domain Users 608B Jan 29 14:18 hurricane-forecasts

drwxr-xr-x 19 ir229 CORNELL\Domain Users 608B Nov 15 20:52 lead-education

drwxr-xr-x 18 ir229 CORNELL\Domain Users 576B Dec 28 13:31 enviro-transport

drwxr-xr-x@ 16 ir229 CORNELL\Domain Users 512B Jan 31 15:46 aem7130

drwxr-xr-x 14 ir229 CORNELL\Domain Users 448B May 25 2022 biodiversity

drwxr-xr-x 14 ir229 CORNELL\Domain Users 448B Jan 25 20:06 climate-networks
15 / 160

Shell basics

To see what commands and their options do, use the man (manual) command

q exits the man page, and spacebar lets you skip down by a page

$ man ls

LS(1) General Commands Manual LS(1)

N�NA�AM�ME�E
l�ls�s – list directory contents

S�SY�YN�NO�OP�PS�SI�IS�S
l�ls�s [-�-@�@A�AB�BC�CF�FG�GH�HI�IL�LO�OP�PR�RS�ST�TU�UW�Wa�ab�bc�cd�de�ef�fg�gh�hi�ik�kl�lm�mn�no�op�pq�qr�rs�st�tu�uv�vw�wx�xy�y1�1%�%,�,]
[-�-D�D _�f_�o_�r_�m_�a_�t] [_�f_�i_�l_�e _�._�._�.]

D�DE�ES�SC�CR�RI�IP�PT�TI�IO�ON�N
For each operand that names a _�f_�i_�l_�e of a type other than directory, l�ls�s
displays its name as well as any requested, associated information. For

each operand that names a f i l e of type directory llss displays the names of

16 / 160

Shell basics

Pressing h within a man page brings up the help page for how to navigate

them

/terms_here lets you search within the man page for particular terms

Use n and shift+n to move forward and backward between matches

17 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

We do this with pwd

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

We do this with pwd

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

18 / 160

Navigation

Directories are organized in a hierarchical structure, at the top is the root

directory, /

$ ls /

Applications

Library

Network

System

Users

Volumes

bin

cores

dev

etc

home

opt

private

sbin
19 / 160

Navigation

The root directory contains everything else

20 / 160

Navigation

The root directory contains everything else

Other directories are inside the root directory and come afterward in the file

path separated by forward slashes /

$ ls -lSh /Users

total 0

drwxr-x---+ 68 ir229 CORNELL\Domain Users 2.1K Jan 29 09:05 ir229

drwxr-x---+ 19 cals_oit staff 608B Feb 9 2022 cals_oit

drwxr-x---+ 15 ag-jjp34-doc10 CORNELL\Domain Users 480B Feb 9 2022 ag-jjp34-doc10

drwxrwxrwt 14 root wheel 448B Jan 17 17:21 Shared

20 / 160

Navigation

The root directory contains everything else

Other directories are inside the root directory and come afterward in the file

path separated by forward slashes /

$ ls -lSh /Users/ir229

total 0

drwx------@ 453 ir229 CORNELL\Domain Users 14K Jan 31 15:30 Downloads

drwx------@ 93 ir229 CORNELL\Domain Users 2.9K May 20 2022 Library

drwx------@ 43 ir229 CORNELL\Domain Users 1.3K Jan 18 14:47 Dropbox

drwxr-xr-x 33 ir229 CORNELL\Domain Users 1.0K Dec 12 14:52 languageserver-library

drwxr-xr-x 18 ir229 CORNELL\Domain Users 576B Jan 17 17:21 Zotero

drwx------@ 16 ir229 CORNELL\Domain Users 512B Sep 8 12:39 Box-Box-Backup

drwx------@ 6 ir229 CORNELL\Domain Users 192B Jan 10 08:11 Desktop

drwx------+ 5 ir229 CORNELL\Domain Users 160B Oct 5 12:03 Documents

drwx------ 5 ir229 CORNELL\Domain Users 160B May 10 2022 Movies

drwx------+ 5 ir229 CORNELL\Domain Users 160B May 10 2022 Music
21 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

When navigating, it is often easier and more reproducible to use relative

paths

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

When navigating, it is often easier and more reproducible to use relative

paths

This is when arguments are relative to your current working directory, instead

of using absolute paths (e.g. /Users/ir229/Desktop/git)

22 / 160

Navigation

There's a few expressions that make this possible

~ is your home directory

. is your current directory

.. is the parent directory

- is the previous directory you were in

23 / 160

Navigation

$ cd ~ # move to home directory (will vary computer-to-computer)

$ pwd

$ cd - # move to previous directory (lecture notes 2 directory)

$ cd .. # move to parent directory (general lecture notes directory)

$ pwd

$ cd . # move to current directory (nothing changes)

$ pwd

/Users/ir229

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130/lecture-notes

/Users/ir229/Desktop/git/aem7130/lecture-notes

24 / 160

Navigation

$ cd ~ # move to home directory (will vary computer-to-computer)

$ pwd

$ cd - # move to previous directory (lecture notes 2 directory)

$ cd .. # move to parent directory (general lecture notes directory)

$ pwd

$ cd . # move to current directory (nothing changes)

$ pwd

/Users/ir229

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130/lecture-notes

/Users/ir229/Desktop/git/aem7130/lecture-notes

You can see . and .. in your current directory when using ls with the a flag

$ ls -a

.

##

24 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

25 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

$ pwd

$ cd ../..

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130

25 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

$ pwd

$ cd ../..

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130

instead of

$ cd /Users/ir229/Desktop/git/aem7130

$ pwd 25 / 160

Navigation

Relative paths are very important for reproducible code

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

Using relative paths lets you circumvent this as long as the project's directory

structure is consistent

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

Using relative paths lets you circumvent this as long as the project's directory

structure is consistent

If you use Git or Dropbox it should be

26 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

27 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

We do so with mkdir (make directory)

27 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

We do so with mkdir (make directory)

$ mkdir test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

27 / 160

Creating files and directories

We create blank files using touch

28 / 160

Creating files and directories

We create blank files using touch

$ touch test_directory/test.txt test_directory/test1.txt

$ ls test_directory

test.txt

test1.txt

touch is useful if you have a program that can't create a file itself but can edit

them

28 / 160

Creating files and directories

If you have a Unix system pre-installed with nano
you can use nano to create

and edit the file

$ nano test_directory/test.txt

29 / 160

Creating files and directories

Here are some tips for naming files and directories

30 / 160

Creating files and directories

Here are some tips for naming files and directories

1. DON'T USE SPACES

Spaces are used to separate commands, you generally want to avoid

them in names in favor of underscores or dashes

2. Use letters, numbers, underscores, periods, and dashes only

30 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

31 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

$ mkdir "123test directory"

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

123test directory

figures

my-css.css

sandbox

test_directory

31 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

$ mkdir 123test\ directory\ 2

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

123test directory

123test directory 2

figures

my-css.css

sandbox

test_directory

02-coding.Rmd

02-coding.html

02 coding files

32 / 160

Moving files and directories

We can move files and directories with mv (move)

33 / 160

Moving files and directories

We can move files and directories with mv (move)

$ mv test_directory/test.txt ..

$ ls ..

The first argument is the (relative) path of the file you want to move, the

second argument is where you're moving it to

33 / 160

Moving files and directories

$ mv test_directory/test.txt ..

$ ls ..

01-intro

02-coding

03-git

04-optimization

05-dynamic-programming

06-function-approximation

07-dp-solution-methods

08-optimal-control

09-advanced-dp-methods

10-spatial-models

archive

figures

make-pdf.R

test.txt

We moved the test.txt file from test_directory to the parent directory 34 / 160

Moving files and directories

$ mv ../test.txt test_directory

$ ls test_directory

test.txt

test1.txt

Here we moved it from the parent directory back to test_directory

35 / 160

Moving files and directories

$ mv ../test.txt test_directory

$ ls test_directory

test.txt

test1.txt

Here we moved it from the parent directory back to test_directory

Note that mv will overwrite any file with the move, use the -i option to make

it ask you for confirmation

35 / 160

Moving files and directories

mv can also be used to rename files by just moving them to the same directory

36 / 160

Moving files and directories

mv can also be used to rename files by just moving them to the same directory

$ mv test_directory/test.txt test_directory/test_new_name.txt

$ ls test_directory

test1.txt

test_new_name.txt

$ mv test_directory/test_new_name.txt test_directory/test.txt

$ ls test_directory

test.txt

test1.txt

36 / 160

Moving files and directories

Now that we've made the directory and file, how do we get rid of them? With

rm

37 / 160

Moving files and directories

Now that we've made the directory and file, how do we get rid of them? With

rm

$ rm test_directory/test.txt

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

37 / 160

Moving files and directories

We remove directories with rmdir

38 / 160

Moving files and directories

We remove directories with rmdir

$ rmdir test_directory

$ ls

rmdir: test_directory: Directory not empty

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

Notice that if a directory isn't empty you can't delete it

38 / 160

Moving files and directories

To delete a non-empty directory, you need to use rm on the directory, but

apply the recursive option -r to delete everything inside of it first

39 / 160

Moving files and directories

To delete a non-empty directory, you need to use rm on the directory, but

apply the recursive option -r to delete everything inside of it first

$ rm -r test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

Sometimes you might want to add the force option -f so it doesn't ask you if

you want to delete each file

39 / 160

Copying files and directories

To copy files and directories just use cp , it works similarly to mv

40 / 160

Copying files and directories

To copy files and directories just use cp , it works similarly to mv

$ mkdir test_directory

$ touch test_directory/test_copy.txt

$ cp test_directory/test_copy.txt .

$ ls test_directory

test_copy.txt

40 / 160

Copying files and directories

$ mkdir test_directory

$ touch test_directory/test_copy.txt

$ cp test_directory/test_copy.txt .

$ ls test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_copy.txt

test_directory

41 / 160

Copying files and directories

You copy directories the same way, but if you want to copy the full file

contents you need to apply the recursive option -r

42 / 160

Copying files and directories

You copy directories the same way, but if you want to copy the full file

contents you need to apply the recursive option -r

$ cp -r test_directory ..

$ ls .. test_directory

..:

01-intro

02-coding

03-git

04-optimization

05-dynamic-programming

06-function-approximation

07-dp-solution-methods

08-optimal-control

09-advanced-dp-methods

10-spatial-models

archive

figures
42 / 160

Copying multiple files

How do we copy multiple files?

Let's make two directories for copying and a set of similar files

$ mkdir main_directory copy_directory

$ touch main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt

$ ls main_directory

file1.txt

file2.txt

file3.txt

43 / 160

Copying multiple files

To copy them we can just use cp as we did before

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

We remove them the same way with rm

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

We remove them the same way with rm

$ rm main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt

Or we could use the mv rename trick into a new directory named

copy_directory
44 / 160

Renaming multiple files

We can rename multiple files in an easier way using rename (brew install

rename to install using Homebrew)

We can change all of our txt files to csvs, -s indicates that the first argument

is to be the text we are changing, and the second argument is the text we are

changing it to, the third argument is the location of the files we are renaming

45 / 160

Renaming multiple files

$ ls copy_directory

file1.txt

file2.txt

file3.txt

$ rename -s .txt .csv copy_directory/*

$ ls copy_directory

bash: rename: command not found

file1.txt

file2.txt

file3.txt

We can change all of our txt files to csvs, -s indicates that the first argument

is to be the text we are changing, and the second argument is the text we are

changing it to, the third argument is the location of the files we are renaming 46 / 160

Accessing multiple files

We can access multiple things at once using wildcards * ,
which replaces zero

to any number of characters in the expression

47 / 160

Accessing multiple files

We can access multiple things at once using wildcards * ,
which replaces zero

to any number of characters in the expression

copy_directory/file1.txt

copy_directory/file2.txt

copy_directory/file3.txt

copy_directory/test1.txt

copy_directory/test123.txt

copy_directory/test2.txt

copy_directory/test3.txt

$ touch copy_directory/test1.txt copy_directory/test2.txt copy_directory/test3.txt copy_directory

$ ls copy_directory/* # return everything in copy_directory

47 / 160

Word count

The shell really shines when you try to combine multiple commands into one

Lets play around with the sandbox directory and count the number of words in

animals.txt using wc

48 / 160

Word count

$ ls sandbox

$ wc sandbox/animals.txt

animals.txt

classes

hey_jude.txt

lengths.txt

lucy_in_the_sky.txt

shell_script.sh

trees.txt

0 7 33 sandbox/animals.txt

The first number is the number of lines, the second is the number of words,

and the third is the number of characters

49 / 160

Word count

We can run this using the wildcard for all text files and also get the totals

$ wc sandbox/*.txt

0 7 33 sandbox/animals.txt

29 195 979 sandbox/hey_jude.txt

6 12 167 sandbox/lengths.txt

45 220 1191 sandbox/lucy_in_the_sky.txt

6 15 101 sandbox/trees.txt

86 449 2471 total

50 / 160

Redirecting

Now suppose we had 1 million files and wanted to find the one with the most

words? Just printing to the screen doesn't work, we'd want to save the output

and use it somewhere else, we can do that by redirecting with the greater

than symbol >

51 / 160

Redirecting

Now suppose we had 1 million files and wanted to find the one with the most

words? Just printing to the screen doesn't work, we'd want to save the output

and use it somewhere else, we can do that by redirecting with the greater

than symbol >

$ wc -w sandbox/*.txt > sandbox/lengths.txt

$ ls sandbox

animals.txt

classes

hey_jude.txt

lengths.txt

lucy_in_the_sky.txt

shell_script.sh

trees.txt

51 / 160

Printing and cating

We can print the file to the screen using cat (print the full file) or less (one

screenful)

52 / 160

Printing and cating

We can print the file to the screen using cat (print the full file) or less (one

screenful)

$ cat sandbox/lengths.txt

7 sandbox/animals.txt

195 sandbox/hey_jude.txt

0 sandbox/lengths.txt

220 sandbox/lucy_in_the_sky.txt

15 sandbox/trees.txt

437 total

The w option made it so we only got the number of words, not characters or

lines

52 / 160

Sorting

If we want to return the output sorted we can use sort

53 / 160

Sorting

If we want to return the output sorted we can use sort

$ sort -n sandbox/lengths.txt

0 sandbox/lengths.txt

7 sandbox/animals.txt

15 sandbox/trees.txt

195 sandbox/hey_jude.txt

220 sandbox/lucy_in_the_sky.txt

437 total

where the n option means to sort numerically

53 / 160

Sorting

We can look at only the first few lines using head , (tail gets the last lines)

54 / 160

Sorting

We can look at only the first few lines using head , (tail gets the last lines)

$ head -n 1 sandbox/lengths.txt

7 sandbox/animals.txt

Where the 1 means we only want the first line

54 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

55 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

Lets use echo for an example which prints text

55 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

Lets use echo for an example which prints text

$ echo Hello world!

