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Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

For this lecture you will need the following Julia packages

import Pkg; Pkg.add("ForwardDiff"); Pkg.add("Distributions"); Pkg.add("BenchmarkTools")

using ForwardDiff, Distributions, BenchmarkTools
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What this class is about

1. Learning how to compute dynamic and spatial models

2. Other useful computational techniques and details
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What you need to succeed in this course

1. ECON 6090 and ECON 6170

2. ECON 6130 or AEM 7040

3. Previous coding experience or willingness to spend some time learning as

you go

4 / 132

Course materials

1. Everything we use in the course will be freely available and posted to the

course GitHub (details next week on how to use Git)

2. Books (free from the library or authors' websites):

1. Judd (1998)

2. Miranda and Fackler (2002)

3. Nocedal and Wright (2006)

5 / 132

Things to do before next class

Spend some time reading up on Julia if you don't use it already:

Learning Julia

QuantEcon Julia lectures
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What we will cover in the class

1. Basic computing, arithmetic, calculus, and linear algebra on a computer

2. Shell and Julia coding, version control, reproducibility, workflow

3. Optimization

4. Solving dynamic models

5. Solving spatial models
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What you have to do

Come to class

4 computational problem sets

Final research project proposal

Final research project

One presentation of a paper from the literature
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Important days / times

Office hours: Tuesday 3:00-4:00

Final project proposal: March 17

Final project paper: May 19
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Grading

Problem sets: 40% (10% each)

Final project proposal: 15%

Final project paper/presentation: 25%

Class participation: 10%

Computational paper presentation: 10%
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Problem sets (10% each)

You must use Julia

Code must be written in .jl  scripts

You must use Julia project management tools, e.g. Pkg.generate(),

Pkg.activate(), Pkg.instantiate()

Everything must be nested in a wrapper function

It must work just by running the wrapper function

You can work in groups of 2

Problem sets will be where you implement the techniques we learn in class on

your own,
but we will be doing our fair share of coding in class
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Problem sets (10% each)

Why am I making you do problem sets this way?

If you want to publish in an AEA journal (amongst others now..) you need to

have good practices, other journals are following suit

Julia is very good for reproducibility
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Computational paper presentations (10%)

Everyone will present a paper or package starting in a few weeks

The paper can apply methods we've learned about (or will learn about),
or can

be a new method that we have not covered

The package must be something related to the methods we are learning

You must consult with me at least 1 week prior to your scheduled

presentation
date to ensure the paper/package is appropriate for a

presentation

The syllabus has some pre-approved papers you can choose from under the

Applications header 13 / 132

Final project (25% paper, 15% proposal)

The final project will be the beginning of a computationally-driven research

project or an extension of an existing paper with new methods

Proposals will be due about half way through the class

14 / 132

Final project (25% paper, 15% proposal)

The only requirement is that the project cannot be computationally trivial


(i.e. no applied micro papers)

It can be numerical, empirical, whatever

Everyone will present their final projects in the last week of class

More details on the syllabus and to come later
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Why computational methods?Why computational methods?

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable
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Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS: 

Not all economic models have closed-form solutions,
and others can't have

closed-form solutions with losing important economic content

This is generally true for dynamic and spatial models

β̂ = (X ′X)−1X ′Y
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What can we compute?

We can use computation + theory to answer quantitative questions
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What can we compute?

We can use computation + theory to answer quantitative questions

Theory can't give us welfare in dollar terms

Theory can't tell us the value of economic primitives

18 / 132

What can we compute?

Theory often relies on strong assumptions like:
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What can we compute?

Theory often relies on strong assumptions like:

log utility (lose income vs substitution)

zero frictions

strictly linear transitions (natural phenomena don't follow this)

static decisionmaking

It can be unclear what the cost of these assumptions are
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Example 1

Suppose we have a constant elasticity demand function: 

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

q(p) = p−0.2

q∗ = 2
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Example 1

Suppose we have a constant elasticity demand function: 

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

Just invert the demand function:

q(p) = p−0.2

q∗ = 2

2 = p−0.2

20 / 132

Example 1

Suppose we have a constant elasticity demand function: 

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

Just invert the demand function:

Your calculator can do the rest

q(p) = p−0.2

q∗ = 2

2 = p−0.2

p∗ = 2−5
✓
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

First, does a solution exist?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

First, does a solution exist?

Yes, why?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2
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Example 2

 is monotonically decreasingq(p)
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Example 2

 is monotonically decreasing

 is greater than 2 at  and less than 2 at 

q(p)

q(p) p = 0.1 p = 0.2
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Example 2

 is monotonically decreasing

 is greater than 2 at  and less than 2 at 

 by intermediate value theorem  somewhere in 

q(p)

q(p) p = 0.1 p = 0.2

→ q(p) = 2 (0.1, 0.2)
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Example 2

# We know solution is between .1 and .2

 x = collect(range(.1, stop = .2, length = 10)) # generate evenly spaced grid

 q_d = ones(size(x)).*2 # generate equal length vector of qd=2

# Price function

 price(p) = p.^(-0.2)/2 .+ p.^(-0.5)/2

# Get corresponding quantity values at these prices

 y = price(x)

Now plot  and qd q(p)
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Example 2
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Example 2

Notice: if we let  then:t = p−0.1

q(t) = 0.5t2 + 0.5t5
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Example 2

Notice: if we let  then:

Can we solve for  now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t
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Example 2

Notice: if we let  then:

Can we solve for  now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

So how do we solve the problem?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t
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Newton's method

Iteratively do the following:

1. Guess solution to: 

2. Approximate the function with local second order polynomial around guess

3. Solve this easier equation

4. Solution is the new guess

5. Stop if previous guess and new guess are sufficiently close

We will learn more about this and why it works in a later class

q(p) − q∗ = 0 → q(p) − 2 = 0
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Newton code

# Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

27 / 132

Newton code

# Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

function find_root_newton(demand, demand_grad)

     p = .3 # initial guess

     deltap = 1e10 # initialize stepsize

while abs(deltap) > 1e-4

         deltap = demand(p)/demand_grad(p)

         p += deltap

         println("Intermediate guess of p = $(round(p,digits=3)).")

end

     println("The solution is p = $(round(p,digits=3)).")

return p

end;
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Newton code

# Solve for price

 find_root_newton(demand, demand_grad)

## Intermediate guess of p = 0.068.

## Intermediate guess of p = 0.115.

## Intermediate guess of p = 0.147.

## Intermediate guess of p = 0.154.

## Intermediate guess of p = 0.154.

## Intermediate guess of p = 0.154.

## The solution is p = 0.154.

## 0.15419764093200633
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Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting


Period 2: Per-acre yield realizes, equilibrium crop price clears the market
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1
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After planting, yield  realizes, producing a total quantity  of the crop
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Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting


Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is: 

After planting, yield  realizes, producing a total quantity  of the crop

Demand is given by 

Yield is given by 

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

p(q) = 3 − 2q

ŷ ∼ N (1, 0.1)
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How much acreage gets planted?

p(ŷ) = 3 − 2aŷ
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How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2
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How much acreage gets planted?

Rearrange and solve:

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2

a∗ = 1
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How much acreage gets planted?

Rearrange and solve:

Now suppose the government implements a price floor on the crop of  so

we have that 

How much acreage does the farmer plant?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2

a∗ = 1

p > 1

p(ŷ) = max(1, 3 − 2aŷ)
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How much acreage gets planted?

This is analytically intractable
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How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

E[max(1, 3 − 2aŷ)] ≠ max(1,E[3 − 2aŷ ])
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How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

 we need to solve this numerically

E[max(1, 3 − 2aŷ)] ≠ max(1,E[3 − 2aŷ ])

→
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Function iteration

We can solve this using another technique called function iteration

# Function iteration method to find a root

function find_root_fi(mn, variance)

     y = randn(1000)*sqrt(variance) .+ mn # draws of the random variable

     a = 1. # initial guess

     differ = 100. # initialize error

     exp_price = 1. # initialize expected price

while differ > 1e-4

         a_old = a                      # save old acreage

         p = max.(1, 3 .- 2 .*a.*y)     # compute price at all distribution points

         exp_price = mean(p)            # compute expected price

         a = 1/2 + 1/2*exp_price        # get new acreage planted given new price

         differ= abs(a - a_old)         # change in acreage planted

         println("Intermediate acreage guess: $(round(a,digits=3))")

end

return a, exp_price

end
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Function iteration

## The optimal number of acres to plant is 1.094.

## The expected price is 1.188.

 acreage, expected_price = find_root_fi(1, 0.1);

 println("The optimal number of acres to plant is $(round(acreage, digits = 3)).\nThe expected pr
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Quantifying speed and accuracyQuantifying speed and accuracy

Big O notation

How do we quantify speed and accuracy of computational algorithms?
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Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

You've seen this before in the expression of Taylor series' errors
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Big O Notation

Written as: O(F(x))

Here is how to think about it:
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Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

Time to find a particular (e.g. maximum) value in an unsorted array

 For each element, check whether it is the value we want→ 36 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x
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Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?
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Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

Time to solve a standard dynamic program, ex traveling salesman

 For each city , solve a Bellman as a function of all other cities→ i = 1, . . . ,n
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

O(n!)
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

O(n!)
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

Solving traveling salesman by brute force

 Obtain travel time for all possible combinations of intermediate cities

O(n!)

