
Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

2 / 132

Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

For this lecture you will need the following Julia packages

import Pkg; Pkg.add("ForwardDiff"); Pkg.add("Distributions"); Pkg.add("BenchmarkTools")

using ForwardDiff, Distributions, BenchmarkTools

2 / 132

What this class is about

1. Learning how to compute dynamic and spatial models

2. Other useful computational techniques and details

3 / 132

What you need to succeed in this course

1. ECON 6090 and ECON 6170

2. ECON 6130 or AEM 7040

3. Previous coding experience or willingness to spend some time learning as

you go

4 / 132

Course materials

1. Everything we use in the course will be freely available and posted to the

course GitHub (details next week on how to use Git)

2. Books (free from the library or authors' websites):

1. Judd (1998)

2. Miranda and Fackler (2002)

3. Nocedal and Wright (2006)

5 / 132

Things to do before next class

Spend some time reading up on Julia if you don't use it already:

Learning Julia

QuantEcon Julia lectures

6 / 132

What we will cover in the class

1. Basic computing, arithmetic, calculus, and linear algebra on a computer

2. Shell and Julia coding, version control, reproducibility, workflow

3. Optimization

4. Solving dynamic models

5. Solving spatial models

7 / 132

What you have to do

Come to class

4 computational problem sets

Final research project proposal

Final research project

One presentation of a paper from the literature

8 / 132

Important days / times

Office hours: Tuesday 3:00-4:00

Final project proposal: March 17

Final project paper: May 19

9 / 132

Grading

Problem sets: 40% (10% each)

Final project proposal: 15%

Final project paper/presentation: 25%

Class participation: 10%

Computational paper presentation: 10%

10 / 132

Problem sets (10% each)

You must use Julia

Code must be written in .jl scripts

You must use Julia project management tools, e.g. Pkg.generate(),

Pkg.activate(), Pkg.instantiate()

Everything must be nested in a wrapper function

It must work just by running the wrapper function

You can work in groups of 2

Problem sets will be where you implement the techniques we learn in class on

your own,
but we will be doing our fair share of coding in class
11 / 132

Problem sets (10% each)

Why am I making you do problem sets this way?

If you want to publish in an AEA journal (amongst others now..) you need to

have good practices, other journals are following suit

Julia is very good for reproducibility

12 / 132

Computational paper presentations (10%)

Everyone will present a paper or package starting in a few weeks

The paper can apply methods we've learned about (or will learn about),
or can

be a new method that we have not covered

The package must be something related to the methods we are learning

You must consult with me at least 1 week prior to your scheduled

presentation
date to ensure the paper/package is appropriate for a

presentation

The syllabus has some pre-approved papers you can choose from under the

Applications header 13 / 132

Final project (25% paper, 15% proposal)

The final project will be the beginning of a computationally-driven research

project or an extension of an existing paper with new methods

Proposals will be due about half way through the class

14 / 132

Final project (25% paper, 15% proposal)

The only requirement is that the project cannot be computationally trivial

(i.e. no applied micro papers)

It can be numerical, empirical, whatever

Everyone will present their final projects in the last week of class

More details on the syllabus and to come later

15 / 132

Why computational methods?Why computational methods?

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

17 / 132

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS: β̂ = (X ′X)−1X ′Y

17 / 132

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS:

Not all economic models have closed-form solutions,
and others can't have

closed-form solutions with losing important economic content

This is generally true for dynamic and spatial models

β̂ = (X ′X)−1X ′Y

17 / 132

What can we compute?

We can use computation + theory to answer quantitative questions

18 / 132

What can we compute?

We can use computation + theory to answer quantitative questions

Theory can't give us welfare in dollar terms

Theory can't tell us the value of economic primitives

18 / 132

What can we compute?

Theory often relies on strong assumptions like:

19 / 132

What can we compute?

Theory often relies on strong assumptions like:

log utility (lose income vs substitution)

zero frictions

strictly linear transitions (natural phenomena don't follow this)

static decisionmaking

It can be unclear what the cost of these assumptions are

19 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

q(p) = p−0.2

q∗ = 2

20 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

Just invert the demand function:

q(p) = p−0.2

q∗ = 2

2 = p−0.2

20 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

Just invert the demand function:

Your calculator can do the rest

q(p) = p−0.2

q∗ = 2

2 = p−0.2

p∗ = 2−5
✓

20 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

First, does a solution exist?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

First, does a solution exist?

Yes, why?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

 is monotonically decreasingq(p)

22 / 132

Example 2

 is monotonically decreasing

 is greater than 2 at and less than 2 at

q(p)

q(p) p = 0.1 p = 0.2

22 / 132

Example 2

 is monotonically decreasing

 is greater than 2 at and less than 2 at

 by intermediate value theorem somewhere in

q(p)

q(p) p = 0.1 p = 0.2

→ q(p) = 2 (0.1, 0.2)

22 / 132

Example 2

We know solution is between .1 and .2

 x = collect(range(.1, stop = .2, length = 10)) # generate evenly spaced grid

 q_d = ones(size(x)).*2 # generate equal length vector of qd=2

Price function

 price(p) = p.^(-0.2)/2 .+ p.^(-0.5)/2

Get corresponding quantity values at these prices

 y = price(x)

Now plot and qd q(p)

23 / 132

Example 2

24 / 132

Example 2

Notice: if we let then:t = p−0.1

q(t) = 0.5t2 + 0.5t5

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

So how do we solve the problem?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Newton's method

Iteratively do the following:

1. Guess solution to:

2. Approximate the function with local second order polynomial around guess

3. Solve this easier equation

4. Solution is the new guess

5. Stop if previous guess and new guess are sufficiently close

We will learn more about this and why it works in a later class

q(p) − q∗ = 0 → q(p) − 2 = 0

26 / 132

Newton code

Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

27 / 132

Newton code

Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

function find_root_newton(demand, demand_grad)

 p = .3 # initial guess

 deltap = 1e10 # initialize stepsize

while abs(deltap) > 1e-4

 deltap = demand(p)/demand_grad(p)

 p += deltap

 println("Intermediate guess of p = $(round(p,digits=3)).")

end

 println("The solution is p = $(round(p,digits=3)).")

return p

end;

27 / 132

Newton code

Solve for price

 find_root_newton(demand, demand_grad)

Intermediate guess of p = 0.068.

Intermediate guess of p = 0.115.

Intermediate guess of p = 0.147.

Intermediate guess of p = 0.154.

Intermediate guess of p = 0.154.

Intermediate guess of p = 0.154.

The solution is p = 0.154.

0.15419764093200633

28 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is: a(E[p]) = + E[p]1
2

1
2

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is:

After planting, yield realizes, producing a total quantity of the crop

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is:

After planting, yield realizes, producing a total quantity of the crop

Demand is given by

Yield is given by

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

p(q) = 3 − 2q

ŷ ∼ N (1, 0.1)

29 / 132

How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

30 / 132

How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

30 / 132

How much acreage gets planted?

Rearrange and solve:

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

a∗ = 1

30 / 132

How much acreage gets planted?

Rearrange and solve:

Now suppose the government implements a price floor on the crop of so

we have that

How much acreage does the farmer plant?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

a∗ = 1

p > 1

p(ŷ) = max(1, 3 − 2aŷ)

30 / 132

How much acreage gets planted?

This is analytically intractable

31 / 132

How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

E[max(1, 3 − 2aŷ)] ≠ max(1,E[3 − 2aŷ])

31 / 132

How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

 we need to solve this numerically

E[max(1, 3 − 2aŷ)] ≠ max(1,E[3 − 2aŷ])

→

31 / 132

Function iteration

We can solve this using another technique called function iteration

Function iteration method to find a root

function find_root_fi(mn, variance)

 y = randn(1000)*sqrt(variance) .+ mn # draws of the random variable

 a = 1. # initial guess

 differ = 100. # initialize error

 exp_price = 1. # initialize expected price

while differ > 1e-4

 a_old = a # save old acreage

 p = max.(1, 3 .- 2 .*a.*y) # compute price at all distribution points

 exp_price = mean(p) # compute expected price

 a = 1/2 + 1/2*exp_price # get new acreage planted given new price

 differ= abs(a - a_old) # change in acreage planted

 println("Intermediate acreage guess: $(round(a,digits=3))")

end

return a, exp_price

end
32 / 132

Function iteration

The optimal number of acres to plant is 1.094.

The expected price is 1.188.

 acreage, expected_price = find_root_fi(1, 0.1);

 println("The optimal number of acres to plant is $(round(acreage, digits = 3)).\nThe expected pr

33 / 132

Quantifying speed and accuracyQuantifying speed and accuracy

Big O notation

How do we quantify speed and accuracy of computational algorithms?

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

You've seen this before in the expression of Taylor series' errors

35 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

Time to find a particular (e.g. maximum) value in an unsorted array

 For each element, check whether it is the value we want→ 36 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

37 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

37 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

Time to solve a standard dynamic program, ex traveling salesman

 For each city , solve a Bellman as a function of all other cities→ i = 1, . . . ,n

37 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

O(n!)

38 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

O(n!)

38 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

Solving traveling salesman by brute force

 Obtain travel time for all possible combinations of intermediate cities

O(n!)