Hello world!

$ echo \ walnut >> sandbox/trees.txt

$ cat sandbox/trees.txt

maple pine birch oak beechnut palm fig redwood walnut walnut

walnut

walnut

walnut

walnut
55 / 160

Piping

We've learned a few options for manipulating text files, we can combine them

in easy ways using piping (same idea as Julia's queryverse and R's tidyverse)

56 / 160

Piping

We've learned a few options for manipulating text files, we can combine them

in easy ways using piping (same idea as Julia's queryverse and R's tidyverse)

Pipes | allow you sequentially write out commands that use the previous

command's output as the next command's input

56 / 160

Piping

Suppose we wanted to find the file in a directory with the most number of

characters, we could do this with

57 / 160

Piping

Suppose we wanted to find the file in a directory with the most number of

characters, we could do this with

$ wc -m sandbox/* | sort -n | tail -n 2

wc: sandbox/classes: read: Is a directory

1191 sandbox/lucy_in_the_sky.txt

2875 total

lucy_in_the_sky.txt is the longest in the sandbox directory

57 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

58 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

We can pipe a head and tail together:

58 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

We can pipe a head and tail together:

$ head -n 9 sandbox/hey_jude.txt | tail -n 4

Hey jude, don't be afraid.

You were made to go out and get her.

The minute you let her under your skin,

Then you begin to make it better.

head grabs the first two verses (with the empty line inbetween),

tail grabs second verse

58 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

59 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

We can do that with a loop

59 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

We can do that with a loop

$ for thing in list

$ do

$ operation_using $thing # Indentation is good style

$ done

$ preprends any variables, here the variables are the things we're looping

over

59 / 160

Looping example 1

$ for song in sandbox/hey_jude.txt sandbox/lucy_in_the_sky.txt

$ do

$ head -n 9 $song | tail -n 4

$ done

Hey jude, don't be afraid.

You were made to go out and get her.

The minute you let her under your skin,

Then you begin to make it better.

Cellophane flowers of yellow and green

Towering over your head

Look for the girl with the sun in her eyes

And she's gone

60 / 160

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

61 / 160

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

Let's combine a bunch of csvs using the shell

This is particularly useful with many or large datasets, because when done

through shell, you do not need to load them into memory

61 / 160

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

Let's combine a bunch of csvs using the shell

This is particularly useful with many or large datasets, because when done

through shell, you do not need to load them into memory

The files are in /sandbox/classes and report a fake class schedule

Let's combine them into one

61 / 160

Looping example 2

First we need to make our class schedule file

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

Then we need to add each day's schedule to the file

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

Then we need to add each day's schedule to the file

$ for day in $(ls sandbox/classes/*day.csv)

$ do

$ cat $day >> sandbox/classes/class_schedule.csv

$ done

where we treat what ls returns as a variable since its the output of a

command

62 / 160

Looping example 2

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

day,morning,afternoon,evening

monday,micro,macro,metrics

day,morning,afternoon,evening

thursday,game theory,seminar,nothings

day,morning,afternoon,evening

tuesday,game theory,seminar,nothings

day,morning,afternoon,evening

wednesday,micro,macro,metrics

63 / 160

Looping example 2

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

day,morning,afternoon,evening

monday,micro,macro,metrics

day,morning,afternoon,evening

thursday,game theory,seminar,nothings

day,morning,afternoon,evening

tuesday,game theory,seminar,nothings

day,morning,afternoon,evening

wednesday,micro,macro,metrics

Looks like it worked but we have the header every other line, how do we get

rid of it?

63 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

Next create the new file by grabbing the header from Monday

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

Next create the new file by grabbing the header from Monday

$ head -1 sandbox/classes/monday.csv > sandbox/classes/class_schedule.csv

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

64 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

65 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

We need to add each day's schedule to the file

65 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

We need to add each day's schedule to the file

$ for day in $(ls sandbox/classes/*day.csv)

$ do

$ tail -1 $day | cat >> sandbox/classes/class_schedule.csv

$ done

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

monday,micro,macro,metrics

thursday,game theory,seminar,nothings

tuesday,game theory,seminar,nothings

wednesday,micro,macro,metrics 65 / 160

Finding things

How can we find things within files?

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

grep finds and prints lines that match a certain pattern

For example, lets find the lines in Hey Jude that contain "make"

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

grep finds and prints lines that match a certain pattern

For example, lets find the lines in Hey Jude that contain "make"

$ grep make sandbox/hey_jude.txt

Hey jude, don't make it bad.

Take a sad song and make it better.

Then you can start to make it better.

Then you begin to make it better.

Then you can start to make it better.

Hey jude, don't make it bad.

Take a sad song and make it better

66 / 160

Finding things

$ grep make sandbox/hey_jude.txt

Here make is the pattern we are searching for inside Hey Jude

67 / 160

Finding things

Now lets search Lucy in the Sky for "in"

68 / 160

Finding things

Now lets search Lucy in the Sky for "in"

$ grep in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

With tangerine trees and marmalade skies

Towering over your head

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

68 / 160

Finding things

Now lets search Lucy in the Sky for "in"

$ grep in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

With tangerine trees and marmalade skies

Towering over your head

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

This gave us words that contained "in" but weren't actually the word "in"

68 / 160

Finding things

We can restrict the search to words with the w option

69 / 160

Finding things

We can restrict the search to words with the w option

$ grep -w in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

Lucy in the sky with diamonds

Lucy in the sky with diamonds

69 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

70 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

For example, lets find lines with "a" as the second letter

70 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

For example, lets find lines with "a" as the second letter

$ grep -E "^.a" sandbox/lucy_in_the_sky.txt | head -5

Waiting to take you away

70 / 160

Finding things

grep shows up in most programming languages as well

You can imagine using it to do things like dynamically renaming a set of

variables, dealing with weirdly reported FIPS codes, etc

71 / 160

Shell scripts

A nice thing about shell that's pretty underused by economists is putting the

commands into scripts so we can re-use them

72 / 160

Shell scripts

A nice thing about shell that's pretty underused by economists is putting the

commands into scripts so we can re-use them

$ # writing a shell script using echo is kind of silly

$ # but I want to show you what I'm doing on the slides

$ touch sandbox/shell_script.sh

$ echo echo "Hello World!" >> sandbox/shell_script.sh

$ cat sandbox/shell_script.sh

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!
72 / 160

Julia

Why am I doing this to you?

Why are we using Julia?

1. It's a high-level language, much easier to use than C++, Fortran, etc

2. It delivers C++ and Fortran speed

74 / 160

Intro to programming

Programming writing a set of instructions

1. There are hard and fast rules you can't break if you want it to work

2. There are elements of style (e.g. Strunk and White) that make for clearer

and more efficient code

≡

75 / 160

Intro to programming

If you will be doing computational work there are:

1. Language-independent coding basics you should know

Arrays are stored in memory in particular ways

2. Language-independent best practices you should use

Indent to convey program structure (or function in Python)

3. Language-dependent idiosyncracies that matter for function, speed, etc

Julia: type stability; R: vectorize

76 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

4. Make your code understandable by someone else or your future self

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

4. Make your code understandable by someone else or your future self

5. Make your code flexible

77 / 160

A broad view of programming

Your goal is to make a program

A program is made of different components and sub-components

78 / 160

A broad view of programming

Your goal is to make a program

A program is made of different components and sub-components

The most basic component is a statement, more commonly called a line of

code

78 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

79 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

80 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

3. Draw the top card

81 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

3. Draw the top card

4. Print it

82 / 160

A broad view of programming

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

What are the parentheses and why are they different from square brackets?

How does shuffle work?

What’s println?

It’s important to know that a good program has understandable code

83 / 160

Julia specifics

We will discuss coding in the context of Julia
but a lot of this ports to Python,

MATLAB, etc

To do:

1. Types

2. Operators

3. Scope

4. Generic functions

5. Multiple dispatch

84 / 160

Types

All languages have some kind of data types like integers or arrays

85 / 160

Types

All languages have some kind of data types like integers or arrays

The first type you will often use is a boolean (Bool) variable that takes on a

value of true or false :

 x = true

true

 typeof(x)

Bool

85 / 160

Types

We can save the boolean value of actual statements in variables this way:

@show y = 1 > 2

y = 1 > 2 = false

false

@show is a Julia macro for showing the operation

86 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

87 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

and floating point numbers

 typeof(1.0)

Float64

87 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

and floating point numbers

 typeof(1.0)

Float64

Recall from lecture 1 the 64 means 64 bits of storage for the number, which is

probably the default on your machine
87 / 160

Numbers

You can always instantiate alternative floating point number types

 converted_int = convert(Float32, 1.0);

 typeof(converted_int)

Float32

88 / 160

Numbers

Math works like you would expect:

 a = 2; b = 1.0;

 a * b

2.0

89 / 160

Numbers

Math works like you would expect:

 a = 2; b = 1.0;

 a * b

2.0

 a^2

4

89 / 160

Numbers

2a - 4b

0.0

90 / 160

Numbers

2a - 4b

0.0

@show 4a + 3b^2

4a + 3 * b ^ 2 = 11.0

11.0

90 / 160

Numbers

2a - 4b

0.0

@show 4a + 3b^2

4a + 3 * b ^ 2 = 11.0

11.0

You dont need * inbetween numeric literals (numbers) and variables

90 / 160

Strings

Strings store sequences of characters

91 / 160

Strings

Strings store sequences of characters

You implement them with double quotations:

 x = "Hello World!";

 typeof(x)

String

91 / 160

Strings

Strings store sequences of characters

You implement them with double quotations:

 x = "Hello World!";

 typeof(x)

String

Note that ; suppresses output for that line of code but is unnecessary in Julia

91 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

92 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

Use * to concatenate strings

 a = "Aww"; b = "Yeah!!!"; println(a * " " * b)

Aww Yeah!!!

92 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

Use * to concatenate strings

 a = "Aww"; b = "Yeah!!!"; println(a * " " * b)

Aww Yeah!!!

You probably won't use strings too often unless you're working with text data

or printing output
92 / 160

Containers

Containers are types that store collections of data

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

Arrays are mutable which means you can change their values

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

Arrays are mutable which means you can change their values

 a1[1,1] = 5; a1

2×2 Matrix{Int64}:

5 2

3 4

93 / 160

Containers

An alternative to the Array is the Tuple which is denoted by parentheses

94 / 160

Containers

An alternative to the Array is the Tuple which is denoted by parentheses

 a2 = (1, 2, 3, 4); typeof(a2)

NTuple{4, Int64}

a2 is a Tuple of 4 Int64s, tuples have no dimension

94 / 160

Containers

Tuples are immutable which means you can't change their values

try

 a2[1,1] = 5;

catch

 println("Error, can't change value of a tuple.")

end

Error, can't change value of a tuple.