→
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Big O Notation: Accuracy example

This is how you have probably seen Big O used before:
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Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

Taylor series for  around zero:

What does  mean here?

sin(x)

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

O(x7)
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Big O Notation: Accuracy example

sin(x) ≈ x − x3/3! + x5/5! + O(x7)
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Big O Notation: Accuracy example

As we move away from  to some , the upper bound of the growth rate in the

error of our approximation to  is 

We are approximating about zero so  is small and  is decreasing in 

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

0 x

sin(x) x7

x xn n
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Big O Notation: Accuracy example

As we move away from  to some , the upper bound of the growth rate in the

error of our approximation to  is 

We are approximating about zero so  is small and  is decreasing in 

For small , higher order polynomials mean the error will grow slower and we

have a better local approximation

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

0 x

sin(x) x7

x xn n

x
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Taylor expansions

# fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)
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Taylor expansions

# fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

 println("Error of fifth-order approximation at x = .001 is: $(sin_error_5(.001))

 Error of third-order approximation at x = .001 is: $(sin_error_3(.001))

 Error of fifth-order approximation at x = .01 is: $(sin_error_5(.01))

 Error of third-order approximation at x = .01 is: $(sin_error_3(.01))

 Error of fifth-order approximation at x = .1 is: $(sin_error_5(.1))

 Error of third-order approximation at x = .1 is: $(sin_error_3(.1))")

## Error of fifth-order approximation at x = .001 is: 0.0

## Error of third-order approximation at x = .001 is: 8.239936510889834e-18

## Error of fifth-order approximation at x = .01 is: -1.734723475976807e-18

## Error of third-order approximation at x = .01 is: 8.333316675601665e-13

## Error of fifth-order approximation at x = .1 is: -1.983851971587569e-11

## Error of third-order approximation at x = .1 is: 8.331349481138783e-8
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Big O Notation: Speed examples

Here are a few examples for fundamental computational methods
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Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed
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O(1): algorithm executes in constant time

The size of the input does not affect execution speed
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Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

accessing a specific location in an array
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Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:
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Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

inserting an element into an arbitrary location in a 1 dimensional array

Bigger array  need to shift around more elements in memory to

accommodate the new element

→
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Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

O(x2)

O(x2) :

xn
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Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

O(x2)

O(x2) :

xn

45 / 132

Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

matrix inversion, most algorithms (e.g. LU decomposition) solve in polynomial

time

O(x2)

O(x2) :

xn
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Computer arithmeticComputer arithmetic

Computer arithmetic - storage

Question: which numbers can be represented by a computer?
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Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

Base 10: each digit can take on 0-9
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Computer arithmetic - storage

Question: which numbers can be represented by a computer?
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Answer: a subset of the rational numbers
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Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

Numbers are stored as: 

 is the mantissa/significand,
  is the base,
  is the exponent

All three are integers

±mb±n

m b n
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Computer arithmetic - storage

The significand typically gives the significant digits

The exponent scales the number up or down in magnitude

±mb±n
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Computer arithmetic - storage

The size of numbers a computer can represent is limited


by how much space is typically allocated for a real number
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Computer arithmetic - storage

The size of numbers a computer can represent is limited


by how much space is typically allocated for a real number

Space allocations are usually 64 bits: 53 for  and 11 for 

 println(typeof(5.0))

## Float64

 println(typeof(5))

## Int64

m n
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Computer arithmetic - storage

Int64  means it is a integer with 64 bits of storage

Float64  means it is a floating point number with 64 bits of storage

Floating point just means  can move the decimal point around in the

significand

Int64  and Float64  are different, this will be important later

b±n
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The limits of computers

Limitations on storage suggest three facts
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The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

Machine epsilon is the smallest  such that
a machine can always distinguishϵ

N + ϵ > N > N − ϵ
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The limits of computers

 println("Machine epsilon ϵ is $(eps(Float64))")

## Machine epsilon ϵ is 2.220446049250313e-16

 println("Is 1 + ϵ/2 > 1? $(1 + eps(Float64)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(1 - eps(Float64)/2 < 1)")

## Is 1 - ϵ/2 < 1? true
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The limits of computers

 println("The smallest representable number larger than 1.0 is $(nextfloat(1.0))")

## The smallest representable number larger than 1.0 is 1.0000000000000002

 println("The largest representable number smaller than 1.0 is $(prevfloat(1.0))")

## The largest representable number smaller than 1.0 is 0.9999999999999999
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

## 32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

## Is 1 - ϵ/2 < 1? true
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

## 32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

## Is 1 - ϵ/2 < 1? true

Theres a tradeoff between precision and storage requirements
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The limits of computers

2. There is a smallest representable number

 println("64 bit smallest float is $(floatmin(Float64))")

## 64 bit smallest float is 2.2250738585072014e-308

 println("32 bit smallest float is $(floatmin(Float32))")

## 32 bit smallest float is 1.1754944e-38

 println("16 bit smallest float is $(floatmin(Float16))")

## 16 bit smallest float is 6.104e-5
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The limits of computers

3. There is a largest representable number

 println("64 bit largest float is $(floatmax(Float64))")

## 64 bit largest float is 1.7976931348623157e308

 println("32 bit largest float is $(floatmax(Float32))")

## 32 bit largest float is 3.4028235e38

 println("16 bit largest float is $(floatmax(Float16))")

## 16 bit largest float is 6.55e4
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The limits of computers

 println("The largest 64 bit integer is $(typemax(Int64))")

## The largest 64 bit integer is 9223372036854775807

 println("Add one to it and we get: $(typemax(Int64)+1)")

## Add one to it and we get: -9223372036854775808

 println("It loops us around the number line: $(typemin(Int64))")

## It loops us around the number line: -9223372036854775808
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The limits of computers

The scale of your problem matters
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The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

Scale numbers appropriately (e.g. millions of dollars, not millionths of cents)
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We can only represent a finite number of numbers
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Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

Error comes in two major and related forms:

1. Rounding

2. Truncation
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Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

## Half of π is: 1.5707963267948966
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Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

## Half of π is: 1.5707963267948966

The computer gave us a rational number, but  should be irrationalπ/2
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Truncation

Lots of important numbers are defined by infinite sums
ex = ∑∞
n=0

xn

n!
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Truncation

Lots of important numbers are defined by infinite sums


It turns out that computers can't add up infinitely many terms because there is

finite space

 we need to truncate the sum

ex = ∑∞
n=0

xn

n!

→
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Why does this matter?

Errors are small, who cares?
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Why does this matter?

Errors are small, who cares?

You should!

Because errors can propagate and grow as you keep applying an algorithm

(e.g. function iteration)
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Error example 1

Consider a simple quadratic:  with solution x2 − 26x + 1 = 0 x = 13 − √168
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Error example 1

Consider a simple quadratic:  with solution 

 println("64 bit: 13 - √168 = $(13-sqrt(168))")

## 64 bit: 13 - √168 = 0.03851860318427924

 println("32 bit: 13 - √168 = $(convert(Float32,13-sqrt(168)))")

## 32 bit: 13 - √168 = 0.038518604

 println("16 bit: 13 - √168 = $(convert(Float16,13-sqrt(168)))")

## 16 bit: 13 - √168 = 0.0385

x2 − 26x + 1 = 0 x = 13 − √168
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Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:


x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)
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Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:




Very clearly we should get , but do we? Let's find out

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

x = y
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

if x_equals_y

     println("X equals Y!")

else

     println("X does not equal Y!")

     println("The difference is: $(x-y).")

end

## X does not equal Y!

## The difference is: -1.0e-20.
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Error example 2

The two numbers were not equal, we got 

Why?

y > x
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Error example 2

The two numbers were not equal, we got 

Why?

Adding numbers of greatly different magnitudesdoes not always work like you

would want

y > x
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 println("x is $x")

## x is 0.0

 println("y is $y")

## y is 1.0e-20
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 println("x is $x")

## x is 0.0

 println("y is $y")

## y is 1.0e-20

When we added  to , it got rounded away10−20 1
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Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1
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Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

 println("100000.2 - 100000.1 is: $(100000.2 - 100000.1)")

## 100000.2 - 100000.1 is: 0.09999999999126885

if (100000.2 - 100000.1) == 0.1

     println("and it is equal to 0.1")

else

     println("and it is not equal to 0.1")

end

## and it is not equal to 0.1
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Error example 3

Why do we get this error?
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Error example 3

Why do we get this error?

Neither of the two numbers can be precisely represented by the machine!

So their difference won't necessarily be 0.1

There are tools for approximate equality

 isapprox(100000.2 - 100000.1, 0.1)

## true

100000.1 ≈ 8589935450993459 × 2−33 = 100000.0999999999767169356346130

100000.2 ≈ 8589936309986918 × 2−33 = 100000.1999999999534338712692261
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Rounding and truncation recap

This matters, particularly when you're trying to evaluate logical

expressions of equality
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Calculus on a machineCalculus on a machine

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let  and reframe this as an infinite limit

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let  and reframe this as an infinite limit

which we know a computer can't handle because of finite space to store 

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

= lim
t→∞

df(x)

dx

f(x + 1/t) − f(x)

1/t

t
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Computer differentiation

How do we perform derivatives on computers if we can't take the limit?
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Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

What does a finite difference approximation look like?
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Forward difference

The forward difference looks exactly like the formal definition without the

limit:

≈
df(x)

dx

f(x + h) − f(x)

h
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Forward difference

The forward difference looks exactly like the formal definition without the

limit:

Works the same for partial derivatives:

Let's see how it works in practice by calculating derivatives of  at 

≈
df(x)

dx

f(x + h) − f(x)

h

≈
∂g(x, y)

∂x

g(x + h, y) − g(x, y)

h

x2 x = 2
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Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function
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Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

 println("

         The deriviative with h=1e-8 is: $(deriv_x_squared(1e-8,2.))