→

38 / 132

Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

39 / 132

Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

Taylor series for around zero:

What does mean here?

sin(x)

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

O(x7)

39 / 132

Big O Notation: Accuracy example

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

40 / 132

Big O Notation: Accuracy example

As we move away from to some , the upper bound of the growth rate in the

error of our approximation to is

We are approximating about zero so is small and is decreasing in

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

0 x

sin(x) x7

x xn n

40 / 132

Big O Notation: Accuracy example

As we move away from to some , the upper bound of the growth rate in the

error of our approximation to is

We are approximating about zero so is small and is decreasing in

For small , higher order polynomials mean the error will grow slower and we

have a better local approximation

sin(x) ≈ x − x3/3! + x5/5! + O(x7)

0 x

sin(x) x7

x xn n

x

40 / 132

Taylor expansions

fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

41 / 132

Taylor expansions

fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

 println("Error of fifth-order approximation at x = .001 is: $(sin_error_5(.001))

 Error of third-order approximation at x = .001 is: $(sin_error_3(.001))

 Error of fifth-order approximation at x = .01 is: $(sin_error_5(.01))

 Error of third-order approximation at x = .01 is: $(sin_error_3(.01))

 Error of fifth-order approximation at x = .1 is: $(sin_error_5(.1))

 Error of third-order approximation at x = .1 is: $(sin_error_3(.1))")

Error of fifth-order approximation at x = .001 is: 0.0

Error of third-order approximation at x = .001 is: 8.239936510889834e-18

Error of fifth-order approximation at x = .01 is: -1.734723475976807e-18

Error of third-order approximation at x = .01 is: 8.333316675601665e-13

Error of fifth-order approximation at x = .1 is: -1.983851971587569e-11

Error of third-order approximation at x = .1 is: 8.331349481138783e-8

41 / 132

Big O Notation: Speed examples

Here are a few examples for fundamental computational methods

42 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

43 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

43 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

accessing a specific location in an array

43 / 132

Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

44 / 132

Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

inserting an element into an arbitrary location in a 1 dimensional array

Bigger array need to shift around more elements in memory to

accommodate the new element

→

44 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

O(x2)

O(x2) :

xn

45 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

O(x2)

O(x2) :

xn

45 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

matrix inversion, most algorithms (e.g. LU decomposition) solve in polynomial

time

O(x2)

O(x2) :

xn

45 / 132

Computer arithmeticComputer arithmetic

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

Base 10: each digit can take on 0-9

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

Numbers are stored as:

 is the mantissa/significand,
 is the base,
 is the exponent

All three are integers

±mb±n

m b n

48 / 132

Computer arithmetic - storage

The significand typically gives the significant digits

The exponent scales the number up or down in magnitude

±mb±n

49 / 132

Computer arithmetic - storage

The size of numbers a computer can represent is limited

by how much space is typically allocated for a real number

50 / 132

Computer arithmetic - storage

The size of numbers a computer can represent is limited

by how much space is typically allocated for a real number

Space allocations are usually 64 bits: 53 for and 11 for

 println(typeof(5.0))

Float64

 println(typeof(5))

Int64

m n

50 / 132

Computer arithmetic - storage

Int64 means it is a integer with 64 bits of storage

Float64 means it is a floating point number with 64 bits of storage

Floating point just means can move the decimal point around in the

significand

Int64 and Float64 are different, this will be important later

b±n

51 / 132

The limits of computers

Limitations on storage suggest three facts

52 / 132

The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

52 / 132

The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

Machine epsilon is the smallest such that
a machine can always distinguishϵ

N + ϵ > N > N − ϵ

52 / 132

The limits of computers

 println("Machine epsilon ϵ is $(eps(Float64))")

Machine epsilon ϵ is 2.220446049250313e-16

 println("Is 1 + ϵ/2 > 1? $(1 + eps(Float64)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(1 - eps(Float64)/2 < 1)")

Is 1 - ϵ/2 < 1? true

53 / 132

The limits of computers

 println("The smallest representable number larger than 1.0 is $(nextfloat(1.0))")

The smallest representable number larger than 1.0 is 1.0000000000000002

 println("The largest representable number smaller than 1.0 is $(prevfloat(1.0))")

The largest representable number smaller than 1.0 is 0.9999999999999999

54 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

55 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

Is 1 - ϵ/2 < 1? true

55 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

Is 1 - ϵ/2 < 1? true

Theres a tradeoff between precision and storage requirements
55 / 132

The limits of computers

2. There is a smallest representable number

 println("64 bit smallest float is $(floatmin(Float64))")

64 bit smallest float is 2.2250738585072014e-308

 println("32 bit smallest float is $(floatmin(Float32))")

32 bit smallest float is 1.1754944e-38

 println("16 bit smallest float is $(floatmin(Float16))")

16 bit smallest float is 6.104e-5

56 / 132

The limits of computers

3. There is a largest representable number

 println("64 bit largest float is $(floatmax(Float64))")

64 bit largest float is 1.7976931348623157e308

 println("32 bit largest float is $(floatmax(Float32))")

32 bit largest float is 3.4028235e38

 println("16 bit largest float is $(floatmax(Float16))")

16 bit largest float is 6.55e4

57 / 132

The limits of computers

 println("The largest 64 bit integer is $(typemax(Int64))")

The largest 64 bit integer is 9223372036854775807

 println("Add one to it and we get: $(typemax(Int64)+1)")

Add one to it and we get: -9223372036854775808

 println("It loops us around the number line: $(typemin(Int64))")

It loops us around the number line: -9223372036854775808

58 / 132

The limits of computers

The scale of your problem matters

59 / 132

The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

59 / 132

The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

Scale numbers appropriately (e.g. millions of dollars, not millionths of cents)

59 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

60 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

60 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

Error comes in two major and related forms:

1. Rounding

2. Truncation

60 / 132

Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

Half of π is: 1.5707963267948966

61 / 132

Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

Half of π is: 1.5707963267948966

The computer gave us a rational number, but should be irrationalπ/2

61 / 132

Truncation

Lots of important numbers are defined by infinite sums
ex = ∑∞
n=0

xn

n!

62 / 132

Truncation

Lots of important numbers are defined by infinite sums

It turns out that computers can't add up infinitely many terms because there is

finite space

 we need to truncate the sum

ex = ∑∞
n=0

xn

n!

→

62 / 132

Why does this matter?

Errors are small, who cares?

63 / 132

Why does this matter?

Errors are small, who cares?

You should!

Because errors can propagate and grow as you keep applying an algorithm

(e.g. function iteration)

63 / 132

Error example 1

Consider a simple quadratic: with solution x2 − 26x + 1 = 0 x = 13 − √168

64 / 132

Error example 1

Consider a simple quadratic: with solution

 println("64 bit: 13 - √168 = $(13-sqrt(168))")

64 bit: 13 - √168 = 0.03851860318427924

 println("32 bit: 13 - √168 = $(convert(Float32,13-sqrt(168)))")

32 bit: 13 - √168 = 0.038518604

 println("16 bit: 13 - √168 = $(convert(Float16,13-sqrt(168)))")

16 bit: 13 - √168 = 0.0385

x2 − 26x + 1 = 0 x = 13 − √168

64 / 132

Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

65 / 132

Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:

Very clearly we should get , but do we? Let's find out

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

x = y

65 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

66 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

if x_equals_y

 println("X equals Y!")

else

 println("X does not equal Y!")

 println("The difference is: $(x-y).")

end

X does not equal Y!

The difference is: -1.0e-20.

66 / 132

Error example 2

The two numbers were not equal, we got

Why?

y > x

67 / 132

Error example 2

The two numbers were not equal, we got

Why?

Adding numbers of greatly different magnitudesdoes not always work like you

would want

y > x

67 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 println("x is $x")

x is 0.0

 println("y is $y")

y is 1.0e-20

68 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 println("x is $x")

x is 0.0

 println("y is $y")

y is 1.0e-20

When we added to , it got rounded away10−20 1

68 / 132

Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

69 / 132

Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

 println("100000.2 - 100000.1 is: $(100000.2 - 100000.1)")

100000.2 - 100000.1 is: 0.09999999999126885

if (100000.2 - 100000.1) == 0.1

 println("and it is equal to 0.1")

else

 println("and it is not equal to 0.1")

end

and it is not equal to 0.1

69 / 132

Error example 3

Why do we get this error?

70 / 132

Error example 3

Why do we get this error?

Neither of the two numbers can be precisely represented by the machine!

So their difference won't necessarily be 0.1

There are tools for approximate equality

 isapprox(100000.2 - 100000.1, 0.1)

true

100000.1 ≈ 8589935450993459 × 2−33 = 100000.0999999999767169356346130

100000.2 ≈ 8589936309986918 × 2−33 = 100000.1999999999534338712692261

70 / 132

Rounding and truncation recap

This matters, particularly when you're trying to evaluate logical

expressions of equality

71 / 132

Calculus on a machineCalculus on a machine

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let and reframe this as an infinite limit

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let and reframe this as an infinite limit

which we know a computer can't handle because of finite space to store

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

= lim
t→∞

df(x)

dx

f(x + 1/t) − f(x)

1/t

t

73 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

What does a finite difference approximation look like?

74 / 132

Forward difference

The forward difference looks exactly like the formal definition without the

limit:

≈
df(x)

dx

f(x + h) − f(x)

h

75 / 132

Forward difference

The forward difference looks exactly like the formal definition without the

limit:

Works the same for partial derivatives:

Let's see how it works in practice by calculating derivatives of at

≈
df(x)

dx

f(x + h) − f(x)

h

≈
∂g(x, y)

∂x

g(x + h, y) − g(x, y)

h

x2 x = 2

75 / 132

Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

76 / 132

Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

 println("

 The deriviative with h=1e-8 is: $(deriv_x_squared(1e-8,2.))

 The deriviative with h=1e-12 is: $(deriv_x_squared(1e-12,2.))

 The deriviative with h=1e-30 is: $(deriv_x_squared(1e-30,2.))