95 / 160

Containers

Tuples don't need parentheses (but it's probably best practice for clarity)

 a3 = 5, 6; typeof(a3)

Tuple{Int64, Int64}

96 / 160

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

97 / 160

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

 a3_x, a3_y = a3;

 a3_x

5

 a3_y

6

97 / 160

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

 a3_x, a3_y = a3;

 a3_x

5

 a3_y

6

This is basically how functions return output when you call them

97 / 160

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

98 / 160

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

 d1 = Dict("class" => "AEM7130", "grade" => 97);

 typeof(d1)

Dict{String, Any}

98 / 160

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

 d1 = Dict("class" => "AEM7130", "grade" => 97);

 typeof(d1)

Dict{String, Any}

d1 is a dictionary where the key are strings and the values are any kind of type

98 / 160

Containers

Reference specific values you want in the dictionary by referencing the key

99 / 160

Containers

Reference specific values you want in the dictionary by referencing the key

 d1["class"]

"AEM7130"

 d1["grade"]

97

99 / 160

Containers

If you just want all the keys or all the values you can use the base functions

100 / 160

Containers

If you just want all the keys or all the values you can use the base functions

 keys_d1 = keys(d1)

KeySet for a Dict{String, Any} with 2 entries. Keys:

"class"

"grade"

 values_d1 = values(d1)

ValueIterator for a Dict{String, Any} with 2 entries. Values:

"AEM7130"

97

100 / 160

Iterating

As in other languages we have loops at our disposal:

for loops iterate over containers

for count in 1:10

 random_number = rand()

if random_number > 0.2

 println("We drew a $random_number.")

end

end

We drew a 0.2296328225210792.

We drew a 0.49707317292004916.

We drew a 0.8560920694522626.

We drew a 0.2624024858764974.

We drew a 0.6650600018123658.

We drew a 0.6503417300672002.

We drew a 0.4929268795537094.

We drew a 0 5679661710637988

101 / 160

Iterating

while loops iterate until a logical expression is false

while rand() > 0.5

 random_number = rand()

if random_number > 0.2

 println("We drew a $random_number.")

end

end

102 / 160

Iterating

An Iterable is something you can loop over, like arrays

103 / 160

Iterating

An Iterable is something you can loop over, like arrays

 actions = ["codes well", "skips class"];

for action in actions

 println("Charlie $action")

end

Charlie codes well

Charlie skips class

103 / 160

Iterating

There's a type that's a subset of iterables, Iterator , that are particularly

convenient

104 / 160

Iterating

There's a type that's a subset of iterables, Iterator , that are particularly

convenient

These include things like the dictionary keys:

for key in keys(d1)

 println(d1[key])

end

AEM7130

97

104 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

105 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

Here's a very simple example, the top function iterates on an Array , the

bottom function iterates on an Iterator :

105 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

Here's a very simple example, the top function iterates on an Array , the

bottom function iterates on an Iterator :

function show_array_speed()

 m = 1

for i = [1, 2, 3, 4, 5, 6]

 m = m*i

end

end;

function show_iterator_speed()

 m = 1

for i = 1:6

 m = m*i

end

end; 105 / 160

Iterating

using BenchmarkTools

@btime show_array_speed()

17.827 ns (1 allocation: 112 bytes)

@btime show_iterator_speed()

2.125 ns (0 allocations: 0 bytes)

The Iterator approach is faster and allocates no memory

@btime is a macro from BenchmarkTools that shows you the elasped time and

memory allocation

106 / 160

Neat looping

The nice thing about Julia vs MATLAB is your loops can be much neater since

you don't need to index if you just want the container elements

107 / 160

Neat looping

The nice thing about Julia vs MATLAB is your loops can be much neater since

you don't need to index if you just want the container elements

 f(x) = x^2;

 x_values = 0:20:100;

for x in x_values

 println(f(x))

end

0

400

1600

3600

6400

10000

107 / 160

Neat looping

The loop directly assigns the elements of x_values to x instead of having to

do something clumsy like x_values[i]

108 / 160

Neat looping

The loop directly assigns the elements of x_values to x instead of having to

do something clumsy like x_values[i]

0:20:100 creates something called a StepRange (a type of Iterator) which

starts at 0 , steps up by 20 and ends at 100

108 / 160

Neat looping

You can also pull out an index and the element value by enumerating

 f(x) = x^2;

 x_values = 0:20:100;

for (index, x) in enumerate(x_values)

 println("f(x) at value $index is $(f(x)).")

end

f(x) at value 1 is 0.

f(x) at value 2 is 400.

f(x) at value 3 is 1600.

f(x) at value 4 is 3600.

f(x) at value 5 is 6400.

f(x) at value 6 is 10000.

enumerate basically assigns an index vector

109 / 160

Neat looping

There is also a lot of Python-esque functionality

110 / 160

Neat looping

There is also a lot of Python-esque functionality

For example: zip lets you loop over multiple different iterables at once

110 / 160

Neat looping

There is also a lot of Python-esque functionality

For example: zip lets you loop over multiple different iterables at once

 last_name = ("Lincoln", "Bond", "Walras");

 first_name = ("Abraham", "James", "Leon");

for (first_idx, last_idx) in zip(first_name, last_name)

 println("The name's $last_idx, $first_idx $last_idx.")

end

The name's Lincoln, Abraham Lincoln.

The name's Bond, James Bond.

The name's Walras, Leon Walras.

110 / 160

Neat looping

Nested loops can also be made very neatly

111 / 160

Neat looping

Nested loops can also be made very neatly

for x in 1:3, y in 3:-1:1

 println(y-x)

end

2

1

0

1

0

-1

0

-1

-2

111 / 160

Neat looping

Nested loops can also be made very neatly

for x in 1:3, y in 3:-1:1

 println(y-x)

end

2

1

0

1

0

-1

0

-1

-2

The first loop is the inner loop, the second loop is the outer loop
111 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

112 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

 squared = [y^2 for y in 1:2:11]

6-element Vector{Int64}:

1

9

25

49

81

121

112 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

 squared = [y^2 for y in 1:2:11]

6-element Vector{Int64}:

1

9

25

49

81

121

This created a 1-dimension Array using one line

112 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

This created a 2-dimensional Array

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

This created a 2-dimensional Array

Use this (and the compact nested loop) sparingly since it's hard to follow

113 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

This is actually called broadcasting

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

This is actually called broadcasting

When broadcasting, you might want to consider pre-allocating arrays 114 / 160

Dot syntax: broadcasting/vectorization

Vectorization creates temporary allocations, temporary arrays in the middle of

the process that aren't actually needed for the final product

Julia can do broadcasting in a nicer, faster way by fusing operations together

and avoiding these temporary allocations

115 / 160

Dot syntax: broadcasting/vectorization

Let's write two functions that do the same thing:

function show_vec_speed(x)

 out = [3x.^2 + 4x + 7x.^3 for i = 1:1]

end

function show_fuse_speed(x)

 out = @. [3x.^2 + 4x + 7x.^3 for i = 1:1]

end

The top one is vectorized for the operations, the @. in the bottom one

vectorizes everything in one swoop: the function call, the operation, and the

assignment to a variable

116 / 160

Dot syntax: broadcasting/vectorization

First, precompile the functions

 x = rand(10^6);

@time show_vec_speed(x);

@time show_fuse_speed(x);

@time show_vec_speed(x)

0.004672 seconds (13 allocations: 45.777 MiB)

1-element Vector{Vector{Float64}}:

[12.874822850326872, 2.725670724402299, 2.8566366599700235, 11.811970611339124, 0.8959328634610417,

@time show_fuse_speed(x)

0.000925 seconds (3 allocations: 7.630 MiB)

117 / 160

Dot syntax: vectorization

Not pre-allocated:

 h(y,z) = y^2 + sin(z); # function to evaluate

 y = 1:2:1e6+1; # input y

 z = rand(length(y)); # input z

118 / 160

Dot syntax

Here we are vectorizing the function call

precompile h so first timer isn't picking up on compile time

 h(1,2)

@time out_1 = h.(y,z) # evaluate h.(y,z) and time

0.034353 seconds (246.22 k allocations: 16.154 MiB, 90.35% compilation time)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289 3627061432049

119 / 160

Dot syntax: vectorization

Here we are vectorizing the function call and assignment

 out_2 = similar(out_1)

@time out_2 .= h.(y,z)

0.014353 seconds (38.86 k allocations: 1.784 MiB, 77.51% compilation time)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289.3627061432049

361 14803760555867

120 / 160

Dot syntax: vectorization

Here we are vectorizing the function call, assignment, and operations

 out_3 = similar(out_1)

@time out_3 = @. h(y,z)

0.003161 seconds (4 allocations: 3.815 MiB)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289.3627061432049

361 14803760555867

121 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

You can also test for approximate equality with (type \approx<TAB>)≈

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

You can also test for approximate equality with (type \approx<TAB>)

1.00000001 ≈ 1

≈

122 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

Different scopes can have the same name, i.e. saving_rate , but be assigned to

different variables

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

Different scopes can have the same name, i.e. saving_rate , but be assigned to

different variables

Let's walk through some simple examples to see how it works

123 / 160

Scope

First, functions have their own local scope

124 / 160

Scope

First, functions have their own local scope

 ff(xx) = xx^2;

 yy = 5;

 ff(yy)

25

xx isn't bound to any values outside the function ff

This is pretty natural for those of you who have done any programming before

124 / 160

Scope

Locally scoped functions allow us to do things like:

 xx = 10;

 fff(xx) = xx^2;

 fff(5)

25

Although xx was declared equal to 10, the function still evaluated at 5

125 / 160

Scope

Locally scoped functions allow us to do things like:

 xx = 10;

 fff(xx) = xx^2;

 fff(5)

25

Although xx was declared equal to 10, the function still evaluated at 5

This is all kind of obvious so far

125 / 160

Scope

But, this type of scoping also has (initially) counterintuitive results like:

 zz = 0;

for ii = 1:10

 zz = ii

end

 println("zz = $zz")

zz = 0

126 / 160

Scope

What happened?

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

The zz inside the for loop has a scope local to the loop

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

The zz inside the for loop has a scope local to the loop

Since the outside zz has global scope the locally scoped variables in the loop

can't change it

127 / 160

Scope

Generally you want to avoid global scope because it can cause conflicts,

slowness, etc, but you can use global to force it if you want something to have

global scope

 zz = 0;

for ii = 1:10

global zz

 zz = ii

end

 println("zz = $zz")

zz = 10

128 / 160

Scope

Local scope kicks in whenever you have a new block keyword (i.e. you

indented something) except for if

Global variables inside a local scope are inherted for reading, not writing

 x, y = 1, 2;

function foo()

 x = 2 # assignment introduces a new local

return x + y # y refers to the global

end;

 foo()

4

 x

1
129 / 160

Scope

Important piece: nested functions can modify their parent scope's local

variables

130 / 160

Scope

Important piece: nested functions can modify their parent scope's local

variables

 x, y = 1, 2; # set globals

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

130 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

22

 x, y # verify that global x and y are unchanged

(1, 2)

131 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

132 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

If f_inner was not nested and was in the global scope we'd get 14 not 22 , this

is also a way to handle the issue with loops editing variables not created in

their local scope

132 / 160

Scope

We can fix looping issues with global scope by using a wrapper function that

doesn't do anything but change the parent scope so it is not global

function wrapper()

 zzz = 0;

for iii = 1:10

 zzz = iii

end

 println("zzz = $zzz")

end

wrapper (generic function with 1 method)

 wrapper()

zzz = 10

133 / 160

Closures

These inner functions we've been looking at are called closures

When a function f is parsed in Julia, it looks to see if any of the variables have

been previously defined in the current scope

 a = 0.2;

 f(x) = a * x^2; # refers to the `a` in the outer scope

f (generic function with 1 method)

 f(1) # univariate function

0.2

134 / 160

Closures

function g(a)

 f(x) = a * x^2; # refers to the `a` passed in the function

 f(1); # univariate function

end

g (generic function with 1 method)

 g(0.2)

0.2

135 / 160

Closures

function g(a)

 f(x) = a * x^2; # refers to the `a` passed in the function

 f(1); # univariate function

end

g (generic function with 1 method)

 g(0.2)

0.2

In both of these examples f is a closure designed to capture a variable from

an outer scope

135 / 160

Closures

Here's a complicated example that actually returns a closure (a function!)

itself:

136 / 160

Closures

 x = 0;

function toplevel(y)

 println("x = ", x, " is a global variable")

 println("y = ", y, " is a parameter")

 z = 2

 println("z = ", z, " is a local variable")

function closure(v)

 println("v = ", v, " is a parameter")

 w = 3

 println("w = ", w, " is a local variable")

 println("x = ", x, " is a global variable")

 println("y = ", y, " is a closed variable (a parameter of the outer function)")

 println("z = ", z, " is a closed variable (a local of the outer function)")

end;

return closure

end;

What will be returned when we call these functions?
137 / 160

Closures

Here's a complicated example:

 c_func = toplevel(10)

x = 0 is a global variable

y = 10 is a parameter

z = 2 is a local variable

(::var"#closure#230"{Int64, Int64}) (generic function with 1 method)

 c_func(20)

v = 20 is a parameter

w = 3 is a local variable

x = 0 is a global variable

y = 10 is a closed variable (a parameter of the outer function)

z = 2 is a closed variable (a local of the outer function)
138 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

139 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

These are functions that are flexible (e.g. can deal with someone using an Int

instead of a Float)
and have high performance (e.g. comparable speed to C)

139 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

These are functions that are flexible (e.g. can deal with someone using an Int

instead of a Float)
and have high performance (e.g. comparable speed to C)

Functions are made generic by paying attention to types and making sure

types are stable

139 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

The question you might have is: Type stability sounds like mandating types

(e.g. what C and Fortran do, not what R/Python/etc do), so how do we make it

flexible?