         The deriviative with h=1e-12 is: $(deriv_x_squared(1e-12,2.))

         The deriviative with h=1e-30 is: $(deriv_x_squared(1e-30,2.))

         The deriviative with h=1e-1 is: $(deriv_x_squared(1e-1,2.))")

## 

##         The deriviative with h=1e-8 is: 3.999999975690116

##         The deriviative with h=1e-12 is: 4.000355602329364

##         The deriviative with h=1e-30 is: 0.0

##         The deriviative with h=1e-1 is: 4.100000000000001
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Error, it's there

None of the values we chose for  were perfect, but clearly some were better

than others

h
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None of the values we chose for  were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want  to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

h

h
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Error, it's there

None of the values we chose for  were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want  to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

If  is small then  is close to , we can run into rounding issues like

we saw for 

h

h

h f(x + h) f(x)

h = 10−30
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Error, it's there

We can select  in an optimal fashion: h h = max{|x|, 1}√ϵ
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Error, it's there

We can select  in an optimal fashion: 

There are proofs for why this is the case but generally testing out different 's

works fine

h h = max{|x|, 1}√ϵ

h
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?h
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f(x) x
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?

Perform a first-order taylor expansion of  around :

Recall  means the error in our approximation grows quadratically in ,


we only did a linear approximation

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?

Perform a first-order taylor expansion of  around :

Recall  means the error in our approximation grows quadratically in ,


we only did a linear approximation

How can we use this to understand the error in our finite difference

approximation?

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h
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How much error is in a finite difference?

Rearrange to obtain: f ′(x) = + O(h2)/h
f(x+h)−f(x)

h
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

Forward differences have linear errors

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

Forward differences have linear errors

If we halve , we halve the error in our approximation (ignoring

rounding/truncation issues)

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

h
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?
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Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

x

(x,x + h)

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

The secant curve has the average slope of  on 

x

(x,x + h)

f(x) [x,x + h]
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

The secant curve has the average slope of  on 

We want the derivative at , which is on the edge of , how about we

center ?

x

(x,x + h)

f(x) [x,x + h]

x [x,x + h]

x
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Central differences

We can approximate  in a slightly different way:f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

82 / 132

Central differences

We can approximate  in a slightly different way:

This leaves  in the middle of the interval over which we are averaging the

slope of 

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)
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Central differences

We can approximate  in a slightly different way:

This leaves  in the middle of the interval over which we are averaging the

slope of 

Is this an improvement on forward differences?

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that ) and then

divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that ) and then

divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h
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How much error is in a central finite difference?

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

84 / 132

How much error is in a central finite difference?

Error falls quadratically in , if we halve  we reduce error by 75%

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h
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How much error is in a central finite difference?

Error falls quadratically in , if we halve  we reduce error by 75%

Optimal selection of  for central differences is 

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

h h = max{|x|, 1}ϵ1/3
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Why use anything but central differences?

Why would we ever use forward differences instead of central differences?
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For each central difference:

We need to compute  and  for each 

But for a forward difference we only need to compute  once


and then  for each 
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Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute  and  for each 

But for a forward difference we only need to compute  once


and then  for each 

Forward differences saves on # of operations at the expense of accuracy

g(x1 − h,x2, . . . ) g(x1 + h,x2, . . . ) xi

g(x1,x2, . . . )

g(x1 + h,x2, . . . ) xi
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Higher order finite differences

We can use these techniques to approximate higher order derivatives
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

f ′′(x) = + O(h2)
f(x + h) − 2f(x) + f(x − h)

h2
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Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

## The deriviative is: 4.0

h
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Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

## The deriviative is: 4.0

Exact solution!

h
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Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because
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Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

Humans are suseptible to error in coding or calculating the derivative

mathematically
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Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc
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Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

The closed form derivatives of these operations is not hard, it turns out your

computer can do it and yield exact solutions
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Automatic differentiation

How?
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How?

There are methods that basically apply a giant chain rule to your whole
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and break down the derivative into the (easy) component parts that

another package knows how to handle
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Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

 ff(x) = x^2

 x = [2 3 4]
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Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

## g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

## ff'(x) at [2 3 4] is: [4 6 8]
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Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

## g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

## ff'(x) at [2 3 4] is: [4 6 8]

Exact solutions without handcoding

91 / 132

Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)
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Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

 x = [0 1 2]

## 1×3 Matrix{Int64}:

##  0  1  2

 println("fff'(x) at $(x) is: $(g.(fff,x))")

## fff'(x) at [0 1 2] is: [0.0 1.0806046117362795 -2.6145744834544478]
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Calculus operations

Integration, trickier than differentiation
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Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

, , ∫
D
f(x)dx f : Rn → R D ⊂ R

n
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How to think about integrals

Integrals are effectively infinite sums
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How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

where  is some subset of  and  is some evaluation point (e.g.

midpoint of )

limdxi→0 ∑
(a−b)/dxi
i=0 f(xi)dxi

dxi [a, b] xi

dxi
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Infinite limits strike again

Just like derivatives, we face an infinite limit as 

We avoid this issue in the same way as derivatives, we replace the infinite sum

with something we can handle

(a − b)/dxi → ∞
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Probably the most commonly used form in empirical econ
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Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

Can be effective for very high dimensional integrals

Very simple and intuitive

But, produces a random approximation
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Monte Carlo integration

Suppose we want to integrate 

How do we do it?

ξ = ∫ 1
0 f(x)dx
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Suppose we want to integrate 

How do we do it?

We can do so by drawing  uniformly distributed samples,  over

interval 

ξ = ∫ 1
0 f(x)dx

N x1, . . . ,xN
[0, 1]
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Monte Carlo integration

Suppose we want to integrate 

How do we do it?

We can do so by drawing  uniformly distributed samples,  over

interval 

Why?

ξ = ∫ 1
0 f(x)dx

N x1, . . . ,xN
[0, 1]
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

ξ E[f(x)]

f(x)
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

In general we have that 

where  is the volume over which we are integrating

ξ E[f(x)]

f(x)

ξ̂ = V ∑N

i=1 f(xi)
1
N

V
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

In general we have that 

where  is the volume over which we are integrating

LLN gives us that the 

ξ E[f(x)]

f(x)

ξ̂ = V ∑N

i=1 f(xi)
1
N

V

plimN→∞ξ̂ = ξ
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Monte Carlo integration

The variance of  isξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N
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Monte Carlo integration

The variance of  is

So average error is , this gives us its rate of convergence: 

Note:

1. The rate of convergence is independent of the dimension of x

2. Quasi-Monte Carlo methods can get you 

ξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

σf(X)
V

√N
O(√N)

O(1/N)
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Monte Carlo integration

Suppose we want to integrate  from 0 to 10, we know this is 

# Package for drawing random numbers

using Distributions

# Define a function to do the integration for an arbitrary function

function integrate_function(f, lower, upper, num_draws)

# Draw from a uniform distribution

   xs = rand(Uniform(lower, upper), num_draws)

# Expectation = mean(x)*volume

   expectation = mean(f(xs))*(upper - lower)

end

x2

103/3 = 333.333
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Monte Carlo integration

Suppose we want to integrate  from 0 to 10, we know this is 

# Integrate

 f(x) = x.^2;

 integrate_function(f, 0, 10, 1000)

## 322.499755893713

Pretty close!

x2

103/3 = 333.333
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Quadrature rules

We can also approximate integrals using a technique called quadrature
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Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

We will focus on two classes of quadrature for now:

1. Newton-Cotes (the kind you've seen before)

2. Gaussian (probably new)
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

f(x) [a, b]
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

f(x) [a, b]
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

Key things to define up front:

 for  where 

s are the quadrature nodes of the approximation scheme and divide the

interval into  equally spaced subintervals of length 

f(x) [a, b]

xi = a + (i − 1)/h i = 1, 2, . . . ,n h = b−a
n−1

xi

n − 1 h
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf( (xi+1 + xi))1

2
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

Approximates  by a step function

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf( (xi+1 + xi))1

2

f
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

We can aggregate this up to: 


where  and  otherwise

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/2 wi = h
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How accurate is this rule?

Trapezoid rule is  aka first-order exact: it can integrate any linear

function exactly

O(h2)
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How accurate is this rule?

Trapezoid rule is  aka first-order exact: it can integrate any linear

function exactly

Seems sensible, a piecewise linear function can approximate any linear

function exactly since it has more flexibility

O(h2)
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Simpsons rule

Increase complexity by 1 degree:
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Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))
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Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3
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Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

We can aggregate this up to: 


where , otherwise and  if  is even and  if 

is odd

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/3 wi = 4h/3 i wi = 2h/3 i
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How accurate is this rule?