 The deriviative with h=1e-1 is: $(deriv_x_squared(1e-1,2.))")

The deriviative with h=1e-8 is: 3.999999975690116

The deriviative with h=1e-12 is: 4.000355602329364

The deriviative with h=1e-30 is: 0.0

The deriviative with h=1e-1 is: 4.100000000000001

76 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

h

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

If is small then is close to , we can run into rounding issues like

we saw for

h

h

h f(x + h) f(x)

h = 10−30

77 / 132

Error, it's there

We can select in an optimal fashion: h h = max{|x|, 1}√ϵ

78 / 132

Error, it's there

We can select in an optimal fashion:

There are proofs for why this is the case but generally testing out different 's

works fine

h h = max{|x|, 1}√ϵ

h

78 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?h

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

h

f(x) x

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

Recall means the error in our approximation grows quadratically in ,

we only did a linear approximation

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

Recall means the error in our approximation grows quadratically in ,

we only did a linear approximation

How can we use this to understand the error in our finite difference

approximation?

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h

79 / 132

How much error is in a finite difference?

Rearrange to obtain: f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

Forward differences have linear errors

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

Forward differences have linear errors

If we halve , we halve the error in our approximation (ignoring

rounding/truncation issues)

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

h

80 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

x

(x,x + h)

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

The secant curve has the average slope of on

x

(x,x + h)

f(x) [x,x + h]

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

The secant curve has the average slope of on

We want the derivative at , which is on the edge of , how about we

center ?

x

(x,x + h)

f(x) [x,x + h]

x [x,x + h]

x

81 / 132

Central differences

We can approximate in a slightly different way:f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

82 / 132

Central differences

We can approximate in a slightly different way:

This leaves in the middle of the interval over which we are averaging the

slope of

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)

82 / 132

Central differences

We can approximate in a slightly different way:

This leaves in the middle of the interval over which we are averaging the

slope of

Is this an improvement on forward differences?

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)

82 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that) and then

divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that) and then

divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

83 / 132

How much error is in a central finite difference?

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

84 / 132

How much error is in a central finite difference?

Error falls quadratically in , if we halve we reduce error by 75%

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

84 / 132

How much error is in a central finite difference?

Error falls quadratically in , if we halve we reduce error by 75%

Optimal selection of for central differences is

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

h h = max{|x|, 1}ϵ1/3

84 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each g(x1 − h,x2, . . .) g(x1 + h,x2, . . .) xi

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each

But for a forward difference we only need to compute once

and then for each

g(x1 − h,x2, . . .) g(x1 + h,x2, . . .) xi

g(x1,x2, . . .)

g(x1 + h,x2, . . .) xi

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each

But for a forward difference we only need to compute once

and then for each

Forward differences saves on # of operations at the expense of accuracy

g(x1 − h,x2, . . .) g(x1 + h,x2, . . .) xi

g(x1,x2, . . .)

g(x1 + h,x2, . . .) xi

85 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

f ′′(x) = + O(h2)
f(x + h) − 2f(x) + f(x − h)

h2

86 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

The deriviative is: 4.0

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

The deriviative is: 4.0

Exact solution!

h

87 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

88 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

88 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

Humans are suseptible to error in coding or calculating the derivative

mathematically

88 / 132

Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

89 / 132

Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

The closed form derivatives of these operations is not hard, it turns out your

computer can do it and yield exact solutions

89 / 132

Automatic differentiation

How?

90 / 132

Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

90 / 132

Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

 ff(x) = x^2

 x = [2 3 4]

90 / 132

Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

ff'(x) at [2 3 4] is: [4 6 8]

91 / 132

Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

ff'(x) at [2 3 4] is: [4 6 8]

Exact solutions without handcoding

91 / 132

Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

92 / 132

Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

 x = [0 1 2]

1×3 Matrix{Int64}:

0 1 2

 println("fff'(x) at $(x) is: $(g.(fff,x))")

fff'(x) at [0 1 2] is: [0.0 1.0806046117362795 -2.6145744834544478]

92 / 132

Calculus operations

Integration, trickier than differentiation

93 / 132

Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

93 / 132

Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

, , ∫
D
f(x)dx f : Rn → R D ⊂ R

n

93 / 132

How to think about integrals

Integrals are effectively infinite sums

94 / 132

How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

94 / 132

How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

where is some subset of and is some evaluation point (e.g.

midpoint of)

limdxi→0 ∑
(a−b)/dxi
i=0 f(xi)dxi

dxi [a, b] xi

dxi

94 / 132

Infinite limits strike again

Just like derivatives, we face an infinite limit as

We avoid this issue in the same way as derivatives, we replace the infinite sum

with something we can handle

(a − b)/dxi → ∞

95 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

96 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

96 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

Can be effective for very high dimensional integrals

Very simple and intuitive

But, produces a random approximation

96 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

ξ = ∫ 1
0 f(x)dx

97 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

We can do so by drawing uniformly distributed samples, over

interval

ξ = ∫ 1
0 f(x)dx

N x1, . . . ,xN
[0, 1]

97 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

We can do so by drawing uniformly distributed samples, over

interval

Why?

ξ = ∫ 1
0 f(x)dx

N x1, . . . ,xN
[0, 1]

97 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

ξ E[f(x)]

f(x)

98 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

In general we have that

where is the volume over which we are integrating

ξ E[f(x)]

f(x)

ξ̂ = V ∑N

i=1 f(xi)
1
N

V

98 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

In general we have that

where is the volume over which we are integrating

LLN gives us that the

ξ E[f(x)]

f(x)

ξ̂ = V ∑N

i=1 f(xi)
1
N

V

plimN→∞ξ̂ = ξ

98 / 132

Monte Carlo integration

The variance of isξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

99 / 132

Monte Carlo integration

The variance of is

So average error is , this gives us its rate of convergence:

Note:

1. The rate of convergence is independent of the dimension of x

2. Quasi-Monte Carlo methods can get you

ξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

σf(X)
V

√N
O(√N)

O(1/N)

99 / 132

Monte Carlo integration

Suppose we want to integrate from 0 to 10, we know this is

Package for drawing random numbers

using Distributions

Define a function to do the integration for an arbitrary function

function integrate_function(f, lower, upper, num_draws)

Draw from a uniform distribution

 xs = rand(Uniform(lower, upper), num_draws)

Expectation = mean(x)*volume

 expectation = mean(f(xs))*(upper - lower)

end

x2

103/3 = 333.333

100 / 132

Monte Carlo integration

Suppose we want to integrate from 0 to 10, we know this is

Integrate

 f(x) = x.^2;

 integrate_function(f, 0, 10, 1000)

322.499755893713

Pretty close!

x2

103/3 = 333.333

101 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

102 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

102 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

We will focus on two classes of quadrature for now:

1. Newton-Cotes (the kind you've seen before)

2. Gaussian (probably new)

102 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

f(x) [a, b]

103 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

f(x) [a, b]

103 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

Key things to define up front:

 for where

s are the quadrature nodes of the approximation scheme and divide the

interval into equally spaced subintervals of length

f(x) [a, b]

xi = a + (i − 1)/h i = 1, 2, . . . ,n h = b−a
n−1

xi

n − 1 h
103 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

104 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf((xi+1 + xi))1

2

104 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

Approximates by a step function

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf((xi+1 + xi))1

2

f

104 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

105 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

105 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

We can aggregate this up to:

where and otherwise

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/2 wi = h

105 / 132

How accurate is this rule?

Trapezoid rule is aka first-order exact: it can integrate any linear

function exactly

O(h2)

106 / 132

How accurate is this rule?

Trapezoid rule is aka first-order exact: it can integrate any linear

function exactly

Seems sensible, a piecewise linear function can approximate any linear

function exactly since it has more flexibility

O(h2)

106 / 132

Simpsons rule

Increase complexity by 1 degree:

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

We can aggregate this up to:

where , otherwise and if is even and if

is odd

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/3 wi = 4h/3 i wi = 2h/3 i

107 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

108 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is aka third-order exact: it can integrate any cubic

function exactly

O(h4)

108 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is aka third-order exact: it can integrate any cubic

function exactly

Why do we gain 2 orders of accuracy when increasing one order of

approximation complexity?

O(h4)

108 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

109 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic and the quadratic

approximation in is another cubic function

f(x)

[x2i−1,x2i+1]

109 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic and the quadratic

approximation in is another cubic function

3. This cubic error is odd with respect to the midpoint: integrating over the

first subinterval cancels integrating over the second subinterval, the

integration error is zero

f(x)

[x2i−1,x2i+1]

109 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?xi

110 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

xi

110 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

Gaussian quadrature selects these nodes more efficiently and relies on weight

functions

xi

w(x)

110 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

111 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights and nodes

 are chosen to satisfy moment-matching conditions:

n w1, . . . ,wn

x1, . . . ,xn 2n

111 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights and nodes

 are chosen to satisfy moment-matching conditions:

, for

where is the interval over which we are integrating and is a given

weight function

n w1, . . . ,wn

x1, . . . ,xn 2n

∫
I
xkw(x)dx = ∑n

i=1 wix
k
i k = 0, . . . , 2n − 1

I w(x)

111 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

112 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

112 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

Gaussian rules are order exact: we can exactly compute the integral of

any polynomial order

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

2n − 1

2n − 1

112 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

p(x)

p̄(x)

113 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

Given an approximation with mass points, and have identical moments

up to order ,
and as we have a continuum of mass points and

recover the continuous pdf

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

113 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

Given an approximation with mass points, and have identical moments

up to order ,
and as we have a continuum of mass points and

recover the continuous pdf

But what do we pick for the weighting function ?