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

The question you might have is: Type stability sounds like mandating types

(e.g. what C and Fortran do, not what R/Python/etc do), so how do we make it

flexible?

We'll see next
140 / 160

These two functions look the same, but are they?

function t1(n)

 s = 0

 t = 1

for i in 1:n

 s += s/i

 t = div(t, i)

end

return t

end

function t2(n)

 s = 0.0

 t = 1

for i in 1:n

 s += s/i

 t = div(t, i)

end

return t

end
141 / 160

No! t1 is not type stable

142 / 160

No! t1 is not type stable

t1 starts with s as an Int64 but then we have s += s/i which will mean it

must hold a Float64

142 / 160

No! t1 is not type stable

t1 starts with s as an Int64 but then we have s += s/i which will mean it

must hold a Float64

It must be converted to Float so it is not type stable

142 / 160

No! t1 is not type stable

We can see this when calling the macro @code_warntype where it reports t1 at

some point handles s that has type Union{Float64,Int64} , either Float64 or

Int64

Julia now can't assume s 's type and produce pure integer or floating point

code performance degradation

→

143 / 160

THIS MATTERS

2x difference between two simple functions

Type instable

function type_unstable()

 x = 1

for i = 1:1e6

 x = x/2

end

return x

end

Type stable

function type_stable()

 x = 1.0

for i = 1:1e6

 x = x/2

end

return x

end

144 / 160

THIS MATTERS

2x difference between two simple functions

@time type_unstable()

0.004397 seconds

0.0

@time type_stable()

0.002884 seconds

0.0

145 / 160

Concrete vs abstract types

A concrete type is one that can be instantiated (Float64 Bool Int32)

146 / 160

Concrete vs abstract types

A concrete type is one that can be instantiated (Float64 Bool Int32)

An abstract type cannot (Real , Number , Any)

146 / 160

Concrete vs abstract types

Abstract types are for organizing the types

You can check where types are in the hierarchy

@show Float64 <: Real

Float64 <: Real = true

true

@show Array <: Real

Array <: Real = false

false

147 / 160

Concrete vs abstract types

You can see the type hierarchy with the supertypes and subtypes commands

using Base: show_supertypes

 show_supertypes(Float64)

Float64 <: AbstractFloat <: Real <: Number <: Any

148 / 160

Creating new types

We can actually create new composite types using struct

149 / 160

Creating new types

We can actually create new composite types using struct

 struct FoobarNoType # This will be immutable by default

 a

 b

 c

end

149 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

150 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

 newfoo = FoobarNoType(1.3, 2, "plzzz");

 typeof(newfoo)

FoobarNoType

 newfoo.a

1.3

150 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

 newfoo = FoobarNoType(1.3, 2, "plzzz");

 typeof(newfoo)

FoobarNoType

 newfoo.a

1.3

You should always declare types for the fields of a new composite type

150 / 160

Creating new types

You can declare types with the double colon

 struct FoobarType # This will be immutable by default

 a::Float64

 b::Int

 c::String

end

151 / 160

Creating new types

 newfoo_typed = FoobarType(1.3, 2, "plzzz");

 typeof(newfoo_typed)

FoobarType

 newfoo.a

1.3

This lets the compiler generate efficient code because it knows the types of

the fields when you construct a FoobarType

152 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

153 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

The curly brackets declare all the different type subsets we will use in

FooParam

153 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

The curly brackets declare all the different type subsets we will use in

FooParam

This actually delivers high performance code! 153 / 160

Delivering flexibility

We want to make sure types are stable but code is flexible

Ex: if want to preallocate an array to store data,
how do we know how to

declare it's type?

154 / 160

Delivering flexibility

We want to make sure types are stable but code is flexible

Ex: if want to preallocate an array to store data,
how do we know how to

declare it's type?

We don't need to

154 / 160

Delivering flexibility

sametypes (generic function with 1 method)

 x = [5.5, 7.0, 3.1];

 y = [7, 8, 9];

using LinearAlgebra # necessary for I

function sametypes(x)

 y = similar(x) # creates an array that is `similar` to x, use this for preall

 z = I # creates a scalable identity matrix

 q = ones(eltype(x), length(x)) # one is a type generic array of ones, fill creates the array

 y .= z * x + q

return y

end

155 / 160

Delivering flexibility

We did not declare any types but the function is type stable

 sametypes(x)

 sametypes(y)

156 / 160

Delivering flexibility

We did not declare any types but the function is type stable

 sametypes(x)

 sametypes(y)

There's a lot of other functions out there that help with writing flexible, type

stable code

156 / 160

Multiple dispatch

Why type stability really matters: multiple dispatch

Neat thing about Julia: the same function name can perform different

operations depending on the underlying type of the inputs

A function specifies different methods, each of which operates on a specific

set of types

157 / 160

Multiple dispatch

When you write a function that's type stable, you are actually writing many

different methods, each of which are optimized for certain types

158 / 160

Multiple dispatch

When you write a function that's type stable, you are actually writing many

different methods, each of which are optimized for certain types

If your function isn't type stable, the optimized method may not be used

This is why Julia can achieve C speeds: it compiles to C (or faster) code

158 / 160

Multiple dispatch

/ has 103 different methods depending on the input types, these are 103

specialized sets of codes

 methods(/)

152 methods for generic function "/":

[1] /(x::Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}, y::Union{

[2] /(x::T, y::T) where T<:Union{Float16, Float32, Float64} in Base at float.jl:386

[3] /(x::Union{Integer, Complex{<:Union{Integer, Rational}}}, y::Rational) in Base at rational.jl:34

[4] /(x::Union{Int16, Int32, Int64, Int8, UInt16, UInt32, UInt64, UInt8}, y::BigInt) in Base.GMP at

[5] /(c::Union{UInt16, UInt32, UInt64, UInt8}, x::BigFloat) in Base.MPFR at mpfr.jl:441

[6] /(c::Union{Int16, Int32, Int64, Int8}, x::BigFloat) in Base.MPFR at mpfr.jl:453

[7] /(c::Union{Float16, Float32, Float64}, x::BigFloat) in Base.MPFR at mpfr.jl:465

[8] /(U::Union{UnitUpperTriangular{var"#s886", S} where S<:AbstractMatrix{var"#s886"}, UpperTriangul

[9] /(U::Union{UnitUpperTriangular{T, S} where S<:AbstractMatrix{T}, UpperTriangular{T, S} where S<:

[10] /(L::Union{LowerTriangular{var"#s886", S} where S<:AbstractMatrix{var"#s886"}, UnitLowerTriangu

[11] /(L::Union{LowerTriangular{T, S} where S<:AbstractMatrix{T}, UnitLowerTriangular{T, S} where S<

[12] /(X::StridedArray{P}, y::P) where P<:Dates.Period in Dates at /Users/ir229/.julia/juliaup/julia

[13] /(X::StridedArray{P} y::Real) where P<:Dates Period in Dates at /Users/ir229/ julia/juliaup/ju
159 / 160

Coding practices etc

See JuliaPraxis for best practices for naming, spacing, comments, etc

160 / 160

Lecture 02

Shell and Julia

Ivan Rudik
AEM 7130

http://code.visualstudio.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://repl.it/
https://julialang.org/downloads/
https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109
https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109
https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109
https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1
https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1
https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1
https://github.com/JuliaPraxis

Software and stuff

Necessary things to do:

Install VSCode with these extensions: Julia, Git Graph, Project Manager

Windows users: Install Windows Subsystem for Linux and a Unix

distribution or use https://repl.it

Install Julia with these Julia packages: Expectations, Distributions,

LinearAlgebra, BenchmarkTools

Or use homebrew/other package manager

2 / 160

http://code.visualstudio.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://repl.it/
https://julialang.org/downloads/

Visual Studio Code

VSCode

Extensions

Terminal/command line

Julia (interactive)

Project manager

Git

4 / 160

The shell

Why learn the shell?

What is the shell?

The shell is the interface for interacting with your operating system,
typically

we are referring to the command line interface (terminal, command prompt,

bash, etc)

6 / 160

Why learn the shell?

What is the shell?

The shell is the interface for interacting with your operating system,
typically

we are referring to the command line interface (terminal, command prompt,

bash, etc)

A lot of what you can do in the shell can be done in Julia itself, why bother with

it?

6 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

Writing shell scripts is reproducible and fast, unlike clicking buttons on a GUI

7 / 160

Why learn the shell?

Not everything can be done directily in your usual programming language

Command line is fast, powerful, and relatively easy to use,
especially with

modern shells like zsh or fish

Writing shell scripts is reproducible and fast, unlike clicking buttons on a GUI

If you want to use servers or any high performance computing you are likely to

need to use shell

7 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

8 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

It really gets to the fundamentals of interacting with a computer (loops, tab-

completions, saving scripts, etc)

8 / 160

Why learn the shell?

You can automate your entire research pipeline with shell scripts (e.g. write

something that calls multiple languages to execute your code then compiles

your latex for the paper)

It really gets to the fundamentals of interacting with a computer (loops, tab-

completions, saving scripts, etc)

It gets you understanding how to write code in terms of functions which will

be important for any programming you do in scripting languages like Julia, R,

MATLAB, or Stata

8 / 160

What is the shell?

The shell is basically just a program where you can
type in commands to

interact with the kernel and hardware

9 / 160

What is the shell?

The most common one is bash, Bourne again shell, because it comes default

on Linux and old Macs

10 / 160

What is the shell?

The most common one is bash, Bourne again shell, because it comes default

on Linux and old Macs

I use fish, friendly interactive shell, because it comes default with a lot of nice

features,
all the commands still work identically to bash

10 / 160

Shell basics

When you open up the shell you should see a prompt, usually starting with $

(don't type this)

$

11 / 160

Shell basics

We can type in one command, ls which lists the contents of your current

directory

12 / 160

Shell basics

We can type in one command, ls which lists the contents of your current

directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

My current directory is the one for this set of slides

12 / 160

Shell basics

Commands come with potential options or flags that modify how they act

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

$ ls -l # long form command

total 368

-rw-r--r-- 1 ir229 CORNELL\Domain Users 44780 Jan 31 15:42 02-coding.Rmd

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 125586 Jan 31 15:44 02-coding.html

drwxr-xr-x 4 ir229 CORNELL\Domain Users 128 Jan 31 15:44 02-coding_files

drwxr-xr-x 8 ir229 CORNELL\Domain Users 256 Jul 12 2022 figures

@ 1 i 229 CORNELL\D i U 8387 J 22 17 44

13 / 160

Shell basics

Options start with a dash and then a sequence of letters denoting which

options you want

e.g. this lists files in long form l , sorted descending by size (S), with sizes in a

human-readable format (h)

$ ls -lSh

total 368

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 123K Jan 31 15:44 02-coding.html

-rw-r--r-- 1 ir229 CORNELL\Domain Users 44K Jan 31 15:42 02-coding.Rmd

-rw-r--r--@ 1 ir229 CORNELL\Domain Users 8.2K Jan 22 17:44 my-css.css

drwxr-xr-x 10 ir229 CORNELL\Domain Users 320B Jan 31 15:40 sandbox

drwxr-xr-x 8 ir229 CORNELL\Domain Users 256B Jul 12 2022 figures

drwxr-xr-x 4 ir229 CORNELL\Domain Users 128B Jan 31 15:44 02-coding_files

14 / 160

Shell basics

Finally commands have an argument that the command operates on

15 / 160

Shell basics

Finally commands have an argument that the command operates on

The previous ls calls were operating on the current directory,

but we could use it on any directory we want

15 / 160

Shell basics

Finally commands have an argument that the command operates on

The previous ls calls were operating on the current directory,

but we could use it on any directory we want

$ ls -lSh ~/Desktop/git

total 0

drwxr-xr-x 73 ir229 CORNELL\Domain Users 2.3K Jan 29 09:05 climate-trade

drwxr-xr-x 26 ir229 CORNELL\Domain Users 832B Mar 22 2022 aem2850

drwxr-xr-x@ 26 ir229 CORNELL\Domain Users 832B Jan 23 10:54 aem4510

drwxr-xr-x 20 ir229 CORNELL\Domain Users 640B Nov 30 15:21 irudik.github.io

drwxr-xr-x 19 ir229 CORNELL\Domain Users 608B Jan 29 14:18 hurricane-forecasts

drwxr-xr-x 19 ir229 CORNELL\Domain Users 608B Nov 15 20:52 lead-education

drwxr-xr-x 18 ir229 CORNELL\Domain Users 576B Dec 28 13:31 enviro-transport

drwxr-xr-x@ 16 ir229 CORNELL\Domain Users 512B Jan 31 15:46 aem7130

drwxr-xr-x 14 ir229 CORNELL\Domain Users 448B May 25 2022 biodiversity

drwxr-xr-x 14 ir229 CORNELL\Domain Users 448B Jan 25 20:06 climate-networks
15 / 160

Shell basics

To see what commands and their options do, use the man (manual) command

q exits the man page, and spacebar lets you skip down by a page

$ man ls

LS(1) General Commands Manual LS(1)

N�NA�AM�ME�E
l�ls�s – list directory contents

S�SY�YN�NO�OP�PS�SI�IS�S
l�ls�s [-�-@�@A�AB�BC�CF�FG�GH�HI�IL�LO�OP�PR�RS�ST�TU�UW�Wa�ab�bc�cd�de�ef�fg�gh�hi�ik�kl�lm�mn�no�op�pq�qr�rs�st�tu�uv�vw�wx�xy�y1�1%�%,�,]
[-�-D�D _�f_�o_�r_�m_�a_�t] [_�f_�i_�l_�e _�._�._�.]