How accurate do you think Simpson's rule is?
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How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is  aka third-order exact: it can integrate any cubic

function exactly

O(h4)
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How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is  aka third-order exact: it can integrate any cubic

function exactly

Why do we gain 2 orders of accuracy when increasing one order of

approximation complexity?

O(h4)
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic  and the quadratic

approximation in  is another cubic function

f(x)

[x2i−1,x2i+1]
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic  and the quadratic

approximation in  is another cubic function

3. This cubic error is odd with respect to the midpoint: integrating over the

first subinterval cancels integrating over the second subinterval, the

integration error is zero

f(x)

[x2i−1,x2i+1]
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Gaussian quadrature rules

How did we pick the  quadrature nodes for Newton-Cotes rules?xi
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How did we pick the  quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

xi
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Gaussian quadrature rules

How did we pick the  quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

Gaussian quadrature selects these nodes more efficiently and relies on weight

functions 

xi

w(x)
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights  and nodes 

 are chosen to satisfy  moment-matching conditions:

n w1, . . . ,wn

x1, . . . ,xn 2n
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights  and nodes 

 are chosen to satisfy  moment-matching conditions:

, for 

where  is the interval over which we are integrating and  is a given

weight function

n w1, . . . ,wn

x1, . . . ,xn 2n

∫
I
xkw(x)dx = ∑n

i=1 wix
k
i k = 0, . . . , 2n − 1

I w(x)
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

Gaussian rules are  order exact: we can exactly compute the integral of

any polynomial order 

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

2n − 1

2n − 1
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

p(x)

p̄(x)
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

Given an approximation with  mass points,  and  have identical moments

up to order ,
and as  we have a continuum of mass points and

recover the continuous pdf

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

Given an approximation with  mass points,  and  have identical moments

up to order ,
and as  we have a continuum of mass points and

recover the continuous pdf

But what do we pick for the weighting function ?

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

w(x)
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Gauss-Legendre

We can start out with a simple , this gives us Gauss-Legendre

quadrature

This can approximate the integral of any function arbitrarily well by increasing

w(x) = 1

n
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Gauss-Laguerre

Sometimes we want to compute exponentially discounted sums like: 

The weighting function  is Gauss-Laguerre quadrature

∫
I
f(x)e−xdx

e−x
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Gauss-Hermite

Sometimes we want to take expectations of normally distributed variables: 

There exist packages or look-up tables to get the prescribed weights and

nodes for each of these schemes

∫
I
f(x)e−x2

dx
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Linear Algebra

Lots of computational problems break down into linear systems

Many non-linear models are linearized

How do we actually solve these systems inside the machine?
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

A Ax = b x
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so  is easy to

solve for

A Ax = b x

x1
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so  is easy to

solve for

The equation in row 2 contains  and the already solved for 


so we can easily solve for  and then continue until we solve for all s

A Ax = b x

x1

x2 x1

x2 x
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Forward substitution

Forward substitution gives us solutions

, for all xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i
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Forward substitution

Forward substitution gives us solutions

, for all xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i
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Forward substitution

Forward substitution gives us solutions

, for all 

L-U factorization is an algorithm that decomposes  into the product of lower

and upper triangular matrices

xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i

A
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L-U Factorization has two steps

1. Factor  into lower  and upper  triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

A L U
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L-U Factorization has two steps

1. Factor  into lower  and upper  triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

2. Solve for 

1. 

2. Solve for  using forward substitution

3. Using the solved , we know  and can solve with backward

substitution

A L U

x

(LU)x = b

y : Ly = b

y Ux = y
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Why bother with this scheme?

Why not just use another method like Cramer's rule?
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Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than 

Cramer's rule is 

For a 10x10 system this can really matter

O(n3)

O(n! × n)
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Example: LU vs Cramer

Julia description of the division operator \ :
If A is upper or lower triangular (or

diagonal), no factorization of A is required and the system is solved with either

forward or backward substitution. For non-triangular square matrices, an LU

factorization is used.

So we can do LU factorization approaches to solutions by just doing x = A\b ,


but we can write it ourselves as well
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Example: LU vs Cramer

Cramer's Rule can be written as a simple loop:

function solve_cramer(A, b)

     dets = Vector(undef, length(b))

for index in eachindex(b)

         B = copy(A)

         B[:, index] = b

         dets[index] = det(B)

end

return dets ./ det(A)

end

 n = 100

 A = rand(n, n)

 b = rand(n)
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Example: LU vs Cramer

Let's see the full results of the competition for a 10x10:

## Cramer's rule solved in 0.01895975 seconds and used 16187200 kilobytes of memory.

## LU solved in 0.000146834 seconds and used 81840 kilobytes of memory.

## LU is 129.0 times faster and uses 198.0 times less memory.

using BenchmarkTools

 cramer_time = @elapsed solve_cramer(A, b);

 cramer_allocation = @allocated solve_cramer(A, b);

 lu_time = @elapsed A\b;

 lu_allocation = @allocated A\b;

 println("Cramer's rule solved in $cramer_time seconds and used $cramer_allocation kilobytes of m

 LU solved in $(lu_time) seconds and used $(lu_allocation) kilobytes of memory.

 LU is $(round(cramer_time/lu_time, digits = 0)) times faster and uses $(round(cramer_allocation/
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Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another
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Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

to turn a matrix  into (IA) (LU)
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Numerical error blow up

Small errors can have big effects, for example:

where  is big

[
−M−1 1

1 1
] [

x1

x2
] = [

1

2
]

M
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Numerical error blow up

Small errors can have big effects, for example:

where  is big

Lets use L-U Factorization to solve it:

[
−M−1 1

1 1
] [

x1

x2
] = [

1

2
]

M

[
−M−1 1

1 1
] = [

1 0

0 1
] [

−M−1 1

1 1
]
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Numerical error blow up

Subtract  times the first row from the second to get the L-U factorization−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]
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Numerical error blow up

Subtract  times the first row from the second to get the L-U factorization

We can get closed-form solutions by applying forward substitution:

−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]

[
x1

x2
] = [

M/(M + 1)

(M + 2)/(M + 1)
]
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

M
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return  is equal to

precisely , this isn't terribly wrong

M

M = 10000000000000000000 x2

1
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return  is equal to

precisely , this isn't terribly wrong

When we then perform the second step of backwards substitution, we solve

for , this is very wrong

Large errors like this often occur because diagonal elements are very small

M

M = 10000000000000000000 x2

1

x1 = −M(1 − x2) = 0
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Julia example

function solve_lu(M)

     b = [1, 2]

     U = [-M^-1 1; 0 M+1]

     L = [1. 0; -M 1.]

     y = L\b

# Round element-wise to 3 digits

     x = round.(U\y, digits = 5)

end;

 true_solution(M) = round.([M/(M+1), (M+2)/(M+1)], digits = 5);
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Julia example

## True solution for M=10 is approximately [0.90909, 1.09091], computed solution is [0.90909, 1.09091]

## True solution for M=1e10 is approximately [1.0, 1.0], computed solution is [1.0, 1.0]

## True solution for M=1e15 is approximately [1.0, 1.0], computed solution is [1.11022, 1.0]

## True solution for M=1e20 is approximately [1.0, 1.0], computed solution is [-0.0, 1.0]

## Julia's division operator is actually pretty smart though, true solution for M=1e20 is A\b = [1.0, 1
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Ill-conditioning

A matrix  is said to be ill-conditioned if a small perturbation in  yields a large

change in 

A b

x
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Ill-conditioning

A matrix  is said to be ill-conditioned if a small perturbation in  yields a large

change in 

One way to measure ill-conditioning in a matrix is the elasticity of the solution

with respect to ,

which yields the percent change in  given


a percentage point change in the magnitude of 

A b

x

b

sup
||δb||>0

||δx||/||x||

||δb||/||b||

x

b
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Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

132 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

κ = ||A|| ⋅ ||A−1||
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Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

 gives the least upper bound of the elasticity: it is always larger than one and

a rule of thumb is that for every order of magnitude, a significant digit is lost in

the computation of 

 cond([1. 1.; 1. 1.00000001])

## 4.0000000623500454e8

κ = ||A|| ⋅ ||A−1||

κ

x
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Lecture 01

Intro to computing

Ivan Rudik
AEM 7130

https://git-scm.com/downloads
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http://code.visualstudio.com/
https://github.com/
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https://github.com/
https://julialang.org/learning/
https://quantecon.org/


Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account
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Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

For this lecture you will need the following Julia packages

import Pkg; Pkg.add("ForwardDiff"); Pkg.add("Distributions"); Pkg.add("BenchmarkTools")

using ForwardDiff, Distributions, BenchmarkTools
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What this class is about

1. Learning how to compute dynamic and spatial models

2. Other useful computational techniques and details
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What you need to succeed in this course

1. ECON 6090 and ECON 6170

2. ECON 6130 or AEM 7040

3. Previous coding experience or willingness to spend some time learning as

you go
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Course materials

1. Everything we use in the course will be freely available and posted to the

course GitHub (details next week on how to use Git)

2. Books (free from the library or authors' websites):

1. Judd (1998)

2. Miranda and Fackler (2002)

3. Nocedal and Wright (2006)
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Things to do before next class

Spend some time reading up on Julia if you don't use it already:

Learning Julia

QuantEcon Julia lectures
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What we will cover in the class

1. Basic computing, arithmetic, calculus, and linear algebra on a computer

2. Shell and Julia coding, version control, reproducibility, workflow

3. Optimization

4. Solving dynamic models

5. Solving spatial models
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What you have to do

Come to class

4 computational problem sets

Final research project proposal

Final research project

One presentation of a paper from the literature
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Important days / times

Office hours: Tuesday 3:00-4:00

Final project proposal: March 17

Final project paper: May 19
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Grading

Problem sets: 40% (10% each)

Final project proposal: 15%

Final project paper/presentation: 25%

Class participation: 10%

Computational paper presentation: 10%
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Problem sets (10% each)

You must use Julia

Code must be written in .jl  scripts

You must use Julia project management tools, e.g. Pkg.generate(),

Pkg.activate(), Pkg.instantiate()

Everything must be nested in a wrapper function

It must work just by running the wrapper function

You can work in groups of 2

Problem sets will be where you implement the techniques we learn in class on

your own,
but we will be doing our fair share of coding in class
11 / 132



Problem sets (10% each)

Why am I making you do problem sets this way?