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

w(x)

113 / 132

Gauss-Legendre

We can start out with a simple , this gives us Gauss-Legendre

quadrature

This can approximate the integral of any function arbitrarily well by increasing

w(x) = 1

n

114 / 132

Gauss-Laguerre

Sometimes we want to compute exponentially discounted sums like:

The weighting function is Gauss-Laguerre quadrature

∫
I
f(x)e−xdx

e−x

115 / 132

Gauss-Hermite

Sometimes we want to take expectations of normally distributed variables:

There exist packages or look-up tables to get the prescribed weights and

nodes for each of these schemes

∫
I
f(x)e−x2

dx

116 / 132

Linear Algebra

Lots of computational problems break down into linear systems

Many non-linear models are linearized

How do we actually solve these systems inside the machine?

117 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

A Ax = b x

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

A Ax = b x

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so is easy to

solve for

A Ax = b x

x1

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so is easy to

solve for

The equation in row 2 contains and the already solved for

so we can easily solve for and then continue until we solve for all s

A Ax = b x

x1

x2 x1

x2 x

118 / 132

Forward substitution

Forward substitution gives us solutions

, for all xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i

119 / 132

Forward substitution

Forward substitution gives us solutions

, for all xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i

119 / 132

Forward substitution

Forward substitution gives us solutions

, for all

L-U factorization is an algorithm that decomposes into the product of lower

and upper triangular matrices

xi = (bi − ∑i−1
j=1 aijxj)

1
aii

i

A

119 / 132

L-U Factorization has two steps

1. Factor into lower and upper triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

A L U

120 / 132

L-U Factorization has two steps

1. Factor into lower and upper triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

2. Solve for

1.

2. Solve for using forward substitution

3. Using the solved , we know and can solve with backward

substitution

A L U

x

(LU)x = b

y : Ly = b

y Ux = y

120 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than O(n3)

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than

Cramer's rule is

O(n3)

O(n! × n)

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than

Cramer's rule is

For a 10x10 system this can really matter

O(n3)

O(n! × n)

121 / 132

Example: LU vs Cramer

Julia description of the division operator \ :
If A is upper or lower triangular (or

diagonal), no factorization of A is required and the system is solved with either

forward or backward substitution. For non-triangular square matrices, an LU

factorization is used.

So we can do LU factorization approaches to solutions by just doing x = A\b ,

but we can write it ourselves as well

122 / 132

Example: LU vs Cramer

Cramer's Rule can be written as a simple loop:

function solve_cramer(A, b)

 dets = Vector(undef, length(b))

for index in eachindex(b)

 B = copy(A)

 B[:, index] = b

 dets[index] = det(B)

end

return dets ./ det(A)

end

 n = 100

 A = rand(n, n)

 b = rand(n)

123 / 132

Example: LU vs Cramer

Let's see the full results of the competition for a 10x10:

Cramer's rule solved in 0.01895975 seconds and used 16187200 kilobytes of memory.

LU solved in 0.000146834 seconds and used 81840 kilobytes of memory.

LU is 129.0 times faster and uses 198.0 times less memory.

using BenchmarkTools

 cramer_time = @elapsed solve_cramer(A, b);

 cramer_allocation = @allocated solve_cramer(A, b);

 lu_time = @elapsed A\b;

 lu_allocation = @allocated A\b;

 println("Cramer's rule solved in $cramer_time seconds and used $cramer_allocation kilobytes of m

 LU solved in $(lu_time) seconds and used $(lu_allocation) kilobytes of memory.

 LU is $(round(cramer_time/lu_time, digits = 0)) times faster and uses $(round(cramer_allocation/

124 / 132

Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

125 / 132

Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

to turn a matrix into (IA) (LU)

125 / 132

Numerical error blow up

Small errors can have big effects, for example:

where is big

[
−M−1 1

1 1
] [

x1

x2
] = [

1

2
]

M

126 / 132

Numerical error blow up

Small errors can have big effects, for example:

where is big

Lets use L-U Factorization to solve it:

[
−M−1 1

1 1
] [

x1

x2
] = [

1

2
]

M

[
−M−1 1

1 1
] = [

1 0

0 1
] [

−M−1 1

1 1
]

126 / 132

Numerical error blow up

Subtract times the first row from the second to get the L-U factorization−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]

127 / 132

Numerical error blow up

Subtract times the first row from the second to get the L-U factorization

We can get closed-form solutions by applying forward substitution:

−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]

[
x1

x2
] = [

M/(M + 1)

(M + 2)/(M + 1)
]

127 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

M

128 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return is equal to

precisely , this isn't terribly wrong

M

M = 10000000000000000000 x2

1

128 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return is equal to

precisely , this isn't terribly wrong

When we then perform the second step of backwards substitution, we solve

for , this is very wrong

Large errors like this often occur because diagonal elements are very small

M

M = 10000000000000000000 x2

1

x1 = −M(1 − x2) = 0

128 / 132

Julia example

function solve_lu(M)

 b = [1, 2]

 U = [-M^-1 1; 0 M+1]

 L = [1. 0; -M 1.]

 y = L\b

Round element-wise to 3 digits

 x = round.(U\y, digits = 5)

end;

 true_solution(M) = round.([M/(M+1), (M+2)/(M+1)], digits = 5);

129 / 132

Julia example

True solution for M=10 is approximately [0.90909, 1.09091], computed solution is [0.90909, 1.09091]

True solution for M=1e10 is approximately [1.0, 1.0], computed solution is [1.0, 1.0]

True solution for M=1e15 is approximately [1.0, 1.0], computed solution is [1.11022, 1.0]

True solution for M=1e20 is approximately [1.0, 1.0], computed solution is [-0.0, 1.0]

Julia's division operator is actually pretty smart though, true solution for M=1e20 is A\b = [1.0, 1

130 / 132

Ill-conditioning

A matrix is said to be ill-conditioned if a small perturbation in yields a large

change in

A b

x

131 / 132

Ill-conditioning

A matrix is said to be ill-conditioned if a small perturbation in yields a large

change in

One way to measure ill-conditioning in a matrix is the elasticity of the solution

with respect to ,

which yields the percent change in given

a percentage point change in the magnitude of

A b

x

b

sup
||δb||>0

||δx||/||x||

||δb||/||b||

x

b

131 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

132 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

κ = ||A|| ⋅ ||A−1||

132 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

 gives the least upper bound of the elasticity: it is always larger than one and

a rule of thumb is that for every order of magnitude, a significant digit is lost in

the computation of

 cond([1. 1.; 1. 1.00000001])

4.0000000623500454e8

κ = ||A|| ⋅ ||A−1||

κ

x

132 / 132

Lecture 01

Intro to computing

Ivan Rudik
AEM 7130

https://git-scm.com/downloads
https://julialang.org/downloads/
http://code.visualstudio.com/
https://github.com/
https://git-scm.com/downloads
https://julialang.org/downloads/
http://code.visualstudio.com/
https://github.com/
https://julialang.org/learning/
https://quantecon.org/

Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

2 / 132

https://git-scm.com/downloads
https://julialang.org/downloads/
http://code.visualstudio.com/
https://github.com/

Software and stuff

Necessary things to download to follow along today and in the future:

Git

Julia or JuliaPro

VSCode

A GitHub account

For this lecture you will need the following Julia packages

import Pkg; Pkg.add("ForwardDiff"); Pkg.add("Distributions"); Pkg.add("BenchmarkTools")

using ForwardDiff, Distributions, BenchmarkTools

2 / 132

https://git-scm.com/downloads
https://julialang.org/downloads/
http://code.visualstudio.com/
https://github.com/

What this class is about

1. Learning how to compute dynamic and spatial models

2. Other useful computational techniques and details

3 / 132

What you need to succeed in this course

1. ECON 6090 and ECON 6170

2. ECON 6130 or AEM 7040

3. Previous coding experience or willingness to spend some time learning as

you go

4 / 132

Course materials

1. Everything we use in the course will be freely available and posted to the

course GitHub (details next week on how to use Git)

2. Books (free from the library or authors' websites):

1. Judd (1998)

2. Miranda and Fackler (2002)

3. Nocedal and Wright (2006)

5 / 132

Things to do before next class

Spend some time reading up on Julia if you don't use it already:

Learning Julia

QuantEcon Julia lectures

6 / 132

https://julialang.org/learning/
https://quantecon.org/

What we will cover in the class

1. Basic computing, arithmetic, calculus, and linear algebra on a computer

2. Shell and Julia coding, version control, reproducibility, workflow

3. Optimization

4. Solving dynamic models

5. Solving spatial models

7 / 132

What you have to do

Come to class

4 computational problem sets

Final research project proposal

Final research project

One presentation of a paper from the literature

8 / 132

Important days / times

Office hours: Tuesday 3:00-4:00

Final project proposal: March 17

Final project paper: May 19

9 / 132

Grading

Problem sets: 40% (10% each)

Final project proposal: 15%

Final project paper/presentation: 25%

Class participation: 10%

Computational paper presentation: 10%

10 / 132

Problem sets (10% each)

You must use Julia

Code must be written in .jl scripts

You must use Julia project management tools, e.g. Pkg.generate(),

Pkg.activate(), Pkg.instantiate()

Everything must be nested in a wrapper function

It must work just by running the wrapper function

You can work in groups of 2

Problem sets will be where you implement the techniques we learn in class on

your own,
but we will be doing our fair share of coding in class
11 / 132

Problem sets (10% each)

Why am I making you do problem sets this way?