D�DE�ES�SC�CR�RI�IP�PT�TI�IO�ON�N
For each operand that names a _�f_�i_�l_�e of a type other than directory, l�ls�s
displays its name as well as any requested, associated information. For

each operand that names a f i l e of type directory llss displays the names of

16 / 160

Shell basics

Pressing h within a man page brings up the help page for how to navigate

them

/terms_here lets you search within the man page for particular terms

Use n and shift+n to move forward and backward between matches

17 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

We do this with pwd

18 / 160

Navigation

We already learned how to list the files in a particular directory, but we need a

few other tools to navigate around our machine

We often will want to know our current working directory so we know where

we are before we start running commands

We do this with pwd

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

18 / 160

Navigation

Directories are organized in a hierarchical structure, at the top is the root

directory, /

$ ls /

Applications

Library

Network

System

Users

Volumes

bin

cores

dev

etc

home

opt

private

sbin
19 / 160

Navigation

The root directory contains everything else

20 / 160

Navigation

The root directory contains everything else

Other directories are inside the root directory and come afterward in the file

path separated by forward slashes /

$ ls -lSh /Users

total 0

drwxr-x---+ 68 ir229 CORNELL\Domain Users 2.1K Jan 29 09:05 ir229

drwxr-x---+ 19 cals_oit staff 608B Feb 9 2022 cals_oit

drwxr-x---+ 15 ag-jjp34-doc10 CORNELL\Domain Users 480B Feb 9 2022 ag-jjp34-doc10

drwxrwxrwt 14 root wheel 448B Jan 17 17:21 Shared

20 / 160

Navigation

The root directory contains everything else

Other directories are inside the root directory and come afterward in the file

path separated by forward slashes /

$ ls -lSh /Users/ir229

total 0

drwx------@ 453 ir229 CORNELL\Domain Users 14K Jan 31 15:30 Downloads

drwx------@ 93 ir229 CORNELL\Domain Users 2.9K May 20 2022 Library

drwx------@ 43 ir229 CORNELL\Domain Users 1.3K Jan 18 14:47 Dropbox

drwxr-xr-x 33 ir229 CORNELL\Domain Users 1.0K Dec 12 14:52 languageserver-library

drwxr-xr-x 18 ir229 CORNELL\Domain Users 576B Jan 17 17:21 Zotero

drwx------@ 16 ir229 CORNELL\Domain Users 512B Sep 8 12:39 Box-Box-Backup

drwx------@ 6 ir229 CORNELL\Domain Users 192B Jan 10 08:11 Desktop

drwx------+ 5 ir229 CORNELL\Domain Users 160B Oct 5 12:03 Documents

drwx------ 5 ir229 CORNELL\Domain Users 160B May 10 2022 Movies

drwx------+ 5 ir229 CORNELL\Domain Users 160B May 10 2022 Music
21 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

When navigating, it is often easier and more reproducible to use relative

paths

22 / 160

Navigation

Next we need to be able to change directories, we can do this with cd (change

directory)

$ cd /Users/ir229/Desktop/git

$ pwd

/Users/ir229/Desktop/git

When navigating, it is often easier and more reproducible to use relative

paths

This is when arguments are relative to your current working directory, instead

of using absolute paths (e.g. /Users/ir229/Desktop/git)

22 / 160

Navigation

There's a few expressions that make this possible

~ is your home directory

. is your current directory

.. is the parent directory

- is the previous directory you were in

23 / 160

Navigation

$ cd ~ # move to home directory (will vary computer-to-computer)

$ pwd

$ cd - # move to previous directory (lecture notes 2 directory)

$ cd .. # move to parent directory (general lecture notes directory)

$ pwd

$ cd . # move to current directory (nothing changes)

$ pwd

/Users/ir229

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130/lecture-notes

/Users/ir229/Desktop/git/aem7130/lecture-notes

24 / 160

Navigation

$ cd ~ # move to home directory (will vary computer-to-computer)

$ pwd

$ cd - # move to previous directory (lecture notes 2 directory)

$ cd .. # move to parent directory (general lecture notes directory)

$ pwd

$ cd . # move to current directory (nothing changes)

$ pwd

/Users/ir229

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130/lecture-notes

/Users/ir229/Desktop/git/aem7130/lecture-notes

You can see . and .. in your current directory when using ls with the a flag

$ ls -a

.

##

24 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

25 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

$ pwd

$ cd ../..

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130

25 / 160

Navigation

This makes navigation much easier

If we wanted to move from the current directory to the parent directory for

this year's course we can just do

$ pwd

$ cd ../..

$ pwd

/Users/ir229/Desktop/git/aem7130/lecture-notes/02-coding

/Users/ir229/Desktop/git/aem7130

instead of

$ cd /Users/ir229/Desktop/git/aem7130

$ pwd 25 / 160

Navigation

Relative paths are very important for reproducible code

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

Using relative paths lets you circumvent this as long as the project's directory

structure is consistent

26 / 160

Navigation

Relative paths are very important for reproducible code

Your directory structure starting at root / will not be the same as someone

else's

Using relative paths lets you circumvent this as long as the project's directory

structure is consistent

If you use Git or Dropbox it should be

26 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

27 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

We do so with mkdir (make directory)

27 / 160

Creating files and directories

We learned how to move around directories but how do we make them?

We do so with mkdir (make directory)

$ mkdir test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

27 / 160

Creating files and directories

We create blank files using touch

28 / 160

Creating files and directories

We create blank files using touch

$ touch test_directory/test.txt test_directory/test1.txt

$ ls test_directory

test.txt

test1.txt

touch is useful if you have a program that can't create a file itself but can edit

them

28 / 160

Creating files and directories

If you have a Unix system pre-installed with nano
you can use nano to create

and edit the file

$ nano test_directory/test.txt

29 / 160

Creating files and directories

Here are some tips for naming files and directories

30 / 160

Creating files and directories

Here are some tips for naming files and directories

1. DON'T USE SPACES

Spaces are used to separate commands, you generally want to avoid

them in names in favor of underscores or dashes

2. Use letters, numbers, underscores, periods, and dashes only

30 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

31 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

$ mkdir "123test directory"

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

123test directory

figures

my-css.css

sandbox

test_directory

31 / 160

Creating files and directories

If you really, really, want to use spaces in names you'll have to do one of two

things, enclose in quotes or backslash the space

$ mkdir 123test\ directory\ 2

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

123test directory

123test directory 2

figures

my-css.css

sandbox

test_directory

02-coding.Rmd

02-coding.html

02 coding files

32 / 160

Moving files and directories

We can move files and directories with mv (move)

33 / 160

Moving files and directories

We can move files and directories with mv (move)

$ mv test_directory/test.txt ..

$ ls ..

The first argument is the (relative) path of the file you want to move, the

second argument is where you're moving it to

33 / 160

Moving files and directories

$ mv test_directory/test.txt ..

$ ls ..

01-intro

02-coding

03-git

04-optimization

05-dynamic-programming

06-function-approximation

07-dp-solution-methods

08-optimal-control

09-advanced-dp-methods

10-spatial-models

archive

figures

make-pdf.R

test.txt

We moved the test.txt file from test_directory to the parent directory 34 / 160

Moving files and directories

$ mv ../test.txt test_directory

$ ls test_directory

test.txt

test1.txt

Here we moved it from the parent directory back to test_directory

35 / 160

Moving files and directories

$ mv ../test.txt test_directory

$ ls test_directory

test.txt

test1.txt

Here we moved it from the parent directory back to test_directory

Note that mv will overwrite any file with the move, use the -i option to make

it ask you for confirmation

35 / 160

Moving files and directories

mv can also be used to rename files by just moving them to the same directory

36 / 160

Moving files and directories

mv can also be used to rename files by just moving them to the same directory

$ mv test_directory/test.txt test_directory/test_new_name.txt

$ ls test_directory

test1.txt

test_new_name.txt

$ mv test_directory/test_new_name.txt test_directory/test.txt

$ ls test_directory

test.txt

test1.txt

36 / 160

Moving files and directories

Now that we've made the directory and file, how do we get rid of them? With

rm

37 / 160

Moving files and directories

Now that we've made the directory and file, how do we get rid of them? With

rm

$ rm test_directory/test.txt

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

37 / 160

Moving files and directories

We remove directories with rmdir

38 / 160

Moving files and directories

We remove directories with rmdir

$ rmdir test_directory

$ ls

rmdir: test_directory: Directory not empty

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_directory

Notice that if a directory isn't empty you can't delete it

38 / 160

Moving files and directories

To delete a non-empty directory, you need to use rm on the directory, but

apply the recursive option -r to delete everything inside of it first

39 / 160

Moving files and directories

To delete a non-empty directory, you need to use rm on the directory, but

apply the recursive option -r to delete everything inside of it first

$ rm -r test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

Sometimes you might want to add the force option -f so it doesn't ask you if

you want to delete each file

39 / 160

Copying files and directories

To copy files and directories just use cp , it works similarly to mv

40 / 160

Copying files and directories

To copy files and directories just use cp , it works similarly to mv

$ mkdir test_directory

$ touch test_directory/test_copy.txt

$ cp test_directory/test_copy.txt .

$ ls test_directory

test_copy.txt

40 / 160

Copying files and directories

$ mkdir test_directory

$ touch test_directory/test_copy.txt

$ cp test_directory/test_copy.txt .

$ ls test_directory

$ ls

02-coding.Rmd

02-coding.html

02-coding_files

figures

my-css.css

sandbox

test_copy.txt

test_directory

41 / 160

Copying files and directories

You copy directories the same way, but if you want to copy the full file

contents you need to apply the recursive option -r

42 / 160

Copying files and directories

You copy directories the same way, but if you want to copy the full file

contents you need to apply the recursive option -r

$ cp -r test_directory ..

$ ls .. test_directory

..:

01-intro

02-coding

03-git

04-optimization

05-dynamic-programming

06-function-approximation

07-dp-solution-methods

08-optimal-control

09-advanced-dp-methods

10-spatial-models

archive

figures
42 / 160

Copying multiple files

How do we copy multiple files?

Let's make two directories for copying and a set of similar files

$ mkdir main_directory copy_directory

$ touch main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt

$ ls main_directory

file1.txt

file2.txt

file3.txt

43 / 160

Copying multiple files

To copy them we can just use cp as we did before

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

We remove them the same way with rm

44 / 160

Copying multiple files

To copy them we can just use cp as we did before

$ cp main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt copy_directory

$ ls copy_directory

file1.txt

file2.txt

file3.txt

We remove them the same way with rm

$ rm main_directory/file1.txt main_directory/file2.txt main_directory/file3.txt

Or we could use the mv rename trick into a new directory named

copy_directory
44 / 160

Renaming multiple files

We can rename multiple files in an easier way using rename (brew install

rename to install using Homebrew)

We can change all of our txt files to csvs, -s indicates that the first argument

is to be the text we are changing, and the second argument is the text we are

changing it to, the third argument is the location of the files we are renaming

45 / 160

Renaming multiple files

$ ls copy_directory

file1.txt

file2.txt

file3.txt

$ rename -s .txt .csv copy_directory/*

$ ls copy_directory

bash: rename: command not found

file1.txt

file2.txt

file3.txt

We can change all of our txt files to csvs, -s indicates that the first argument

is to be the text we are changing, and the second argument is the text we are

changing it to, the third argument is the location of the files we are renaming 46 / 160

Accessing multiple files

We can access multiple things at once using wildcards * ,
which replaces zero

to any number of characters in the expression

47 / 160

Accessing multiple files

We can access multiple things at once using wildcards * ,
which replaces zero

to any number of characters in the expression

copy_directory/file1.txt

copy_directory/file2.txt

copy_directory/file3.txt

copy_directory/test1.txt

copy_directory/test123.txt

copy_directory/test2.txt

copy_directory/test3.txt

$ touch copy_directory/test1.txt copy_directory/test2.txt copy_directory/test3.txt copy_directory