If you want to publish in an AEA journal (amongst others now..) you need to

have good practices, other journals are following suit

Julia is very good for reproducibility
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Computational paper presentations (10%)

Everyone will present a paper or package starting in a few weeks

The paper can apply methods we've learned about (or will learn about),
or can

be a new method that we have not covered

The package must be something related to the methods we are learning

You must consult with me at least 1 week prior to your scheduled

presentation
date to ensure the paper/package is appropriate for a

presentation

The syllabus has some pre-approved papers you can choose from under the

Applications header 13 / 132



Final project (25% paper, 15% proposal)

The final project will be the beginning of a computationally-driven research

project or an extension of an existing paper with new methods

Proposals will be due about half way through the class
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Final project (25% paper, 15% proposal)

The only requirement is that the project cannot be computationally trivial


(i.e. no applied micro papers)

It can be numerical, empirical, whatever

Everyone will present their final projects in the last week of class

More details on the syllabus and to come later
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Why computational methods?Why computational methods?



Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable
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Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS: 

Not all economic models have closed-form solutions,
and others can't have

closed-form solutions with losing important economic content

This is generally true for dynamic and spatial models

β̂ = (X ′X)−1X ′Y

17 / 132



What can we compute?

We can use computation + theory to answer quantitative questions
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What can we compute?

We can use computation + theory to answer quantitative questions

Theory can't give us welfare in dollar terms

Theory can't tell us the value of economic primitives
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What can we compute?

Theory often relies on strong assumptions like:
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What can we compute?

Theory often relies on strong assumptions like:

log utility (lose income vs substitution)

zero frictions

strictly linear transitions (natural phenomena don't follow this)

static decisionmaking

It can be unclear what the cost of these assumptions are
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Example 1

Suppose we have a constant elasticity demand function: 

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

q(p) = p−0.2

q∗ = 2
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Just invert the demand function:

q(p) = p−0.2

q∗ = 2

2 = p−0.2
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Example 1

Suppose we have a constant elasticity demand function: 

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

Just invert the demand function:

Your calculator can do the rest

q(p) = p−0.2

q∗ = 2

2 = p−0.2

p∗ = 2−5
✓
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

First, does a solution exist?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2
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Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is 

What price clears the market in equilibrium?

First, does a solution exist?

Yes, why?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132



Example 2

 is monotonically decreasingq(p)
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Example 2

 is monotonically decreasing

 is greater than 2 at  and less than 2 at 

q(p)

q(p) p = 0.1 p = 0.2
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Example 2

 is monotonically decreasing

 is greater than 2 at  and less than 2 at 

 by intermediate value theorem  somewhere in 

q(p)

q(p) p = 0.1 p = 0.2

→ q(p) = 2 (0.1, 0.2)
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Example 2

# We know solution is between .1 and .2

 x = collect(range(.1, stop = .2, length = 10)) # generate evenly spaced grid

 q_d = ones(size(x)).*2 # generate equal length vector of qd=2

# Price function

 price(p) = p.^(-0.2)/2 .+ p.^(-0.5)/2

# Get corresponding quantity values at these prices

 y = price(x)

Now plot  and qd q(p)

23 / 132



Example 2
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Example 2

Notice: if we let  then:t = p−0.1

q(t) = 0.5t2 + 0.5t5
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Example 2
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Can we solve for  now?
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q(t) = 0.5t2 + 0.5t5
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Example 2

Notice: if we let  then:

Can we solve for  now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t
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Example 2

Notice: if we let  then:

Can we solve for  now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

So how do we solve the problem?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132



Newton's method

Iteratively do the following:

1. Guess solution to: 

2. Approximate the function with local second order polynomial around guess

3. Solve this easier equation

4. Solution is the new guess

5. Stop if previous guess and new guess are sufficiently close

We will learn more about this and why it works in a later class

q(p) − q∗ = 0 → q(p) − 2 = 0

26 / 132



Newton code

# Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient
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Newton code

# Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

function find_root_newton(demand, demand_grad)

     p = .3 # initial guess

     deltap = 1e10 # initialize stepsize

while abs(deltap) > 1e-4

         deltap = demand(p)/demand_grad(p)

         p += deltap

         println("Intermediate guess of p = $(round(p,digits=3)).")

end

     println("The solution is p = $(round(p,digits=3)).")

return p

end;
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Newton code

# Solve for price

 find_root_newton(demand, demand_grad)

## Intermediate guess of p = 0.068.

## Intermediate guess of p = 0.115.

## Intermediate guess of p = 0.147.

## Intermediate guess of p = 0.154.

## Intermediate guess of p = 0.154.

## Intermediate guess of p = 0.154.

## The solution is p = 0.154.

## 0.15419764093200633
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Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting


Period 2: Per-acre yield realizes, equilibrium crop price clears the market
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2

1
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Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting


Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is: 

After planting, yield  realizes, producing a total quantity  of the crop

a(E[p]) = + E[p]1
2

1
2
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Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting


Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is: 

After planting, yield  realizes, producing a total quantity  of the crop

Demand is given by 

Yield is given by 

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

p(q) = 3 − 2q

ŷ ∼ N (1, 0.1)
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How much acreage gets planted?

p(ŷ) = 3 − 2aŷ
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How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2
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How much acreage gets planted?

Rearrange and solve:

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2

a∗ = 1
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How much acreage gets planted?

Rearrange and solve:

Now suppose the government implements a price floor on the crop of  so

we have that 

How much acreage does the farmer plant?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ ])1
2

1
2

a∗ = 1

p > 1

p(ŷ) = max(1, 3 − 2aŷ)

30 / 132



How much acreage gets planted?

This is analytically intractable
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How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

E[max(1, 3 − 2aŷ)] ≠ max(1, E[3 − 2aŷ ])
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How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

 we need to solve this numerically

E[max(1, 3 − 2aŷ)] ≠ max(1, E[3 − 2aŷ ])

→
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Function iteration

We can solve this using another technique called function iteration

# Function iteration method to find a root

function find_root_fi(mn, variance)

     y = randn(1000)*sqrt(variance) .+ mn # draws of the random variable

     a = 1. # initial guess

     differ = 100. # initialize error

     exp_price = 1. # initialize expected price

while differ > 1e-4

         a_old = a                      # save old acreage

         p = max.(1, 3 .- 2 .*a.*y)     # compute price at all distribution points

         exp_price = mean(p)            # compute expected price

         a = 1/2 + 1/2*exp_price        # get new acreage planted given new price

         differ= abs(a - a_old)         # change in acreage planted

         println("Intermediate acreage guess: $(round(a,digits=3))")

end

return a, exp_price

end
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Function iteration

## The optimal number of acres to plant is 1.094.

## The expected price is 1.188.

 acreage, expected_price = find_root_fi(1, 0.1);

 println("The optimal number of acres to plant is $(round(acreage, digits = 3)).\nThe expected pr
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Quantifying speed and accuracyQuantifying speed and accuracy



Big O notation

How do we quantify speed and accuracy of computational algorithms?
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Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows
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Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

You've seen this before in the expression of Taylor series' errors
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Big O Notation

Written as: O(F(x))

Here is how to think about it:
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Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

Time to find a particular (e.g. maximum) value in an unsorted array

 For each element, check whether it is the value we want→ 36 / 132



Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x
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Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?
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Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

Time to solve a standard dynamic program, ex traveling salesman

 For each city , solve a Bellman as a function of all other cities→ i = 1, . . . , n
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

O(n!)
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

O(n!)
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Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

Solving traveling salesman by brute force

 Obtain travel time for all possible combinations of intermediate cities

O(n!)