If you want to publish in an AEA journal (amongst others now..) you need to

have good practices, other journals are following suit

Julia is very good for reproducibility

12 / 132

Computational paper presentations (10%)

Everyone will present a paper or package starting in a few weeks

The paper can apply methods we've learned about (or will learn about),
or can

be a new method that we have not covered

The package must be something related to the methods we are learning

You must consult with me at least 1 week prior to your scheduled

presentation
date to ensure the paper/package is appropriate for a

presentation

The syllabus has some pre-approved papers you can choose from under the

Applications header 13 / 132

Final project (25% paper, 15% proposal)

The final project will be the beginning of a computationally-driven research

project or an extension of an existing paper with new methods

Proposals will be due about half way through the class

14 / 132

Final project (25% paper, 15% proposal)

The only requirement is that the project cannot be computationally trivial

(i.e. no applied micro papers)

It can be numerical, empirical, whatever

Everyone will present their final projects in the last week of class

More details on the syllabus and to come later

15 / 132

Why computational methods?Why computational methods?

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

17 / 132

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS: β̂ = (X ′X)−1X ′Y

17 / 132

Why do we need computational methods?

1st year PhD core: everything is typically analytically tractable

Including OLS:

Not all economic models have closed-form solutions,
and others can't have

closed-form solutions with losing important economic content

This is generally true for dynamic and spatial models

β̂ = (X ′X)−1X ′Y

17 / 132

What can we compute?

We can use computation + theory to answer quantitative questions

18 / 132

What can we compute?

We can use computation + theory to answer quantitative questions

Theory can't give us welfare in dollar terms

Theory can't tell us the value of economic primitives

18 / 132

What can we compute?

Theory often relies on strong assumptions like:

19 / 132

What can we compute?

Theory often relies on strong assumptions like:

log utility (lose income vs substitution)

zero frictions

strictly linear transitions (natural phenomena don't follow this)

static decisionmaking

It can be unclear what the cost of these assumptions are

19 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

q(p) = p−0.2

q∗ = 2

20 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

Just invert the demand function:

q(p) = p−0.2

q∗ = 2

2 = p−0.2

20 / 132

Example 1

Suppose we have a constant elasticity demand function:

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

Just invert the demand function:

Your calculator can do the rest

q(p) = p−0.2

q∗ = 2

2 = p−0.2

p∗ = 2−5
✓

20 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

First, does a solution exist?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

Suppose the demand function is now: ,
a weighted

average of two CE demand functions

In equilibrium, quantity demanded is

What price clears the market in equilibrium?

First, does a solution exist?

Yes, why?

q(p) = 0.5p−0.2 + 0.5p−0.5

q∗ = 2

21 / 132

Example 2

 is monotonically decreasingq(p)

22 / 132

Example 2

 is monotonically decreasing

 is greater than 2 at and less than 2 at

q(p)

q(p) p = 0.1 p = 0.2

22 / 132

Example 2

 is monotonically decreasing

 is greater than 2 at and less than 2 at

 by intermediate value theorem somewhere in

q(p)

q(p) p = 0.1 p = 0.2

→ q(p) = 2 (0.1, 0.2)

22 / 132

Example 2

We know solution is between .1 and .2

 x = collect(range(.1, stop = .2, length = 10)) # generate evenly spaced grid

 q_d = ones(size(x)).*2 # generate equal length vector of qd=2

Price function

 price(p) = p.^(-0.2)/2 .+ p.^(-0.5)/2

Get corresponding quantity values at these prices

 y = price(x)

Now plot and qd q(p)

23 / 132

Example 2

24 / 132

Example 2

Notice: if we let then:t = p−0.1

q(t) = 0.5t2 + 0.5t5

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Example 2

Notice: if we let then:

Can we solve for now?

No! Closed-form solutions to fifth order polynomials are not guaranteed to

exist!

So how do we solve the problem?

t = p−0.1

q(t) = 0.5t2 + 0.5t5

t

25 / 132

Newton's method

Iteratively do the following:

1. Guess solution to:

2. Approximate the function with local second order polynomial around guess

3. Solve this easier equation

4. Solution is the new guess

5. Stop if previous guess and new guess are sufficiently close

We will learn more about this and why it works in a later class

q(p) − q∗ = 0 → q(p) − 2 = 0

26 / 132

Newton code

Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

27 / 132

Newton code

Define demand functions

 demand(p) = p^(-0.2)/2 + p^(-0.5)/2 - 2 # quantity minus price

 demand_grad(p) = .1*p^(-1.2) + .25*p^(-1.5) # demand gradient

function find_root_newton(demand, demand_grad)

 p = .3 # initial guess

 deltap = 1e10 # initialize stepsize

while abs(deltap) > 1e-4

 deltap = demand(p)/demand_grad(p)

 p += deltap

 println("Intermediate guess of p = $(round(p,digits=3)).")

end

 println("The solution is p = $(round(p,digits=3)).")

return p

end;

27 / 132

Newton code

Solve for price

 find_root_newton(demand, demand_grad)

Intermediate guess of p = 0.068.

Intermediate guess of p = 0.115.

Intermediate guess of p = 0.147.

Intermediate guess of p = 0.154.

Intermediate guess of p = 0.154.

Intermediate guess of p = 0.154.

The solution is p = 0.154.

0.15419764093200633

28 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is: a(E[p]) = + E[p]1
2

1
2

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is:

After planting, yield realizes, producing a total quantity of the crop

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

29 / 132

Example 3

Consider a two period ag commodity market model

Period 1: Farmer makes acreage decisions for planting

Period 2: Per-acre yield realizes, equilibrium crop price clears the market

The farmer's policy function is:

After planting, yield realizes, producing a total quantity of the crop

Demand is given by

Yield is given by

a(E[p]) = + E[p]1
2

1
2

ŷ q = aŷ

p(q) = 3 − 2q

ŷ ∼ N (1, 0.1)

29 / 132

How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

30 / 132

How much acreage gets planted?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

30 / 132

How much acreage gets planted?

Rearrange and solve:

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

a∗ = 1

30 / 132

How much acreage gets planted?

Rearrange and solve:

Now suppose the government implements a price floor on the crop of so

we have that

How much acreage does the farmer plant?

p(ŷ) = 3 − 2aŷ

a = + (3 − 2aE[ŷ])1
2

1
2

a∗ = 1

p > 1

p(ŷ) = max(1, 3 − 2aŷ)

30 / 132

How much acreage gets planted?

This is analytically intractable

31 / 132

How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

E[max(1, 3 − 2aŷ)] ≠ max(1, E[3 − 2aŷ])

31 / 132

How much acreage gets planted?

This is analytically intractable

The max operator is non-linear so we can't pass the expectation through

 we need to solve this numerically

E[max(1, 3 − 2aŷ)] ≠ max(1, E[3 − 2aŷ])

→

31 / 132

Function iteration

We can solve this using another technique called function iteration

Function iteration method to find a root

function find_root_fi(mn, variance)

 y = randn(1000)*sqrt(variance) .+ mn # draws of the random variable

 a = 1. # initial guess

 differ = 100. # initialize error

 exp_price = 1. # initialize expected price

while differ > 1e-4

 a_old = a # save old acreage

 p = max.(1, 3 .- 2 .*a.*y) # compute price at all distribution points

 exp_price = mean(p) # compute expected price

 a = 1/2 + 1/2*exp_price # get new acreage planted given new price

 differ= abs(a - a_old) # change in acreage planted

 println("Intermediate acreage guess: $(round(a,digits=3))")

end

return a, exp_price

end
32 / 132

Function iteration

The optimal number of acres to plant is 1.094.

The expected price is 1.188.

 acreage, expected_price = find_root_fi(1, 0.1);

 println("The optimal number of acres to plant is $(round(acreage, digits = 3)).\nThe expected pr

33 / 132

Quantifying speed and accuracyQuantifying speed and accuracy

Big O notation

How do we quantify speed and accuracy of computational algorithms?

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

35 / 132

Big O notation

How do we quantify speed and accuracy of computational algorithms?

Big O notation describes the limiting behavior of a function when the

argument tends towards a particular value or infinity

Programming context: Describes the limiting behavior of algorithms in terms

of run time/memory/accuracy as input size grows

You've seen this before in the expression of Taylor series' errors

35 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

36 / 132

Big O Notation

Written as: O(F(x))

Here is how to think about it:

O(x): linear

Time to solve increases linearly in size of input x

Accuracy changes linearly in size of input x

Examples?

Time to find a particular (e.g. maximum) value in an unsorted array

 For each element, check whether it is the value we want→ 36 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

37 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

37 / 132

Big O Notation

O(cx): exponential

Time to solve increases exponentially in input x

Accuracy changes exponentially in input x

Examples?

Time to solve a standard dynamic program, ex traveling salesman

 For each city , solve a Bellman as a function of all other cities→ i = 1, . . . , n

37 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

O(n!)

38 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

O(n!)

38 / 132

Big O Notation

: factorial

Time to solve increases factorially in input x

Accuracy changes factorially in input x

Examples?

Solving traveling salesman by brute force

 Obtain travel time for all possible combinations of intermediate cities

O(n!)