$ ls copy_directory/* # return everything in copy_directory

47 / 160

Word count

The shell really shines when you try to combine multiple commands into one

Lets play around with the sandbox directory and count the number of words in

animals.txt using wc

48 / 160

Word count

$ ls sandbox

$ wc sandbox/animals.txt

animals.txt

classes

hey_jude.txt

lengths.txt

lucy_in_the_sky.txt

shell_script.sh

trees.txt

0 7 33 sandbox/animals.txt

The first number is the number of lines, the second is the number of words,

and the third is the number of characters

49 / 160

Word count

We can run this using the wildcard for all text files and also get the totals

$ wc sandbox/*.txt

0 7 33 sandbox/animals.txt

29 195 979 sandbox/hey_jude.txt

6 12 167 sandbox/lengths.txt

45 220 1191 sandbox/lucy_in_the_sky.txt

6 15 101 sandbox/trees.txt

86 449 2471 total

50 / 160

Redirecting

Now suppose we had 1 million files and wanted to find the one with the most

words? Just printing to the screen doesn't work, we'd want to save the output

and use it somewhere else, we can do that by redirecting with the greater

than symbol >

51 / 160

Redirecting

Now suppose we had 1 million files and wanted to find the one with the most

words? Just printing to the screen doesn't work, we'd want to save the output

and use it somewhere else, we can do that by redirecting with the greater

than symbol >

$ wc -w sandbox/*.txt > sandbox/lengths.txt

$ ls sandbox

animals.txt

classes

hey_jude.txt

lengths.txt

lucy_in_the_sky.txt

shell_script.sh

trees.txt

51 / 160

Printing and cating

We can print the file to the screen using cat (print the full file) or less (one

screenful)

52 / 160

Printing and cating

We can print the file to the screen using cat (print the full file) or less (one

screenful)

$ cat sandbox/lengths.txt

7 sandbox/animals.txt

195 sandbox/hey_jude.txt

0 sandbox/lengths.txt

220 sandbox/lucy_in_the_sky.txt

15 sandbox/trees.txt

437 total

The w option made it so we only got the number of words, not characters or

lines

52 / 160

Sorting

If we want to return the output sorted we can use sort

53 / 160

Sorting

If we want to return the output sorted we can use sort

$ sort -n sandbox/lengths.txt

0 sandbox/lengths.txt

7 sandbox/animals.txt

15 sandbox/trees.txt

195 sandbox/hey_jude.txt

220 sandbox/lucy_in_the_sky.txt

437 total

where the n option means to sort numerically

53 / 160

Sorting

We can look at only the first few lines using head , (tail gets the last lines)

54 / 160

Sorting

We can look at only the first few lines using head , (tail gets the last lines)

$ head -n 1 sandbox/lengths.txt

7 sandbox/animals.txt

Where the 1 means we only want the first line

54 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

55 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

Lets use echo for an example which prints text

55 / 160

Redirecting

> will always overwrite a file, we can use the double greater than symbol >> to

append to a file

Lets use echo for an example which prints text

$ echo Hello world!

Hello world!

$ echo \ walnut >> sandbox/trees.txt

$ cat sandbox/trees.txt

maple pine birch oak beechnut palm fig redwood walnut walnut

walnut

walnut

walnut

walnut
55 / 160

Piping

We've learned a few options for manipulating text files, we can combine them

in easy ways using piping (same idea as Julia's queryverse and R's tidyverse)

56 / 160

Piping

We've learned a few options for manipulating text files, we can combine them

in easy ways using piping (same idea as Julia's queryverse and R's tidyverse)

Pipes | allow you sequentially write out commands that use the previous

command's output as the next command's input

56 / 160

Piping

Suppose we wanted to find the file in a directory with the most number of

characters, we could do this with

57 / 160

Piping

Suppose we wanted to find the file in a directory with the most number of

characters, we could do this with

$ wc -m sandbox/* | sort -n | tail -n 2

wc: sandbox/classes: read: Is a directory

1191 sandbox/lucy_in_the_sky.txt

2875 total

lucy_in_the_sky.txt is the longest in the sandbox directory

57 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

58 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

We can pipe a head and tail together:

58 / 160

Piping

Look at the file sandbox/hey_jude.txt , how would we get the second verse?

We can pipe a head and tail together:

$ head -n 9 sandbox/hey_jude.txt | tail -n 4

Hey jude, don't be afraid.

You were made to go out and get her.

The minute you let her under your skin,

Then you begin to make it better.

head grabs the first two verses (with the empty line inbetween),

tail grabs second verse

58 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

59 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

We can do that with a loop

59 / 160

Looping example 1

What if we wanted the second verse of multiple songs?

We can do that with a loop

$ for thing in list

$ do

$ operation_using $thing # Indentation is good style

$ done

$ preprends any variables, here the variables are the things we're looping

over

59 / 160

Looping example 1

$ for song in sandbox/hey_jude.txt sandbox/lucy_in_the_sky.txt

$ do

$ head -n 9 $song | tail -n 4

$ done

Hey jude, don't be afraid.

You were made to go out and get her.

The minute you let her under your skin,

Then you begin to make it better.

Cellophane flowers of yellow and green

Towering over your head

Look for the girl with the sun in her eyes

And she's gone

60 / 160

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

61 / 160

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

Let's combine a bunch of csvs using the shell

This is particularly useful with many or large datasets, because when done

through shell, you do not need to load them into memory

61 / 160

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109

Looping example 2

How about a more realistic one that is real world useful (taken from Grant

Mcdermott)

Let's combine a bunch of csvs using the shell

This is particularly useful with many or large datasets, because when done

through shell, you do not need to load them into memory

The files are in /sandbox/classes and report a fake class schedule

Let's combine them into one

61 / 160

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#109

Looping example 2

First we need to make our class schedule file

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

Then we need to add each day's schedule to the file

62 / 160

Looping example 2

First we need to make our class schedule file

$ touch sandbox/classes/class_schedule.csv

Then we need to add each day's schedule to the file

$ for day in $(ls sandbox/classes/*day.csv)

$ do

$ cat $day >> sandbox/classes/class_schedule.csv

$ done

where we treat what ls returns as a variable since its the output of a

command

62 / 160

Looping example 2

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

day,morning,afternoon,evening

monday,micro,macro,metrics

day,morning,afternoon,evening

thursday,game theory,seminar,nothings

day,morning,afternoon,evening

tuesday,game theory,seminar,nothings

day,morning,afternoon,evening

wednesday,micro,macro,metrics

63 / 160

Looping example 2

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

day,morning,afternoon,evening

monday,micro,macro,metrics

day,morning,afternoon,evening

thursday,game theory,seminar,nothings

day,morning,afternoon,evening

tuesday,game theory,seminar,nothings

day,morning,afternoon,evening

wednesday,micro,macro,metrics

Looks like it worked but we have the header every other line, how do we get

rid of it?

63 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

Next create the new file by grabbing the header from Monday

64 / 160

Looping example 2

Hint: we only need the header once, and then we want the last line of the csv

for each file

First lets remove the old file

$ rm -f sandbox/classes/class_schedule.csv

Next create the new file by grabbing the header from Monday

$ head -1 sandbox/classes/monday.csv > sandbox/classes/class_schedule.csv

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

64 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

65 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

We need to add each day's schedule to the file

65 / 160

Looping example 2

So we've got the file started, now we need to fill in the days using our looping

skills

We need to add each day's schedule to the file

$ for day in $(ls sandbox/classes/*day.csv)

$ do

$ tail -1 $day | cat >> sandbox/classes/class_schedule.csv

$ done

$ cat sandbox/classes/class_schedule.csv

day,morning,afternoon,evening

friday,nothing,workshop,nothing

monday,micro,macro,metrics

thursday,game theory,seminar,nothings

tuesday,game theory,seminar,nothings

wednesday,micro,macro,metrics 65 / 160

Finding things

How can we find things within files?

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

grep finds and prints lines that match a certain pattern

For example, lets find the lines in Hey Jude that contain "make"

66 / 160

Finding things

How can we find things within files?

We use the command grep (global/regular expression/print)

grep finds and prints lines that match a certain pattern

For example, lets find the lines in Hey Jude that contain "make"

$ grep make sandbox/hey_jude.txt

Hey jude, don't make it bad.

Take a sad song and make it better.

Then you can start to make it better.

Then you begin to make it better.

Then you can start to make it better.

Hey jude, don't make it bad.

Take a sad song and make it better

66 / 160

Finding things

$ grep make sandbox/hey_jude.txt

Here make is the pattern we are searching for inside Hey Jude

67 / 160

Finding things

Now lets search Lucy in the Sky for "in"

68 / 160

Finding things

Now lets search Lucy in the Sky for "in"

$ grep in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

With tangerine trees and marmalade skies

Towering over your head

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

68 / 160

Finding things

Now lets search Lucy in the Sky for "in"

$ grep in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

With tangerine trees and marmalade skies

Towering over your head

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

This gave us words that contained "in" but weren't actually the word "in"

68 / 160

Finding things

We can restrict the search to words with the w option

69 / 160

Finding things

We can restrict the search to words with the w option

$ grep -w in sandbox/lucy_in_the_sky.txt | head -5

Picture yourself in a boat on a river

Look for the girl with the sun in her eyes

Lucy in the sky with diamonds

Lucy in the sky with diamonds

Lucy in the sky with diamonds

69 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

70 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

For example, lets find lines with "a" as the second letter

70 / 160

Grepping

greps real power comes from using regular expressions

These are complex expressions that allow you to search for very specific

things

For example, lets find lines with "a" as the second letter

$ grep -E "^.a" sandbox/lucy_in_the_sky.txt | head -5

Waiting to take you away

70 / 160

Finding things

grep shows up in most programming languages as well

You can imagine using it to do things like dynamically renaming a set of

variables, dealing with weirdly reported FIPS codes, etc

71 / 160

Shell scripts

A nice thing about shell that's pretty underused by economists is putting the

commands into scripts so we can re-use them

72 / 160

Shell scripts

A nice thing about shell that's pretty underused by economists is putting the

commands into scripts so we can re-use them

$ # writing a shell script using echo is kind of silly

$ # but I want to show you what I'm doing on the slides

$ touch sandbox/shell_script.sh

$ echo echo "Hello World!" >> sandbox/shell_script.sh

$ cat sandbox/shell_script.sh

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!

echo Hello World!
72 / 160

Julia

Why am I doing this to you?

Why are we using Julia?

1. It's a high-level language, much easier to use than C++, Fortran, etc

2. It delivers C++ and Fortran speed

74 / 160

Intro to programming

Programming writing a set of instructions

1. There are hard and fast rules you can't break if you want it to work

2. There are elements of style (e.g. Strunk and White) that make for clearer

and more efficient code

≡

75 / 160

Intro to programming

If you will be doing computational work there are:

1. Language-independent coding basics you should know

Arrays are stored in memory in particular ways

2. Language-independent best practices you should use

Indent to convey program structure (or function in Python)

3. Language-dependent idiosyncracies that matter for function, speed, etc

Julia: type stability; R: vectorize

76 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

4. Make your code understandable by someone else or your future self

77 / 160

Intro to programming

Learning these early will:

1. Make coding a lot easier

2. Reduce total programmer time

3. Reduce total computer time

4. Make your code understandable by someone else or your future self

5. Make your code flexible

77 / 160

A broad view of programming

Your goal is to make a program

A program is made of different components and sub-components

78 / 160

A broad view of programming

Your goal is to make a program

A program is made of different components and sub-components

The most basic component is a statement, more commonly called a line of

code

78 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

79 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

80 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

3. Draw the top card

81 / 160

A broad view of programming

Here's pseudoprogram:

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

This program is real simple:

1. Create a deck of cards

2. Shuffle the deck

3. Draw the top card

4. Print it

82 / 160

A broad view of programming

deck = ["4 of hearts", "King of clubs", "Ace of spades"]

shuffled_deck = shuffle(deck)

first_card = shuffled_deck[1]

println("The first drawn card was " * shuffled_deck ".")

What are the parentheses and why are they different from square brackets?

How does shuffle work?

What’s println?

It’s important to know that a good program has understandable code

83 / 160

Julia specifics

We will discuss coding in the context of Julia
but a lot of this ports to Python,

MATLAB, etc

To do:

1. Types

2. Operators

3. Scope

4. Generic functions

5. Multiple dispatch

84 / 160

Types

All languages have some kind of data types like integers or arrays

85 / 160

Types

All languages have some kind of data types like integers or arrays

The first type you will often use is a boolean (Bool) variable that takes on a

value of true or false :

 x = true

true

 typeof(x)

Bool

85 / 160

Types

We can save the boolean value of actual statements in variables this way:

@show y = 1 > 2

y = 1 > 2 = false

false

@show is a Julia macro for showing the operation

86 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

87 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

and floating point numbers

 typeof(1.0)

Float64

87 / 160

Numbers

Two other data types you will use frequently are integers

 typeof(1)

Int64

and floating point numbers

 typeof(1.0)

Float64

Recall from lecture 1 the 64 means 64 bits of storage for the number, which is

probably the default on your machine
87 / 160

Numbers

You can always instantiate alternative floating point number types

 converted_int = convert(Float32, 1.0);

 typeof(converted_int)

Float32

88 / 160

Numbers

Math works like you would expect:

 a = 2; b = 1.0;

 a * b

2.0

89 / 160

Numbers

Math works like you would expect:

 a = 2; b = 1.0;

 a * b

2.0

 a^2

4

89 / 160

Numbers

2a - 4b

0.0

90 / 160

Numbers

2a - 4b

0.0

@show 4a + 3b^2

4a + 3 * b ^ 2 = 11.0

11.0

90 / 160

Numbers

2a - 4b

0.0

@show 4a + 3b^2

4a + 3 * b ^ 2 = 11.0

11.0

You dont need * inbetween numeric literals (numbers) and variables

90 / 160

Strings

Strings store sequences of characters

91 / 160

Strings

Strings store sequences of characters

You implement them with double quotations:

 x = "Hello World!";

 typeof(x)

String

91 / 160

Strings

Strings store sequences of characters

You implement them with double quotations:

 x = "Hello World!";

 typeof(x)

String

Note that ; suppresses output for that line of code but is unnecessary in Julia

91 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

92 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

Use * to concatenate strings

 a = "Aww"; b = "Yeah!!!"; println(a * " " * b)

Aww Yeah!!!