→
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Big O Notation: Accuracy example

This is how you have probably seen Big O used before:
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Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

Taylor series for  around zero:

What does  mean here?

sin(x)

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

O(x
7)
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Big O Notation: Accuracy example

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)
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Big O Notation: Accuracy example

As we move away from  to some , the upper bound of the growth rate in the

error of our approximation to  is 

We are approximating about zero so  is small and  is decreasing in 

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

0 x

sin(x) x
7

x x
n

n
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Big O Notation: Accuracy example

As we move away from  to some , the upper bound of the growth rate in the

error of our approximation to  is 

We are approximating about zero so  is small and  is decreasing in 

For small , higher order polynomials mean the error will grow slower and we

have a better local approximation

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

0 x

sin(x) x
7

x x
n

n

x

40 / 132



Taylor expansions

# fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)
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Taylor expansions

# fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

 println("Error of fifth-order approximation at x = .001 is: $(sin_error_5(.001))

 Error of third-order approximation at x = .001 is: $(sin_error_3(.001))

 Error of fifth-order approximation at x = .01 is: $(sin_error_5(.01))

 Error of third-order approximation at x = .01 is: $(sin_error_3(.01))

 Error of fifth-order approximation at x = .1 is: $(sin_error_5(.1))

 Error of third-order approximation at x = .1 is: $(sin_error_3(.1))")

## Error of fifth-order approximation at x = .001 is: 0.0

## Error of third-order approximation at x = .001 is: 8.239936510889834e-18

## Error of fifth-order approximation at x = .01 is: -1.734723475976807e-18

## Error of third-order approximation at x = .01 is: 8.333316675601665e-13

## Error of fifth-order approximation at x = .1 is: -1.983851971587569e-11

## Error of third-order approximation at x = .1 is: 8.331349481138783e-8
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Big O Notation: Speed examples

Here are a few examples for fundamental computational methods
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Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed
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O(1): algorithm executes in constant time
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Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

accessing a specific location in an array

43 / 132



Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:
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Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

inserting an element into an arbitrary location in a 1 dimensional array

Bigger array  need to shift around more elements in memory to

accommodate the new element

→
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Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

O(x2)

O(x2) :

x
n
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Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

O(x2)

O(x2) :

x
n
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Big O Notation: 

 algorithm executes in quadratic time

More generally called polynomial time for 

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

matrix inversion, most algorithms (e.g. LU decomposition) solve in polynomial

time

O(x2)

O(x2) :

x
n
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Computer arithmeticComputer arithmetic



Computer arithmetic - storage

Question: which numbers can be represented by a computer?
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Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

Base 10: each digit can take on 0-9

47 / 132



Computer arithmetic - storage

Question: which numbers can be represented by a computer?
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Answer: a subset of the rational numbers
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Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

Numbers are stored as: 

 is the mantissa/significand,
  is the base,
  is the exponent

All three are integers

±mb
±n

m b n
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Computer arithmetic - storage

The significand typically gives the significant digits

The exponent scales the number up or down in magnitude

±mb
±n
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Computer arithmetic - storage

The size of numbers a computer can represent is limited


by how much space is typically allocated for a real number
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Computer arithmetic - storage

The size of numbers a computer can represent is limited


by how much space is typically allocated for a real number

Space allocations are usually 64 bits: 53 for  and 11 for 

 println(typeof(5.0))

## Float64

 println(typeof(5))

## Int64

m n
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Computer arithmetic - storage

Int64  means it is a integer with 64 bits of storage

Float64  means it is a floating point number with 64 bits of storage

Floating point just means  can move the decimal point around in the

significand

Int64  and Float64  are different, this will be important later

b
±n
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The limits of computers

Limitations on storage suggest three facts
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1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer
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The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

Machine epsilon is the smallest  such that
a machine can always distinguishϵ

N + ϵ > N > N − ϵ
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The limits of computers

 println("Machine epsilon ϵ is $(eps(Float64))")

## Machine epsilon ϵ is 2.220446049250313e-16

 println("Is 1 + ϵ/2 > 1? $(1 + eps(Float64)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(1 - eps(Float64)/2 < 1)")

## Is 1 - ϵ/2 < 1? true
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The limits of computers

 println("The smallest representable number larger than 1.0 is $(nextfloat(1.0))")

## The smallest representable number larger than 1.0 is 1.0000000000000002

 println("The largest representable number smaller than 1.0 is $(prevfloat(1.0))")

## The largest representable number smaller than 1.0 is 0.9999999999999999
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

## 32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

## Is 1 - ϵ/2 < 1? true
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The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

## 32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

## Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

## Is 1 - ϵ/2 < 1? true

Theres a tradeoff between precision and storage requirements
55 / 132



The limits of computers

2. There is a smallest representable number

 println("64 bit smallest float is $(floatmin(Float64))")

## 64 bit smallest float is 2.2250738585072014e-308

 println("32 bit smallest float is $(floatmin(Float32))")

## 32 bit smallest float is 1.1754944e-38

 println("16 bit smallest float is $(floatmin(Float16))")

## 16 bit smallest float is 6.104e-5
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The limits of computers

3. There is a largest representable number

 println("64 bit largest float is $(floatmax(Float64))")

## 64 bit largest float is 1.7976931348623157e308

 println("32 bit largest float is $(floatmax(Float32))")

## 32 bit largest float is 3.4028235e38

 println("16 bit largest float is $(floatmax(Float16))")

## 16 bit largest float is 6.55e4
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The limits of computers

 println("The largest 64 bit integer is $(typemax(Int64))")

## The largest 64 bit integer is 9223372036854775807

 println("Add one to it and we get: $(typemax(Int64)+1)")

## Add one to it and we get: -9223372036854775808

 println("It loops us around the number line: $(typemin(Int64))")

## It loops us around the number line: -9223372036854775808
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The limits of computers

The scale of your problem matters
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The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time
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The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

Scale numbers appropriately (e.g. millions of dollars, not millionths of cents)
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Computer arithmetic: Error

We can only represent a finite number of numbers
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Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations
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Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

Error comes in two major and related forms:

1. Rounding

2. Truncation
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Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

## Half of π is: 1.5707963267948966
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Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

## Half of π is: 1.5707963267948966

The computer gave us a rational number, but  should be irrationalπ/2
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Truncation

Lots of important numbers are defined by infinite sums
ex = ∑
∞

n=0

x
n

n!
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Truncation

Lots of important numbers are defined by infinite sums


It turns out that computers can't add up infinitely many terms because there is

finite space

 we need to truncate the sum

e
x = ∑

∞

n=0

x
n

n!

→
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Why does this matter?

Errors are small, who cares?
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Why does this matter?

Errors are small, who cares?

You should!

Because errors can propagate and grow as you keep applying an algorithm

(e.g. function iteration)
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Error example 1

Consider a simple quadratic:  with solution x
2 − 26x + 1 = 0 x = 13 − √168
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Error example 1

Consider a simple quadratic:  with solution 

 println("64 bit: 13 - √168 = $(13-sqrt(168))")

## 64 bit: 13 - √168 = 0.03851860318427924

 println("32 bit: 13 - √168 = $(convert(Float32,13-sqrt(168)))")

## 32 bit: 13 - √168 = 0.038518604

 println("16 bit: 13 - √168 = $(convert(Float16,13-sqrt(168)))")

## 16 bit: 13 - √168 = 0.0385

x
2 − 26x + 1 = 0 x = 13 − √168
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Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:


x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)
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Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:




Very clearly we should get , but do we? Let's find out

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

x = y

65 / 132



Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

if x_equals_y

     println("X equals Y!")

else

     println("X does not equal Y!")

     println("The difference is: $(x-y).")

end

## X does not equal Y!

## The difference is: -1.0e-20.
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Error example 2

The two numbers were not equal, we got 

Why?

y > x
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Error example 2

The two numbers were not equal, we got 

Why?

Adding numbers of greatly different magnitudesdoes not always work like you

would want

y > x
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 println("x is $x")

## x is 0.0

 println("y is $y")

## y is 1.0e-20
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Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1)   # initialize y

 println("x is $x")

## x is 0.0

 println("y is $y")

## y is 1.0e-20

When we added  to , it got rounded away10
−20

1
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Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1
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Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

 println("100000.2 - 100000.1 is: $(100000.2 - 100000.1)")

## 100000.2 - 100000.1 is: 0.09999999999126885

if (100000.2 - 100000.1) == 0.1

     println("and it is equal to 0.1")

else

     println("and it is not equal to 0.1")

end

## and it is not equal to 0.1
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Error example 3

Why do we get this error?
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Error example 3

Why do we get this error?

Neither of the two numbers can be precisely represented by the machine!

So their difference won't necessarily be 0.1

There are tools for approximate equality

 isapprox(100000.2 - 100000.1, 0.1)

## true

100000.1 ≈ 8589935450993459 × 2
−33

= 100000.0999999999767169356346130

100000.2 ≈ 8589936309986918 × 2
−33

= 100000.1999999999534338712692261
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Rounding and truncation recap

This matters, particularly when you're trying to evaluate logical

expressions of equality
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Calculus on a machineCalculus on a machine



Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let  and reframe this as an infinite limit

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h
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Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let  and reframe this as an infinite limit

which we know a computer can't handle because of finite space to store 

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

= lim
t→∞

df(x)

dx

f(x + 1/t) − f(x)

1/t

t
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Computer differentiation

How do we perform derivatives on computers if we can't take the limit?
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Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods
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Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

What does a finite difference approximation look like?
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Forward difference

The forward difference looks exactly like the formal definition without the

limit:

≈
df(x)

dx

f(x + h) − f(x)

h
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Forward difference

The forward difference looks exactly like the formal definition without the

limit:

Works the same for partial derivatives:

Let's see how it works in practice by calculating derivatives of  at 

≈
df(x)

dx

f(x + h) − f(x)

h

≈
∂g(x, y)

∂x

g(x + h, y) − g(x, y)

h

x2 x = 2
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Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function
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Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

 println("

         The deriviative with h=1e-8 is: $(deriv_x_squared(1e-8,2.))