→

38 / 132

Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

39 / 132

Big O Notation: Accuracy example

This is how you have probably seen Big O used before:

Taylor series for around zero:

What does mean here?

sin(x)

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

O(x
7)

39 / 132

Big O Notation: Accuracy example

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

40 / 132

Big O Notation: Accuracy example

As we move away from to some , the upper bound of the growth rate in the

error of our approximation to is

We are approximating about zero so is small and is decreasing in

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

0 x

sin(x) x
7

x x
n

n

40 / 132

Big O Notation: Accuracy example

As we move away from to some , the upper bound of the growth rate in the

error of our approximation to is

We are approximating about zero so is small and is decreasing in

For small , higher order polynomials mean the error will grow slower and we

have a better local approximation

sin(x) ≈ x − x
3/3! + x

5/5! + O(x
7)

0 x

sin(x) x
7

x x
n

n

x

40 / 132

Taylor expansions

fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

41 / 132

Taylor expansions

fifth and third order Taylor approximations

 sin_error_5(x) = sin(x) - (x - x^3/6 + x^5/120)

 sin_error_3(x) = sin(x) - (x - x^3/6)

 println("Error of fifth-order approximation at x = .001 is: $(sin_error_5(.001))

 Error of third-order approximation at x = .001 is: $(sin_error_3(.001))

 Error of fifth-order approximation at x = .01 is: $(sin_error_5(.01))

 Error of third-order approximation at x = .01 is: $(sin_error_3(.01))

 Error of fifth-order approximation at x = .1 is: $(sin_error_5(.1))

 Error of third-order approximation at x = .1 is: $(sin_error_3(.1))")

Error of fifth-order approximation at x = .001 is: 0.0

Error of third-order approximation at x = .001 is: 8.239936510889834e-18

Error of fifth-order approximation at x = .01 is: -1.734723475976807e-18

Error of third-order approximation at x = .01 is: 8.333316675601665e-13

Error of fifth-order approximation at x = .1 is: -1.983851971587569e-11

Error of third-order approximation at x = .1 is: 8.331349481138783e-8

41 / 132

Big O Notation: Speed examples

Here are a few examples for fundamental computational methods

42 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

43 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

43 / 132

Big O Notation: O(1)

O(1): algorithm executes in constant time

The size of the input does not affect execution speed

accessing a specific location in an array

43 / 132

Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

44 / 132

Big O Notation: O(x)

O(x): algorithm executes in linear time

Execution speed grows linearly in input size

Example:

inserting an element into an arbitrary location in a 1 dimensional array

Bigger array need to shift around more elements in memory to

accommodate the new element

→

44 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

O(x2)

O(x2) :

x
n

45 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

O(x2)

O(x2) :

x
n

45 / 132

Big O Notation:

 algorithm executes in quadratic time

More generally called polynomial time for

Execution speed grows quadratically in input size

Example:

bubble sort, step through a list, compare adjacent elements, swap if in the

wrong order

matrix inversion, most algorithms (e.g. LU decomposition) solve in polynomial

time

O(x2)

O(x2) :

x
n

45 / 132

Computer arithmeticComputer arithmetic

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Before the answer, how are numbers physically represented by a computer?

Binary: a base 2 number system

Each digit can only take on 0 or 1

Base 10: each digit can take on 0-9

47 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

48 / 132

Computer arithmetic - storage

Question: which numbers can be represented by a computer?

Answer: a subset of the rational numbers

Computers have finite memory and hard disk space, there are infinite rational

numbers

This imposes a strict limitation on the storage of numbers

Numbers are stored as:

 is the mantissa/significand,
 is the base,
 is the exponent

All three are integers

±mb
±n

m b n

48 / 132

Computer arithmetic - storage

The significand typically gives the significant digits

The exponent scales the number up or down in magnitude

±mb
±n

49 / 132

Computer arithmetic - storage

The size of numbers a computer can represent is limited

by how much space is typically allocated for a real number

50 / 132

Computer arithmetic - storage

The size of numbers a computer can represent is limited

by how much space is typically allocated for a real number

Space allocations are usually 64 bits: 53 for and 11 for

 println(typeof(5.0))

Float64

 println(typeof(5))

Int64

m n

50 / 132

Computer arithmetic - storage

Int64 means it is a integer with 64 bits of storage

Float64 means it is a floating point number with 64 bits of storage

Floating point just means can move the decimal point around in the

significand

Int64 and Float64 are different, this will be important later

b
±n

51 / 132

The limits of computers

Limitations on storage suggest three facts

52 / 132

The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

52 / 132

The limits of computers

Limitations on storage suggest three facts

1. There exists a machine epsilon which denotes the smallest relative quantity

representible by a computer

Machine epsilon is the smallest such that
a machine can always distinguishϵ

N + ϵ > N > N − ϵ

52 / 132

The limits of computers

 println("Machine epsilon ϵ is $(eps(Float64))")

Machine epsilon ϵ is 2.220446049250313e-16

 println("Is 1 + ϵ/2 > 1? $(1 + eps(Float64)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(1 - eps(Float64)/2 < 1)")

Is 1 - ϵ/2 < 1? true

53 / 132

The limits of computers

 println("The smallest representable number larger than 1.0 is $(nextfloat(1.0))")

The smallest representable number larger than 1.0 is 1.0000000000000002

 println("The largest representable number smaller than 1.0 is $(prevfloat(1.0))")

The largest representable number smaller than 1.0 is 0.9999999999999999

54 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

55 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

Is 1 - ϵ/2 < 1? true

55 / 132

The limits of computers

Machine epsilon changes depending on the amount of storage allocated

 println("32 bit machine epsilon is $(eps(Float32))")

32 bit machine epsilon is 1.1920929e-7

 println("Is 1 + ϵ/2 > 1? $(Float32(1) + eps(Float32)/2 > 1)")

Is 1 + ϵ/2 > 1? false

 println("Is 1 - ϵ/2 < 1? $(Float32(1) - eps(Float32)/2 < 1)")

Is 1 - ϵ/2 < 1? true

Theres a tradeoff between precision and storage requirements
55 / 132

The limits of computers

2. There is a smallest representable number

 println("64 bit smallest float is $(floatmin(Float64))")

64 bit smallest float is 2.2250738585072014e-308

 println("32 bit smallest float is $(floatmin(Float32))")

32 bit smallest float is 1.1754944e-38

 println("16 bit smallest float is $(floatmin(Float16))")

16 bit smallest float is 6.104e-5

56 / 132

The limits of computers

3. There is a largest representable number

 println("64 bit largest float is $(floatmax(Float64))")

64 bit largest float is 1.7976931348623157e308

 println("32 bit largest float is $(floatmax(Float32))")

32 bit largest float is 3.4028235e38

 println("16 bit largest float is $(floatmax(Float16))")

16 bit largest float is 6.55e4

57 / 132

The limits of computers

 println("The largest 64 bit integer is $(typemax(Int64))")

The largest 64 bit integer is 9223372036854775807

 println("Add one to it and we get: $(typemax(Int64)+1)")

Add one to it and we get: -9223372036854775808

 println("It loops us around the number line: $(typemin(Int64))")

It loops us around the number line: -9223372036854775808

58 / 132

The limits of computers

The scale of your problem matters

59 / 132

The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

59 / 132

The limits of computers

The scale of your problem matters

If a parameter or variable is > floatmax or < floatmin, you will have a very bad

time

Scale numbers appropriately (e.g. millions of dollars, not millionths of cents)

59 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

60 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

60 / 132

Computer arithmetic: Error

We can only represent a finite number of numbers

This means we will have error in our computations

Error comes in two major and related forms:

1. Rounding

2. Truncation

60 / 132

Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

Half of π is: 1.5707963267948966

61 / 132

Rounding

We will always need to round numbers to the nearest computer

representable number, this introduces error

 println("Half of π is: $(π/2)")

Half of π is: 1.5707963267948966

The computer gave us a rational number, but should be irrationalπ/2

61 / 132

Truncation

Lots of important numbers are defined by infinite sums
ex = ∑
∞

n=0

x
n

n!

62 / 132

Truncation

Lots of important numbers are defined by infinite sums

It turns out that computers can't add up infinitely many terms because there is

finite space

 we need to truncate the sum

e
x = ∑

∞

n=0

x
n

n!

→

62 / 132

Why does this matter?

Errors are small, who cares?

63 / 132

Why does this matter?

Errors are small, who cares?

You should!

Because errors can propagate and grow as you keep applying an algorithm

(e.g. function iteration)

63 / 132

Error example 1

Consider a simple quadratic: with solution x
2 − 26x + 1 = 0 x = 13 − √168

64 / 132

Error example 1

Consider a simple quadratic: with solution

 println("64 bit: 13 - √168 = $(13-sqrt(168))")

64 bit: 13 - √168 = 0.03851860318427924

 println("32 bit: 13 - √168 = $(convert(Float32,13-sqrt(168)))")

32 bit: 13 - √168 = 0.038518604

 println("16 bit: 13 - √168 = $(convert(Float16,13-sqrt(168)))")

16 bit: 13 - √168 = 0.0385

x
2 − 26x + 1 = 0 x = 13 − √168

64 / 132

Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

65 / 132

Error example 2

Lets add and subtract some numbers and play around with the associative

property of real numbers:

Very clearly we should get , but do we? Let's find out

x = (10−20 + 1) − 1

y = 10−20 + (1 − 1)

x = y

65 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

66 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 x_equals_y = (x == y) # store boolean of whether x == y

if x_equals_y

 println("X equals Y!")

else

 println("X does not equal Y!")

 println("The difference is: $(x-y).")

end

X does not equal Y!

The difference is: -1.0e-20.

66 / 132

Error example 2

The two numbers were not equal, we got

Why?

y > x

67 / 132

Error example 2

The two numbers were not equal, we got

Why?