92 / 160

Strings

It's easy to work with strings, use $ to interpolate a variable/expression

 x = 10; y = 20; println("x + y = $(x+y).")

x + y = 30.

Use * to concatenate strings

 a = "Aww"; b = "Yeah!!!"; println(a * " " * b)

Aww Yeah!!!

You probably won't use strings too often unless you're working with text data

or printing output
92 / 160

Containers

Containers are types that store collections of data

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

Arrays are mutable which means you can change their values

93 / 160

Containers

Containers are types that store collections of data

The most basic container is the Array which is denoted by square brackets

 a1 = [1 2; 3 4]; typeof(a1)

Matrix{Int64} (alias for Array{Int64, 2})

Arrays are mutable which means you can change their values

 a1[1,1] = 5; a1

2×2 Matrix{Int64}:

5 2

3 4

93 / 160

Containers

An alternative to the Array is the Tuple which is denoted by parentheses

94 / 160

Containers

An alternative to the Array is the Tuple which is denoted by parentheses

 a2 = (1, 2, 3, 4); typeof(a2)

NTuple{4, Int64}

a2 is a Tuple of 4 Int64s, tuples have no dimension

94 / 160

Containers

Tuples are immutable which means you can't change their values

try

 a2[1,1] = 5;

catch

 println("Error, can't change value of a tuple.")

end

Error, can't change value of a tuple.

95 / 160

Containers

Tuples don't need parentheses (but it's probably best practice for clarity)

 a3 = 5, 6; typeof(a3)

Tuple{Int64, Int64}

96 / 160

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

97 / 160

https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

 a3_x, a3_y = a3;

 a3_x

5

 a3_y

6

97 / 160

https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1

Containers

Tuples can be unpacked (see NamedTuple for an alternative and more efficient

container)

 a3_x, a3_y = a3;

 a3_x

5

 a3_y

6

This is basically how functions return output when you call them

97 / 160

https://docs.julialang.org/en/v1/manual/types/#Named-Tuple-Types-1

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

98 / 160

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

 d1 = Dict("class" => "AEM7130", "grade" => 97);

 typeof(d1)

Dict{String, Any}

98 / 160

Containers

A Dictionary is the last main container type,
they are arrays but are indexed

by keys (names) instead of numbers

 d1 = Dict("class" => "AEM7130", "grade" => 97);

 typeof(d1)

Dict{String, Any}

d1 is a dictionary where the key are strings and the values are any kind of type

98 / 160

Containers

Reference specific values you want in the dictionary by referencing the key

99 / 160

Containers

Reference specific values you want in the dictionary by referencing the key

 d1["class"]

"AEM7130"

 d1["grade"]

97

99 / 160

Containers

If you just want all the keys or all the values you can use the base functions

100 / 160

Containers

If you just want all the keys or all the values you can use the base functions

 keys_d1 = keys(d1)

KeySet for a Dict{String, Any} with 2 entries. Keys:

"class"

"grade"

 values_d1 = values(d1)

ValueIterator for a Dict{String, Any} with 2 entries. Values:

"AEM7130"

97

100 / 160

Iterating

As in other languages we have loops at our disposal:

for loops iterate over containers

for count in 1:10

 random_number = rand()

if random_number > 0.2

 println("We drew a $random_number.")

end

end

We drew a 0.2296328225210792.

We drew a 0.49707317292004916.

We drew a 0.8560920694522626.

We drew a 0.2624024858764974.

We drew a 0.6650600018123658.

We drew a 0.6503417300672002.

We drew a 0.4929268795537094.

We drew a 0 5679661710637988

101 / 160

Iterating

while loops iterate until a logical expression is false

while rand() > 0.5

 random_number = rand()

if random_number > 0.2

 println("We drew a $random_number.")

end

end

102 / 160

Iterating

An Iterable is something you can loop over, like arrays

103 / 160

Iterating

An Iterable is something you can loop over, like arrays

 actions = ["codes well", "skips class"];

for action in actions

 println("Charlie $action")

end

Charlie codes well

Charlie skips class

103 / 160

Iterating

There's a type that's a subset of iterables, Iterator , that are particularly

convenient

104 / 160

Iterating

There's a type that's a subset of iterables, Iterator , that are particularly

convenient

These include things like the dictionary keys:

for key in keys(d1)

 println(d1[key])

end

AEM7130

97

104 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

105 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

Here's a very simple example, the top function iterates on an Array , the

bottom function iterates on an Iterator :

105 / 160

Iterating

Iterating on Iterators is more memory efficient than iterating on arrays

Here's a very simple example, the top function iterates on an Array , the

bottom function iterates on an Iterator :

function show_array_speed()

 m = 1

for i = [1, 2, 3, 4, 5, 6]

 m = m*i

end

end;

function show_iterator_speed()

 m = 1

for i = 1:6

 m = m*i

end

end; 105 / 160

Iterating

using BenchmarkTools

@btime show_array_speed()

17.827 ns (1 allocation: 112 bytes)

@btime show_iterator_speed()

2.125 ns (0 allocations: 0 bytes)

The Iterator approach is faster and allocates no memory

@btime is a macro from BenchmarkTools that shows you the elasped time and

memory allocation

106 / 160

Neat looping

The nice thing about Julia vs MATLAB is your loops can be much neater since

you don't need to index if you just want the container elements

107 / 160

Neat looping

The nice thing about Julia vs MATLAB is your loops can be much neater since

you don't need to index if you just want the container elements

 f(x) = x^2;

 x_values = 0:20:100;

for x in x_values

 println(f(x))

end

0

400

1600

3600

6400

10000

107 / 160

Neat looping

The loop directly assigns the elements of x_values to x instead of having to

do something clumsy like x_values[i]

108 / 160

Neat looping

The loop directly assigns the elements of x_values to x instead of having to

do something clumsy like x_values[i]

0:20:100 creates something called a StepRange (a type of Iterator) which

starts at 0 , steps up by 20 and ends at 100

108 / 160

Neat looping

You can also pull out an index and the element value by enumerating

 f(x) = x^2;

 x_values = 0:20:100;

for (index, x) in enumerate(x_values)

 println("f(x) at value $index is $(f(x)).")

end

f(x) at value 1 is 0.

f(x) at value 2 is 400.

f(x) at value 3 is 1600.

f(x) at value 4 is 3600.

f(x) at value 5 is 6400.

f(x) at value 6 is 10000.

enumerate basically assigns an index vector

109 / 160

Neat looping

There is also a lot of Python-esque functionality

110 / 160

Neat looping

There is also a lot of Python-esque functionality

For example: zip lets you loop over multiple different iterables at once

110 / 160

Neat looping

There is also a lot of Python-esque functionality

For example: zip lets you loop over multiple different iterables at once

 last_name = ("Lincoln", "Bond", "Walras");

 first_name = ("Abraham", "James", "Leon");

for (first_idx, last_idx) in zip(first_name, last_name)

 println("The name's $last_idx, $first_idx $last_idx.")

end

The name's Lincoln, Abraham Lincoln.

The name's Bond, James Bond.

The name's Walras, Leon Walras.

110 / 160

Neat looping

Nested loops can also be made very neatly

111 / 160

Neat looping

Nested loops can also be made very neatly

for x in 1:3, y in 3:-1:1

 println(y-x)

end

2

1

0

1

0

-1

0

-1

-2

111 / 160

Neat looping

Nested loops can also be made very neatly

for x in 1:3, y in 3:-1:1

 println(y-x)

end

2

1

0

1

0

-1

0

-1

-2

The first loop is the inner loop, the second loop is the outer loop
111 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

112 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

 squared = [y^2 for y in 1:2:11]

6-element Vector{Int64}:

1

9

25

49

81

121

112 / 160

Comprehensions: the neatest looping

Comprehensions are super nice ways to use iterables that make your code

cleaner and more compact

 squared = [y^2 for y in 1:2:11]

6-element Vector{Int64}:

1

9

25

49

81

121

This created a 1-dimension Array using one line

112 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

This created a 2-dimensional Array

113 / 160

Comprehensions: the neatest looping

We can also use nested loops for comprehensions

 squared_2 = [(y+z)^2 for y in 1:2:11, z in 1:6]

6×6 Matrix{Int64}:

4 9 16 25 36 49

16 25 36 49 64 81

36 49 64 81 100 121

64 81 100 121 144 169

100 121 144 169 196 225

144 169 196 225 256 289

This created a 2-dimensional Array

Use this (and the compact nested loop) sparingly since it's hard to follow

113 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

This is actually called broadcasting

114 / 160

Dot syntax: broadcasting/vectorization

Vectorizing operations (e.g. applying it to a whole array or vector at once) is

easy in Julia, just use dot syntax like you would in MATLAB, etc

 g(x) = x^2;

 squared_2 = g.(1:2:11)

6-element Vector{Int64}:

1

9

25

49

81

121

This is actually called broadcasting

When broadcasting, you might want to consider pre-allocating arrays 114 / 160

Dot syntax: broadcasting/vectorization

Vectorization creates temporary allocations, temporary arrays in the middle of

the process that aren't actually needed for the final product

Julia can do broadcasting in a nicer, faster way by fusing operations together

and avoiding these temporary allocations

115 / 160

Dot syntax: broadcasting/vectorization

Let's write two functions that do the same thing:

function show_vec_speed(x)

 out = [3x.^2 + 4x + 7x.^3 for i = 1:1]

end

function show_fuse_speed(x)

 out = @. [3x.^2 + 4x + 7x.^3 for i = 1:1]

end

The top one is vectorized for the operations, the @. in the bottom one

vectorizes everything in one swoop: the function call, the operation, and the

assignment to a variable

116 / 160

Dot syntax: broadcasting/vectorization

First, precompile the functions

 x = rand(10^6);

@time show_vec_speed(x);

@time show_fuse_speed(x);

@time show_vec_speed(x)

0.004672 seconds (13 allocations: 45.777 MiB)

1-element Vector{Vector{Float64}}:

[12.874822850326872, 2.725670724402299, 2.8566366599700235, 11.811970611339124, 0.8959328634610417,

@time show_fuse_speed(x)

0.000925 seconds (3 allocations: 7.630 MiB)

117 / 160

Dot syntax: vectorization

Not pre-allocated:

 h(y,z) = y^2 + sin(z); # function to evaluate

 y = 1:2:1e6+1; # input y

 z = rand(length(y)); # input z

118 / 160

Dot syntax

Here we are vectorizing the function call

precompile h so first timer isn't picking up on compile time

 h(1,2)

@time out_1 = h.(y,z) # evaluate h.(y,z) and time

0.034353 seconds (246.22 k allocations: 16.154 MiB, 90.35% compilation time)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289 3627061432049

119 / 160

Dot syntax: vectorization

Here we are vectorizing the function call and assignment

 out_2 = similar(out_1)

@time out_2 .= h.(y,z)

0.014353 seconds (38.86 k allocations: 1.784 MiB, 77.51% compilation time)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289.3627061432049

361 14803760555867

120 / 160

Dot syntax: vectorization

Here we are vectorizing the function call, assignment, and operations

 out_3 = similar(out_1)

@time out_3 = @. h(y,z)

0.003161 seconds (4 allocations: 3.815 MiB)

500001-element Vector{Float64}:

1.270990279629937

9.118939012142084

25.30930830725158

49.73109386642228

81.46268082472055

121.19774297963545

169.776117811416

225.12227681514867

289.3627061432049

361 14803760555867

121 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

You can also test for approximate equality with (type \approx<TAB>)≈

122 / 160

Logical operators work like you'd think

== (equal equal) tests for equality

1 == 1

true

!= (exclaimation point equal) tests for inequality

2 != 2

false

You can also test for approximate equality with (type \approx<TAB>)

1.00000001 ≈ 1

≈

122 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

Different scopes can have the same name, i.e. saving_rate , but be assigned to

different variables

123 / 160

Scope

The scope of a variable name determines when it is valid to refer to it

Scope can be a frustrating concept

If you want to dive into the details: the type of scoping in Julia is called lexical

scoping

Different scopes can have the same name, i.e. saving_rate , but be assigned to

different variables

Let's walk through some simple examples to see how it works

123 / 160

Scope

First, functions have their own local scope

124 / 160

Scope

First, functions have their own local scope

 ff(xx) = xx^2;

 yy = 5;

 ff(yy)

25

xx isn't bound to any values outside the function ff

This is pretty natural for those of you who have done any programming before

124 / 160

Scope

Locally scoped functions allow us to do things like:

 xx = 10;

 fff(xx) = xx^2;

 fff(5)

25

Although xx was declared equal to 10, the function still evaluated at 5

125 / 160

Scope

Locally scoped functions allow us to do things like:

 xx = 10;

 fff(xx) = xx^2;

 fff(5)

25

Although xx was declared equal to 10, the function still evaluated at 5

This is all kind of obvious so far

125 / 160

Scope

But, this type of scoping also has (initially) counterintuitive results like:

 zz = 0;

for ii = 1:10

 zz = ii

end

 println("zz = $zz")

zz = 0

126 / 160

Scope

What happened?