         The deriviative with h=1e-12 is: $(deriv_x_squared(1e-12,2.))

         The deriviative with h=1e-30 is: $(deriv_x_squared(1e-30,2.))

         The deriviative with h=1e-1 is: $(deriv_x_squared(1e-1,2.))")

## 

##         The deriviative with h=1e-8 is: 3.999999975690116

##         The deriviative with h=1e-12 is: 4.000355602329364

##         The deriviative with h=1e-30 is: 0.0

##         The deriviative with h=1e-1 is: 4.100000000000001
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Error, it's there

None of the values we chose for  were perfect, but clearly some were better

than others

h
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We face two opposing forces:

h

77 / 132



Error, it's there

None of the values we chose for  were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want  to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

h

h
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Error, it's there

None of the values we chose for  were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want  to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

If  is small then  is close to , we can run into rounding issues like

we saw for 

h

h

h f(x + h) f(x)

h = 10−30
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Error, it's there

We can select  in an optimal fashion: h h = max{|x|, 1}√ϵ
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Error, it's there

We can select  in an optimal fashion: 

There are proofs for why this is the case but generally testing out different 's

works fine

h h = max{|x|, 1}√ϵ

h
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?h
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?

Perform a first-order taylor expansion of  around :

h

f(x) x
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?

Perform a first-order taylor expansion of  around :

Recall  means the error in our approximation grows quadratically in ,


we only did a linear approximation

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h
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How much error is in a finite difference?

Can we measure the error growth rate in  (i.e. Big O notation)?

Perform a first-order taylor expansion of  around :

Recall  means the error in our approximation grows quadratically in ,


we only did a linear approximation

How can we use this to understand the error in our finite difference

approximation?

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h
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How much error is in a finite difference?

Rearrange to obtain: f ′(x) = + O(h2)/h
f(x+h)−f(x)

h
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

Forward differences have linear errors

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)
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How much error is in a finite difference?

Rearrange to obtain: 

 because 

Forward differences have linear errors

If we halve , we halve the error in our approximation (ignoring

rounding/truncation issues)

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

h
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

x

(x, x + h)
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

The secant curve has the average slope of  on 

x

(x, x + h)

f(x) [x, x + h]
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Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at 


by a secant curve passing through 

The secant curve has the average slope of  on 

We want the derivative at , which is on the edge of , how about we

center ?

x

(x, x + h)

f(x) [x, x + h]

x [x, x + h]

x
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Central differences

We can approximate  in a slightly different way:f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h
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Central differences

We can approximate  in a slightly different way:

This leaves  in the middle of the interval over which we are averaging the

slope of 

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)
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Central differences

We can approximate  in a slightly different way:

This leaves  in the middle of the interval over which we are averaging the

slope of 

Is this an improvement on forward differences?

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that ) and then

divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h
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How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that ) and then

divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

83 / 132



How much error is in a central finite difference?

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h
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How much error is in a central finite difference?

Error falls quadratically in , if we halve  we reduce error by 75%

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h
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How much error is in a central finite difference?

Error falls quadratically in , if we halve  we reduce error by 75%

Optimal selection of  for central differences is 

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

h h = max{|x|, 1}ϵ1/3
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Why use anything but central differences?

Why would we ever use forward differences instead of central differences?
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Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute  and  for each 

But for a forward difference we only need to compute  once


and then  for each 

g(x1 − h, x2, . . . ) g(x1 + h, x2, . . . ) xi

g(x1, x2, . . . )

g(x1 + h, x2, . . . ) xi

85 / 132



Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute  and  for each 

But for a forward difference we only need to compute  once


and then  for each 

Forward differences saves on # of operations at the expense of accuracy

g(x1 − h, x2, . . . ) g(x1 + h, x2, . . . ) xi

g(x1, x2, . . . )

g(x1 + h, x2, . . . ) xi
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Higher order finite differences

We can use these techniques to approximate higher order derivatives
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2
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Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by  to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

f ′′(x) = + O(h2)
f(x + h) − 2f(x) + f(x − h)

h2
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Differentiation without error?

Finite differences put us in between two opposing forces on the size of h

87 / 132



Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

h

87 / 132



Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

h

87 / 132



Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

## The deriviative is: 4.0

h
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Differentiation without error?

Finite differences put us in between two opposing forces on the size of 

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

## The deriviative is: 4.0

Exact solution!

h
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Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

88 / 132



Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth
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Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

Humans are suseptible to error in coding or calculating the derivative

mathematically
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Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc
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Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

The closed form derivatives of these operations is not hard, it turns out your

computer can do it and yield exact solutions
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Automatic differentiation

How?
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Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle
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Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

 ff(x) = x^2

 x = [2 3 4]
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Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

## g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

## ff'(x) at [2 3 4] is: [4 6 8]

91 / 132



Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

## g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

## ff'(x) at [2 3 4] is: [4 6 8]

Exact solutions without handcoding
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Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)
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Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

 x = [0 1 2]

## 1×3 Matrix{Int64}:

##  0  1  2

 println("fff'(x) at $(x) is: $(g.(fff,x))")

## fff'(x) at [0 1 2] is: [0.0 1.0806046117362795 -2.6145744834544478]
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Calculus operations

Integration, trickier than differentiation
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Integration, trickier than differentiation

We integrate to do a lot of stuff in economics
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Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

, , ∫
D
f(x)dx f : Rn → R D ⊂ R

n
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How to think about integrals

Integrals are effectively infinite sums
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How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:
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How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

where  is some subset of  and  is some evaluation point (e.g.

midpoint of )

limdxi→0 ∑
(a−b)/dxi
i=0 f(xi)dxi

dxi [a, b] xi

dxi
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Infinite limits strike again

Just like derivatives, we face an infinite limit as 

We avoid this issue in the same way as derivatives, we replace the infinite sum

with something we can handle

(a − b)/dxi → ∞
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Monte Carlo integration

Probably the most commonly used form in empirical econ
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Monte Carlo integration
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Approximate an integral by relying on LLN and "randomly" sampling the

integration domain
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Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

Can be effective for very high dimensional integrals

Very simple and intuitive

But, produces a random approximation
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Monte Carlo integration

Suppose we want to integrate 

How do we do it?

ξ = ∫ 1

0
f(x)dx
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Monte Carlo integration

Suppose we want to integrate 

How do we do it?

We can do so by drawing  uniformly distributed samples,  over

interval 

ξ = ∫ 1

0
f(x)dx

N x1, . . . ,xN

[0, 1]
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Monte Carlo integration

Suppose we want to integrate 

How do we do it?

We can do so by drawing  uniformly distributed samples,  over

interval 

Why?

ξ = ∫ 1

0
f(x)dx

N x1, . . . ,xN

[0, 1]
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

ξ E[f(x)]

f(x)
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

In general we have that 

where  is the volume over which we are integrating

ξ E[f(x)]

f(x)

ξ̂ = V ∑
N

i=1 f(xi)
1
N

V
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Monte Carlo integration

 is equivalent to  with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of 

In general we have that 

where  is the volume over which we are integrating

LLN gives us that the 

ξ E[f(x)]

f(x)

ξ̂ = V ∑
N

i=1 f(xi)
1
N

V

plimN→∞ξ̂ = ξ
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Monte Carlo integration

The variance of  isξ̂

σ2

ξ̂
= var(

N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N
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Monte Carlo integration

The variance of  is

So average error is , this gives us its rate of convergence: 

Note:

1. The rate of convergence is independent of the dimension of x

2. Quasi-Monte Carlo methods can get you 

ξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

σf(X)
V

√N
O(√N)

O(1/N)
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Monte Carlo integration

Suppose we want to integrate  from 0 to 10, we know this is 

# Package for drawing random numbers

using Distributions

# Define a function to do the integration for an arbitrary function

function integrate_function(f, lower, upper, num_draws)

# Draw from a uniform distribution

   xs = rand(Uniform(lower, upper), num_draws)

# Expectation = mean(x)*volume

   expectation = mean(f(xs))*(upper - lower)

end

x
2

103/3 = 333.333
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Monte Carlo integration

Suppose we want to integrate  from 0 to 10, we know this is 

# Integrate

 f(x) = x.^2;

 integrate_function(f, 0, 10, 1000)

## 322.499755893713

Pretty close!

x
2

103/3 = 333.333
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Quadrature rules

We can also approximate integrals using a technique called quadrature
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Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

We will focus on two classes of quadrature for now:

1. Newton-Cotes (the kind you've seen before)

2. Gaussian (probably new)
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

f(x) [a, b]
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

f(x) [a, b]
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Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function  over 

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

Key things to define up front:

 for  where 

s are the quadrature nodes of the approximation scheme and divide the

interval into  equally spaced subintervals of length 

f(x) [a, b]

xi = a + (i − 1)/h i = 1, 2, . . . , n h = b−a
n−1

xi

n − 1 h
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf( (xi+1 + xi))1

2
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Midpoint rule

The most basic Newton-Cotes method:

1. Split  into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

Approximates  by a step function

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf( (xi+1 + xi))1

2

f
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2
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Trapezoid rule

Increase complexity by 1 degree:

1. Split  into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through  and 

We can aggregate this up to: 


where  and  otherwise

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/2 wi = h
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How accurate is this rule?

Trapezoid rule is  aka first-order exact: it can integrate any linear

function exactly

O(h2)
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How accurate is this rule?