Adding numbers of greatly different magnitudesdoes not always work like you

would want

y > x

67 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 println("x is $x")

x is 0.0

 println("y is $y")

y is 1.0e-20

68 / 132

Error example 2

 x = (1e-20 + 1) - 1 # initialize x

 y = 1e-20 + (1 - 1) # initialize y

 println("x is $x")

x is 0.0

 println("y is $y")

y is 1.0e-20

When we added to , it got rounded away10
−20

1

68 / 132

Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

69 / 132

Error example 3

Lets just subtract two numbers: 100000.2 - 100000.1

We know the answer is: 0.1

 println("100000.2 - 100000.1 is: $(100000.2 - 100000.1)")

100000.2 - 100000.1 is: 0.09999999999126885

if (100000.2 - 100000.1) == 0.1

 println("and it is equal to 0.1")

else

 println("and it is not equal to 0.1")

end

and it is not equal to 0.1

69 / 132

Error example 3

Why do we get this error?

70 / 132

Error example 3

Why do we get this error?

Neither of the two numbers can be precisely represented by the machine!

So their difference won't necessarily be 0.1

There are tools for approximate equality

 isapprox(100000.2 - 100000.1, 0.1)

true

100000.1 ≈ 8589935450993459 × 2
−33

= 100000.0999999999767169356346130

100000.2 ≈ 8589936309986918 × 2
−33

= 100000.1999999999534338712692261

70 / 132

Rounding and truncation recap

This matters, particularly when you're trying to evaluate logical

expressions of equality

71 / 132

Calculus on a machineCalculus on a machine

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let and reframe this as an infinite limit

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

73 / 132

Differentiation

Derivatives are important in economics for finding optimal allocations, etc

The formal definition of a derivative is:

But we can let and reframe this as an infinite limit

which we know a computer can't handle because of finite space to store

= lim
h→0

df(x)

dx

f(x + h) − f(x)

h

t = 1/h

= lim
t→∞

df(x)

dx

f(x + 1/t) − f(x)

1/t

t

73 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

74 / 132

Computer differentiation

How do we perform derivatives on computers if we can't take the limit?

Finite difference methods

What does a finite difference approximation look like?

74 / 132

Forward difference

The forward difference looks exactly like the formal definition without the

limit:

≈
df(x)

dx

f(x + h) − f(x)

h

75 / 132

Forward difference

The forward difference looks exactly like the formal definition without the

limit:

Works the same for partial derivatives:

Let's see how it works in practice by calculating derivatives of at

≈
df(x)

dx

f(x + h) − f(x)

h

≈
∂g(x, y)

∂x

g(x + h, y) − g(x, y)

h

x2 x = 2

75 / 132

Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

76 / 132

Forward difference

 deriv_x_squared(h,x) = ((x+h)^2 - x^2)/h # derivative function

 println("

 The deriviative with h=1e-8 is: $(deriv_x_squared(1e-8,2.))

 The deriviative with h=1e-12 is: $(deriv_x_squared(1e-12,2.))

 The deriviative with h=1e-30 is: $(deriv_x_squared(1e-30,2.))

 The deriviative with h=1e-1 is: $(deriv_x_squared(1e-1,2.))")

The deriviative with h=1e-8 is: 3.999999975690116

The deriviative with h=1e-12 is: 4.000355602329364

The deriviative with h=1e-30 is: 0.0

The deriviative with h=1e-1 is: 4.100000000000001

76 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

h

h

77 / 132

Error, it's there

None of the values we chose for were perfect, but clearly some were better

than others

Why?

We face two opposing forces:

We want to be as small as possible so thatwe can approximate the limit as

well as we possibly can, BUT

If is small then is close to , we can run into rounding issues like

we saw for

h

h

h f(x + h) f(x)

h = 10−30

77 / 132

Error, it's there

We can select in an optimal fashion: h h = max{|x|, 1}√ϵ

78 / 132

Error, it's there

We can select in an optimal fashion:

There are proofs for why this is the case but generally testing out different 's

works fine

h h = max{|x|, 1}√ϵ

h

78 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?h

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

h

f(x) x

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

Recall means the error in our approximation grows quadratically in ,

we only did a linear approximation

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h

79 / 132

How much error is in a finite difference?

Can we measure the error growth rate in (i.e. Big O notation)?

Perform a first-order taylor expansion of around :

Recall means the error in our approximation grows quadratically in ,

we only did a linear approximation

How can we use this to understand the error in our finite difference

approximation?

h

f(x) x

f(x + h) = f(x) + f ′(x)h + O(h2)

O(h2) h

79 / 132

How much error is in a finite difference?

Rearrange to obtain: f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

Forward differences have linear errors

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

80 / 132

How much error is in a finite difference?

Rearrange to obtain:

 because

Forward differences have linear errors

If we halve , we halve the error in our approximation (ignoring

rounding/truncation issues)

f ′(x) = + O(h2)/h
f(x+h)−f(x)

h

f ′(x) = + O(h)
f(x+h)−f(x)

h
O(h2)/h = O(h)

h

80 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

x

(x, x + h)

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

The secant curve has the average slope of on

x

(x, x + h)

f(x) [x, x + h]

81 / 132

Improvements on the forward difference

How can we improve the accuracy of the forward difference?

First, why do we have error?

Because we are approximating the slope of a tangent curve at

by a secant curve passing through

The secant curve has the average slope of on

We want the derivative at , which is on the edge of , how about we

center ?

x

(x, x + h)

f(x) [x, x + h]

x [x, x + h]

x

81 / 132

Central differences

We can approximate in a slightly different way:f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

82 / 132

Central differences

We can approximate in a slightly different way:

This leaves in the middle of the interval over which we are averaging the

slope of

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)

82 / 132

Central differences

We can approximate in a slightly different way:

This leaves in the middle of the interval over which we are averaging the

slope of

Is this an improvement on forward differences?

f ′(x)

f ′(x) ≈
f(x + h) − f(x − h)

2h

x

f(x)

82 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that) and then

divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

83 / 132

How much error is in a central finite difference?

Lets do two second-order Taylor expansions:

Subtract the two expressions (note that) and then

divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + O(h3)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + O(h3)

O(h3) − O(h3) = O(h3)

2h

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

83 / 132

How much error is in a central finite difference?

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

84 / 132

How much error is in a central finite difference?

Error falls quadratically in , if we halve we reduce error by 75%

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

84 / 132

How much error is in a central finite difference?

Error falls quadratically in , if we halve we reduce error by 75%

Optimal selection of for central differences is

f ′(x) = + O(h2)
f(x + h) − f(x − h)

2h

h h

h h = max{|x|, 1}ϵ1/3

84 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each g(x1 − h, x2, . . .) g(x1 + h, x2, . . .) xi

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each

But for a forward difference we only need to compute once

and then for each

g(x1 − h, x2, . . .) g(x1 + h, x2, . . .) xi

g(x1, x2, . . .)

g(x1 + h, x2, . . .) xi

85 / 132

Why use anything but central differences?

Why would we ever use forward differences instead of central differences?

For each central difference:

We need to compute and for each

But for a forward difference we only need to compute once

and then for each

Forward differences saves on # of operations at the expense of accuracy

g(x1 − h, x2, . . .) g(x1 + h, x2, . . .) xi

g(x1, x2, . . .)

g(x1 + h, x2, . . .) xi

85 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

86 / 132

Higher order finite differences

We can use these techniques to approximate higher order derivatives

For example, take two third order Taylor expansions

Add the two expressions and then divide by to get

f(x + h) = f(x) + f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + O(h4)

f(x − h) = f(x) + f ′(x)(−h) + f ′′(x)(−h)2/2! + f ′′′(x)(−h)3/3! + O(h4)

h2

f ′′(x) = + O(h2)
f(x + h) − 2f(x) + f(x − h)

h2

86 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

The deriviative is: 4.0

h

87 / 132

Differentiation without error?

Finite differences put us in between two opposing forces on the size of

Can we improve upon finite differences?

Analytic derivatives

One way is to code up the actual derivative

 deriv_x_squared(x) = 2x

The deriviative is: 4.0

Exact solution!

h

87 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

88 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

88 / 132

Automatic differentiation

Coding up analytic derivatives by hand forcomplex problems is not always

great because

It can take A LOT of programmer time, more than it is worth

Humans are suseptible to error in coding or calculating the derivative

mathematically

88 / 132

Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

89 / 132

Automatic differentiation

Think about this: your code is always made up of simple arithmetic operations

add, subtract, divide, multiply

trig functions

exponentials/logs

etc

The closed form derivatives of these operations is not hard, it turns out your

computer can do it and yield exact solutions

89 / 132

Automatic differentiation

How?

90 / 132

Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

90 / 132

Automatic differentiation

How?