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

The zz inside the for loop has a scope local to the loop

127 / 160

Scope

What happened?

The zz outside the for loop has a different scope,
the global scope, than the

zz inside it

The global scope is the outer most scope, outside all functions and loops

The zz inside the for loop has a scope local to the loop

Since the outside zz has global scope the locally scoped variables in the loop

can't change it

127 / 160

Scope

Generally you want to avoid global scope because it can cause conflicts,

slowness, etc, but you can use global to force it if you want something to have

global scope

 zz = 0;

for ii = 1:10

global zz

 zz = ii

end

 println("zz = $zz")

zz = 10

128 / 160

Scope

Local scope kicks in whenever you have a new block keyword (i.e. you

indented something) except for if

Global variables inside a local scope are inherted for reading, not writing

 x, y = 1, 2;

function foo()

 x = 2 # assignment introduces a new local

return x + y # y refers to the global

end;

 foo()

4

 x

1
129 / 160

Scope

Important piece: nested functions can modify their parent scope's local

variables

130 / 160

Scope

Important piece: nested functions can modify their parent scope's local

variables

 x, y = 1, 2; # set globals

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

130 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

22

 x, y # verify that global x and y are unchanged

(1, 2)

131 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

132 / 160

Scope

function f_outer()

 x = 2 # introduces a new local

function f_inner()

 x = 10 # modifies the parent's x

return x + y # y is global

end

return f_inner() + x # 12 + 10 (x is modified in call of f_inner())

end;

 f_outer()

 x, y # verify that global x and y are unchanged

If f_inner was not nested and was in the global scope we'd get 14 not 22 , this

is also a way to handle the issue with loops editing variables not created in

their local scope

132 / 160

Scope

We can fix looping issues with global scope by using a wrapper function that

doesn't do anything but change the parent scope so it is not global

function wrapper()

 zzz = 0;

for iii = 1:10

 zzz = iii

end

 println("zzz = $zzz")

end

wrapper (generic function with 1 method)

 wrapper()

zzz = 10

133 / 160

Closures

These inner functions we've been looking at are called closures

When a function f is parsed in Julia, it looks to see if any of the variables have

been previously defined in the current scope

 a = 0.2;

 f(x) = a * x^2; # refers to the `a` in the outer scope

f (generic function with 1 method)

 f(1) # univariate function

0.2

134 / 160

Closures

function g(a)

 f(x) = a * x^2; # refers to the `a` passed in the function

 f(1); # univariate function

end

g (generic function with 1 method)

 g(0.2)

0.2

135 / 160

Closures

function g(a)

 f(x) = a * x^2; # refers to the `a` passed in the function

 f(1); # univariate function

end

g (generic function with 1 method)

 g(0.2)

0.2

In both of these examples f is a closure designed to capture a variable from

an outer scope

135 / 160

Closures

Here's a complicated example that actually returns a closure (a function!)

itself:

136 / 160

Closures

 x = 0;

function toplevel(y)

 println("x = ", x, " is a global variable")

 println("y = ", y, " is a parameter")

 z = 2

 println("z = ", z, " is a local variable")

function closure(v)

 println("v = ", v, " is a parameter")

 w = 3

 println("w = ", w, " is a local variable")

 println("x = ", x, " is a global variable")

 println("y = ", y, " is a closed variable (a parameter of the outer function)")

 println("z = ", z, " is a closed variable (a local of the outer function)")

end;

return closure

end;

What will be returned when we call these functions?
137 / 160

Closures

Here's a complicated example:

 c_func = toplevel(10)

x = 0 is a global variable

y = 10 is a parameter

z = 2 is a local variable

(::var"#closure#230"{Int64, Int64}) (generic function with 1 method)

 c_func(20)

v = 20 is a parameter

w = 3 is a local variable

x = 0 is a global variable

y = 10 is a closed variable (a parameter of the outer function)

z = 2 is a closed variable (a local of the outer function)
138 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

139 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

These are functions that are flexible (e.g. can deal with someone using an Int

instead of a Float)
and have high performance (e.g. comparable speed to C)

139 / 160

Generic functions

If you use Julia to write code for research you should aim to write generic

functions

These are functions that are flexible (e.g. can deal with someone using an Int

instead of a Float)
and have high performance (e.g. comparable speed to C)

Functions are made generic by paying attention to types and making sure

types are stable

139 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

The question you might have is: Type stability sounds like mandating types

(e.g. what C and Fortran do, not what R/Python/etc do), so how do we make it

flexible?

140 / 160

Generic functions

Type stability: Given an input into a function, operations on that input should

maintain the type so Julia knows what its type will be throughout the full

function call

This allows it to compile type-specialized versions of the functions, which will

yield higher performance

The question you might have is: Type stability sounds like mandating types

(e.g. what C and Fortran do, not what R/Python/etc do), so how do we make it

flexible?

We'll see next
140 / 160

These two functions look the same, but are they?

function t1(n)

 s = 0

 t = 1

for i in 1:n

 s += s/i

 t = div(t, i)

end

return t

end

function t2(n)

 s = 0.0

 t = 1

for i in 1:n

 s += s/i

 t = div(t, i)

end

return t

end

141 / 160

No! t1 is not type stable

142 / 160

No! t1 is not type stable

t1 starts with s as an Int64 but then we have s += s/i which will mean it

must hold a Float64

142 / 160

No! t1 is not type stable

t1 starts with s as an Int64 but then we have s += s/i which will mean it

must hold a Float64

It must be converted to Float so it is not type stable

142 / 160

No! t1 is not type stable

We can see this when calling the macro @code_warntype where it reports t1 at

some point handles s that has type Union{Float64,Int64} , either Float64 or

Int64

Julia now can't assume s 's type and produce pure integer or floating point

code performance degradation

→

143 / 160

THIS MATTERS

2x difference between two simple functions

Type instable

function type_unstable()

 x = 1

for i = 1:1e6

 x = x/2

end

return x

end

Type stable

function type_stable()

 x = 1.0

for i = 1:1e6

 x = x/2

end

return x

end

144 / 160

THIS MATTERS

2x difference between two simple functions

@time type_unstable()

0.004397 seconds

0.0

@time type_stable()

0.002884 seconds

0.0

145 / 160

Concrete vs abstract types

A concrete type is one that can be instantiated (Float64 Bool Int32)

146 / 160

Concrete vs abstract types

A concrete type is one that can be instantiated (Float64 Bool Int32)

An abstract type cannot (Real , Number , Any)

146 / 160

Concrete vs abstract types

Abstract types are for organizing the types

You can check where types are in the hierarchy

@show Float64 <: Real

Float64 <: Real = true

true

@show Array <: Real

Array <: Real = false

false

147 / 160

Concrete vs abstract types

You can see the type hierarchy with the supertypes and subtypes commands

using Base: show_supertypes

 show_supertypes(Float64)

Float64 <: AbstractFloat <: Real <: Number <: Any

148 / 160

Creating new types

We can actually create new composite types using struct

149 / 160

Creating new types

We can actually create new composite types using struct

 struct FoobarNoType # This will be immutable by default

 a

 b

 c

end

149 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

150 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

 newfoo = FoobarNoType(1.3, 2, "plzzz");

 typeof(newfoo)

FoobarNoType

 newfoo.a

1.3

150 / 160

Creating new types

This creates a new type called FoobarNoType , and we can generate a variable

of this type using its constructor which will have the same name

 newfoo = FoobarNoType(1.3, 2, "plzzz");

 typeof(newfoo)

FoobarNoType

 newfoo.a

1.3

You should always declare types for the fields of a new composite type

150 / 160

Creating new types

You can declare types with the double colon

 struct FoobarType # This will be immutable by default

 a::Float64

 b::Int

 c::String

end

151 / 160

Creating new types

 newfoo_typed = FoobarType(1.3, 2, "plzzz");

 typeof(newfoo_typed)

FoobarType

 newfoo.a

1.3

This lets the compiler generate efficient code because it knows the types of

the fields when you construct a FoobarType

152 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

153 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

The curly brackets declare all the different type subsets we will use in

FooParam

153 / 160

Parametric types are what help deliver flexibility

We can create types that hold different types of fields
by declaring subsets of

abstract types

 struct FooParam{t1 <: Real, t2 <: Real, t3 <: AbstractArray{<:Real}}

 a::t1

 b::t2

 c::t3

end

 newfoo_para = FooParam(1.0, 7, [1., 4., 6.])

FooParam{Float64, Int64, Vector{Float64}}(1.0, 7, [1.0, 4.0, 6.0])

The curly brackets declare all the different type subsets we will use in

FooParam

This actually delivers high performance code! 153 / 160

Delivering flexibility

We want to make sure types are stable but code is flexible

Ex: if want to preallocate an array to store data,
how do we know how to

declare it's type?

154 / 160

Delivering flexibility

We want to make sure types are stable but code is flexible

Ex: if want to preallocate an array to store data,
how do we know how to

declare it's type?

We don't need to

154 / 160

Delivering flexibility

sametypes (generic function with 1 method)

 x = [5.5, 7.0, 3.1];

 y = [7, 8, 9];

using LinearAlgebra # necessary for I

function sametypes(x)

 y = similar(x) # creates an array that is `similar` to x, use this for preall

 z = I # creates a scalable identity matrix

 q = ones(eltype(x), length(x)) # one is a type generic array of ones, fill creates the array

 y .= z * x + q

return y

end

155 / 160

Delivering flexibility

We did not declare any types but the function is type stable

 sametypes(x)

 sametypes(y)

156 / 160

Delivering flexibility

We did not declare any types but the function is type stable

 sametypes(x)

 sametypes(y)

There's a lot of other functions out there that help with writing flexible, type

stable code

156 / 160

Multiple dispatch

Why type stability really matters: multiple dispatch

Neat thing about Julia: the same function name can perform different

operations depending on the underlying type of the inputs

A function specifies different methods, each of which operates on a specific

set of types

157 / 160

Multiple dispatch

When you write a function that's type stable, you are actually writing many

different methods, each of which are optimized for certain types

158 / 160

Multiple dispatch

When you write a function that's type stable, you are actually writing many

different methods, each of which are optimized for certain types

If your function isn't type stable, the optimized method may not be used

This is why Julia can achieve C speeds: it compiles to C (or faster) code

158 / 160

Multiple dispatch

/ has 103 different methods depending on the input types, these are 103

specialized sets of codes

 methods(/)

152 methods for generic function "/":

[1] /(x::Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8}, y::Union{

[2] /(x::T, y::T) where T<:Union{Float16, Float32, Float64} in Base at float.jl:386

[3] /(x::Union{Integer, Complex{<:Union{Integer, Rational}}}, y::Rational) in Base at rational.jl:34

[4] /(x::Union{Int16, Int32, Int64, Int8, UInt16, UInt32, UInt64, UInt8}, y::BigInt) in Base.GMP at

[5] /(c::Union{UInt16, UInt32, UInt64, UInt8}, x::BigFloat) in Base.MPFR at mpfr.jl:441

[6] /(c::Union{Int16, Int32, Int64, Int8}, x::BigFloat) in Base.MPFR at mpfr.jl:453

[7] /(c::Union{Float16, Float32, Float64}, x::BigFloat) in Base.MPFR at mpfr.jl:465

[8] /(U::Union{UnitUpperTriangular{var"#s886", S} where S<:AbstractMatrix{var"#s886"}, UpperTriangul

[9] /(U::Union{UnitUpperTriangular{T, S} where S<:AbstractMatrix{T}, UpperTriangular{T, S} where S<:

[10] /(L::Union{LowerTriangular{var"#s886", S} where S<:AbstractMatrix{var"#s886"}, UnitLowerTriangu

[11] /(L::Union{LowerTriangular{T, S} where S<:AbstractMatrix{T}, UnitLowerTriangular{T, S} where S<

[12] /(X::StridedArray{P}, y::P) where P<:Dates.Period in Dates at /Users/ir229/.julia/juliaup/julia

[13] /(X::StridedArray{P} y::Real) where P<:Dates Period in Dates at /Users/ir229/ julia/juliaup/ju
159 / 160

Coding practices etc

See JuliaPraxis for best practices for naming, spacing, comments, etc

160 / 160

https://github.com/JuliaPraxis