Trapezoid rule is  aka first-order exact: it can integrate any linear

function exactly

Seems sensible, a piecewise linear function can approximate any linear

function exactly since it has more flexibility

O(h2)
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Simpsons rule

Increase complexity by 1 degree:
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Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

107 / 132



Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3
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Simpsons rule

Increase complexity by 1 degree:

Let  be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and 

We can aggregate this up to: 


where , otherwise and  if  is even and  if 

is odd

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/3 wi = 4h/3 i wi = 2h/3 i
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How accurate is this rule?

How accurate do you think Simpson's rule is?
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How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is  aka third-order exact: it can integrate any cubic

function exactly

O(h4)
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How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is  aka third-order exact: it can integrate any cubic

function exactly

Why do we gain 2 orders of accuracy when increasing one order of

approximation complexity?

O(h4)
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic  and the quadratic

approximation in  is another cubic function

f(x)

[x2i−1, x2i+1]
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How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic  and the quadratic

approximation in  is another cubic function

3. This cubic error is odd with respect to the midpoint: integrating over the

first subinterval cancels integrating over the second subinterval, the

integration error is zero

f(x)

[x2i−1, x2i+1]
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Gaussian quadrature rules

How did we pick the  quadrature nodes for Newton-Cotes rules?xi
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Gaussian quadrature rules

How did we pick the  quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

xi
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Gaussian quadrature rules

How did we pick the  quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

Gaussian quadrature selects these nodes more efficiently and relies on weight

functions 

xi

w(x)
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights  and nodes 

 are chosen to satisfy  moment-matching conditions:

n w1, . . . , wn

x1, . . . , xn 2n
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Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights  and nodes 

 are chosen to satisfy  moment-matching conditions:

, for 

where  is the interval over which we are integrating and  is a given

weight function

n w1, . . . ,wn

x1, . . . ,xn 2n

∫
I
x
k
w(x)dx = ∑n

i=1 wix
k

i
k = 0, . . . , 2n − 1

I w(x)
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)
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Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

Gaussian rules are  order exact: we can exactly compute the integral of

any polynomial order 

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

2n − 1

2n − 1
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

p(x)

p̄(x)
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

Given an approximation with  mass points,  and  have identical moments

up to order ,
and as  we have a continuum of mass points and

recover the continuous pdf

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞
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Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution 
into mass

points (nodes) and probabilities (weights) for some other discrete distribution 

Given an approximation with  mass points,  and  have identical moments

up to order ,
and as  we have a continuum of mass points and

recover the continuous pdf

But what do we pick for the weighting function ?

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

w(x)
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Gauss-Legendre

We can start out with a simple , this gives us Gauss-Legendre

quadrature

This can approximate the integral of any function arbitrarily well by increasing

w(x) = 1

n
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Gauss-Laguerre

Sometimes we want to compute exponentially discounted sums like: 

The weighting function  is Gauss-Laguerre quadrature

∫
I
f(x)e−xdx

e−x
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Gauss-Hermite

Sometimes we want to take expectations of normally distributed variables: 

There exist packages or look-up tables to get the prescribed weights and

nodes for each of these schemes

∫
I
f(x)e−x2

dx
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Linear Algebra

Lots of computational problems break down into linear systems

Many non-linear models are linearized

How do we actually solve these systems inside the machine?
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

A Ax = b x
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so  is easy to

solve for

A Ax = b x

x1
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L-U Factorization

If  in  is upper or lower triangular, we can solve for  recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so  is easy to

solve for

The equation in row 2 contains  and the already solved for 


so we can easily solve for  and then continue until we solve for all s

A Ax = b x

x1

x2 x1

x2 x
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Forward substitution

Forward substitution gives us solutions

, for all xi = (bi −∑
i−1

j=1
aijxj)1

aii
i
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, for all xi = (bi −∑
i−1

j=1
aijxj)1

aii
i
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Forward substitution

Forward substitution gives us solutions

, for all 

L-U factorization is an algorithm that decomposes  into the product of lower

and upper triangular matrices

xi = (bi −∑
i−1

j=1
aijxj)1

aii
i

A
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L-U Factorization has two steps

1. Factor  into lower  and upper  triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

A L U
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L-U Factorization has two steps

1. Factor  into lower  and upper  triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

2. Solve for 

1. 

2. Solve for  using forward substitution

3. Using the solved , we know  and can solve with backward

substitution

A L U

x

(LU)x = b

y : Ly = b

y Ux = y
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Why bother with this scheme?

Why not just use another method like Cramer's rule?
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Speed
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Cramer's rule is 
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Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than 

Cramer's rule is 

For a 10x10 system this can really matter

O(n
3)

O(n! × n)
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Example: LU vs Cramer

Julia description of the division operator \ :
If A is upper or lower triangular (or

diagonal), no factorization of A is required and the system is solved with either

forward or backward substitution. For non-triangular square matrices, an LU

factorization is used.

So we can do LU factorization approaches to solutions by just doing x = A\b ,


but we can write it ourselves as well
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Example: LU vs Cramer

Cramer's Rule can be written as a simple loop:

function solve_cramer(A, b)

     dets = Vector(undef, length(b))

for index in eachindex(b)

         B = copy(A)

         B[:, index] = b

         dets[index] = det(B)

end

return dets ./ det(A)

end

 n = 100

 A = rand(n, n)

 b = rand(n)
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Example: LU vs Cramer

Let's see the full results of the competition for a 10x10:

## Cramer's rule solved in 0.01895975 seconds and used 16187200 kilobytes of memory.

## LU solved in 0.000146834 seconds and used 81840 kilobytes of memory.

## LU is 129.0 times faster and uses 198.0 times less memory.

using BenchmarkTools

 cramer_time = @elapsed solve_cramer(A, b);

 cramer_allocation = @allocated solve_cramer(A, b);

 lu_time = @elapsed A\b;

 lu_allocation = @allocated A\b;

 println("Cramer's rule solved in $cramer_time seconds and used $cramer_allocation kilobytes of m

 LU solved in $(lu_time) seconds and used $(lu_allocation) kilobytes of memory.

 LU is $(round(cramer_time/lu_time, digits = 0)) times faster and uses $(round(cramer_allocation/
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Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another
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Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

to turn a matrix  into (IA) (LU)
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Numerical error blow up

Small errors can have big effects, for example:

where  is big

[
−M

−1
1

1 1
] [

x1

x2

] = [
1

2
]

M
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Numerical error blow up

Small errors can have big effects, for example:

where  is big

Lets use L-U Factorization to solve it:

[
−M

−1
1

1 1
] [

x1

x2

] = [
1

2
]

M

[
−M

−1
1

1 1
] = [

1 0

0 1
] [

−M
−1

1

1 1
]
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Numerical error blow up

Subtract  times the first row from the second to get the L-U factorization−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]
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Numerical error blow up

Subtract  times the first row from the second to get the L-U factorization

We can get closed-form solutions by applying forward substitution:

−M

[
1 0

0 1
] [

−M
−1 1

1 1
] = [

1 0

−M 1
] [

−M
−1 1

0 M + 1
]

[
x1

x2
] = [

M/(M + 1)

(M + 2)/(M + 1)
]
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

M
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return  is equal to

precisely , this isn't terribly wrong

M

M = 10000000000000000000 x2

1
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Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return  is equal to

precisely , this isn't terribly wrong

When we then perform the second step of backwards substitution, we solve

for , this is very wrong

Large errors like this often occur because diagonal elements are very small

M

M = 10000000000000000000 x2

1

x1 = −M(1 − x2) = 0
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Julia example

function solve_lu(M)

     b = [1, 2]

     U = [-M^-1 1; 0 M+1]

     L = [1. 0; -M 1.]

     y = L\b

# Round element-wise to 3 digits

     x = round.(U\y, digits = 5)

end;

 true_solution(M) = round.([M/(M+1), (M+2)/(M+1)], digits = 5);
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Julia example

## True solution for M=10 is approximately [0.90909, 1.09091], computed solution is [0.90909, 1.09091]

## True solution for M=1e10 is approximately [1.0, 1.0], computed solution is [1.0, 1.0]

## True solution for M=1e15 is approximately [1.0, 1.0], computed solution is [1.11022, 1.0]

## True solution for M=1e20 is approximately [1.0, 1.0], computed solution is [-0.0, 1.0]

## Julia's division operator is actually pretty smart though, true solution for M=1e20 is A\b = [1.0, 1
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Ill-conditioning

A matrix  is said to be ill-conditioned if a small perturbation in  yields a large

change in 

A b

x
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Ill-conditioning

A matrix  is said to be ill-conditioned if a small perturbation in  yields a large

change in 

One way to measure ill-conditioning in a matrix is the elasticity of the solution

with respect to ,

which yields the percent change in  given


a percentage point change in the magnitude of 

A b

x

b

sup
||δb||>0

||δx||/||x||

||δb||/||b||

x

b
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Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding
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Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

κ = ||A|| ⋅ ||A−1||
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Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

 gives the least upper bound of the elasticity: it is always larger than one and

a rule of thumb is that for every order of magnitude, a significant digit is lost in

the computation of 

 cond([1. 1.; 1. 1.00000001])

## 4.0000000623500454e8

κ = ||A|| ⋅ ||A−1||

κ

x
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