There are methods that basically apply a giant chain rule to your whole

program,
and break down the derivative into the (easy) component parts that

another package knows how to handle

 ff(x) = x^2

 x = [2 3 4]

90 / 132

Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

ff'(x) at [2 3 4] is: [4 6 8]

91 / 132

Automatic differentiation

using ForwardDiff

 g(f,x) = ForwardDiff.derivative(f,x); # g = dff/dx

g (generic function with 1 method)

 println("ff'(x) at $(x) is: $(g.(ff,x))") # display gradient value

ff'(x) at [2 3 4] is: [4 6 8]

Exact solutions without handcoding

91 / 132

Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

92 / 132

Automatic differentiation

Once you get the hang of coding up function for autodiff it's not that hard

 fff(x) = sin(x^2)

 x = [0 1 2]

1×3 Matrix{Int64}:

0 1 2

 println("fff'(x) at $(x) is: $(g.(fff,x))")

fff'(x) at [0 1 2] is: [0.0 1.0806046117362795 -2.6145744834544478]

92 / 132

Calculus operations

Integration, trickier than differentiation

93 / 132

Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

93 / 132

Calculus operations

Integration, trickier than differentiation

We integrate to do a lot of stuff in economics

, , ∫
D
f(x)dx f : Rn → R D ⊂ R

n

93 / 132

How to think about integrals

Integrals are effectively infinite sums

94 / 132

How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

94 / 132

How to think about integrals

Integrals are effectively infinite sums

1 dimensional example:

where is some subset of and is some evaluation point (e.g.

midpoint of)

limdxi→0 ∑
(a−b)/dxi
i=0 f(xi)dxi

dxi [a, b] xi

dxi

94 / 132

Infinite limits strike again

Just like derivatives, we face an infinite limit as

We avoid this issue in the same way as derivatives, we replace the infinite sum

with something we can handle

(a − b)/dxi → ∞

95 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

96 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

96 / 132

Monte Carlo integration

Probably the most commonly used form in empirical econ

Approximate an integral by relying on LLN and "randomly" sampling the

integration domain

Can be effective for very high dimensional integrals

Very simple and intuitive

But, produces a random approximation

96 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

ξ = ∫ 1

0
f(x)dx

97 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

We can do so by drawing uniformly distributed samples, over

interval

ξ = ∫ 1

0
f(x)dx

N x1, . . . ,xN

[0, 1]

97 / 132

Monte Carlo integration

Suppose we want to integrate

How do we do it?

We can do so by drawing uniformly distributed samples, over

interval

Why?

ξ = ∫ 1

0
f(x)dx

N x1, . . . ,xN

[0, 1]

97 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

ξ E[f(x)]

f(x)

98 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

In general we have that

where is the volume over which we are integrating

ξ E[f(x)]

f(x)

ξ̂ = V ∑
N

i=1 f(xi)
1
N

V

98 / 132

Monte Carlo integration

 is equivalent to with respect to a uniform distribution,
so estimating

the integral is the same as estimating the expected value of

In general we have that

where is the volume over which we are integrating

LLN gives us that the

ξ E[f(x)]

f(x)

ξ̂ = V ∑
N

i=1 f(xi)
1
N

V

plimN→∞ξ̂ = ξ

98 / 132

Monte Carlo integration

The variance of isξ̂

σ2

ξ̂
= var(

N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

99 / 132

Monte Carlo integration

The variance of is

So average error is , this gives us its rate of convergence:

Note:

1. The rate of convergence is independent of the dimension of x

2. Quasi-Monte Carlo methods can get you

ξ̂

σ2
ξ̂

= var(
N

∑
i=1

f(xi)) =
N

∑
i=1

var(f(X)) = σ2
f(X)

V

N

V 2

N 2

V 2

N

σf(X)
V

√N
O(√N)

O(1/N)

99 / 132

Monte Carlo integration

Suppose we want to integrate from 0 to 10, we know this is

Package for drawing random numbers

using Distributions

Define a function to do the integration for an arbitrary function

function integrate_function(f, lower, upper, num_draws)

Draw from a uniform distribution

 xs = rand(Uniform(lower, upper), num_draws)

Expectation = mean(x)*volume

 expectation = mean(f(xs))*(upper - lower)

end

x
2

103/3 = 333.333

100 / 132

Monte Carlo integration

Suppose we want to integrate from 0 to 10, we know this is

Integrate

 f(x) = x.^2;

 integrate_function(f, 0, 10, 1000)

322.499755893713

Pretty close!

x
2

103/3 = 333.333

101 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

102 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

102 / 132

Quadrature rules

We can also approximate integrals using a technique called quadrature

With quadrature we effectively take weighted sums to approximate integrals

We will focus on two classes of quadrature for now:

1. Newton-Cotes (the kind you've seen before)

2. Gaussian (probably new)

102 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

f(x) [a, b]

103 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

f(x) [a, b]

103 / 132

Newton-Cotes quadrature rules

Suppose we want to integrate a one dimensional function over

How would you do it?

One answer is to replace the function with something easy to integrate: a

piecewise polynomial

Key things to define up front:

 for where

s are the quadrature nodes of the approximation scheme and divide the

interval into equally spaced subintervals of length

f(x) [a, b]

xi = a + (i − 1)/h i = 1, 2, . . . , n h = b−a
n−1

xi

n − 1 h
103 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

104 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf((xi+1 + xi))1

2

104 / 132

Midpoint rule

The most basic Newton-Cotes method:

1. Split into intervals

2. Approximate the function in each subinterval by a constant equal to the

function at the midpoint of the subinterval

Approximates by a step function

[a, b]

∫
xi+1

xi
f(x)dx ≈ hf((xi+1 + xi))1

2

f

104 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

105 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

105 / 132

Trapezoid rule

Increase complexity by 1 degree:

1. Split into intervals

2. Approximate the function in each subinterval by a
linear interpolation

passing through and

We can aggregate this up to:

where and otherwise

[a, b]

(xi, f(xi)) (xi+1, f(xi+1))

∫
xi+1

xi
f(x)dx ≈ [f(xi) + f(xi+1)]h

2

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/2 wi = h

105 / 132

How accurate is this rule?

Trapezoid rule is aka first-order exact: it can integrate any linear

function exactly

O(h2)

106 / 132

How accurate is this rule?

Trapezoid rule is aka first-order exact: it can integrate any linear

function exactly

Seems sensible, a piecewise linear function can approximate any linear

function exactly since it has more flexibility

O(h2)

106 / 132

Simpsons rule

Increase complexity by 1 degree:

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

107 / 132

Simpsons rule

Increase complexity by 1 degree:

Let be odd, then approximate the function across a pair of subintervals
by a

quadratic interpolation passing through , , and

We can aggregate this up to:

where , otherwise and if is even and if

is odd

n

(x2i−1, f(x2i−i)) (x2i, f(x2i))

(x2i+1, f(x2i+1))

∫
xi+1

xi
f(x)dx ≈ [f(x2i−1) + 4f(x2i) + f(x2i+1)]h

3

∫ b

a
f(x)dx ≈ ∑n

i=1 wif(xi)

w1 = wn = h/3 wi = 4h/3 i wi = 2h/3 i

107 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

108 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is aka third-order exact: it can integrate any cubic

function exactly

O(h4)

108 / 132

How accurate is this rule?

How accurate do you think Simpson's rule is?

Simpson's rule is aka third-order exact: it can integrate any cubic

function exactly

Why do we gain 2 orders of accuracy when increasing one order of

approximation complexity?

O(h4)

108 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

109 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic and the quadratic

approximation in is another cubic function

f(x)

[x2i−1, x2i+1]

109 / 132

How accurate is this rule?

1. The approximating piecewise quadratic is exact at the end points and

midpoint of the conjoined two subintervals

2. Clearly the difference between a cubic and the quadratic

approximation in is another cubic function

3. This cubic error is odd with respect to the midpoint: integrating over the

first subinterval cancels integrating over the second subinterval, the

integration error is zero

f(x)

[x2i−1, x2i+1]

109 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?xi

110 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

xi

110 / 132

Gaussian quadrature rules

How did we pick the quadrature nodes for Newton-Cotes rules?

Evenly spaced, but no particular reason for doing so...

Gaussian quadrature selects these nodes more efficiently and relies on weight

functions

xi

w(x)

110 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

111 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights and nodes

 are chosen to satisfy moment-matching conditions:

n w1, . . . , wn

x1, . . . , xn 2n

111 / 132

Gaussian quadrature rules

Gaussian rules try to exactly integrate some finite dimensional collection of

functions (i.e. polynomials up to some degree)

For a given order of approximation , the weights and nodes

 are chosen to satisfy moment-matching conditions:

, for

where is the interval over which we are integrating and is a given

weight function

n w1, . . . ,wn

x1, . . . ,xn 2n

∫
I
x
k
w(x)dx = ∑n

i=1 wix
k

i
k = 0, . . . , 2n − 1

I w(x)

111 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

112 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

112 / 132

Gaussian quadrature improves accuracy

The moment matching conditions pin down s and s so we can
approximate

an integral by a weighted sum of the function at the prescribed nodes

Gaussian rules are order exact: we can exactly compute the integral of

any polynomial order

wi xi

∫
i
f(x)w(x)dx ≈ ∑n

i=1 wif(xi)

2n − 1

2n − 1

112 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

p(x)

p̄(x)

113 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

Given an approximation with mass points, and have identical moments

up to order ,
and as we have a continuum of mass points and

recover the continuous pdf

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

113 / 132

Gaussian quadrature takeaways

Gaussian quadrature effectively discretizes some distribution
into mass

points (nodes) and probabilities (weights) for some other discrete distribution

Given an approximation with mass points, and have identical moments

up to order ,
and as we have a continuum of mass points and

recover the continuous pdf

But what do we pick for the weighting function ?

p(x)

p̄(x)

n X X̄

2n − 1 n → ∞

w(x)

113 / 132

Gauss-Legendre

We can start out with a simple , this gives us Gauss-Legendre

quadrature

This can approximate the integral of any function arbitrarily well by increasing

w(x) = 1

n

114 / 132

Gauss-Laguerre

Sometimes we want to compute exponentially discounted sums like:

The weighting function is Gauss-Laguerre quadrature

∫
I
f(x)e−xdx

e−x

115 / 132

Gauss-Hermite

Sometimes we want to take expectations of normally distributed variables:

There exist packages or look-up tables to get the prescribed weights and

nodes for each of these schemes

∫
I
f(x)e−x2

dx

116 / 132

Linear Algebra

Lots of computational problems break down into linear systems

Many non-linear models are linearized

How do we actually solve these systems inside the machine?

117 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

A Ax = b x

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

A Ax = b x

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so is easy to

solve for

A Ax = b x

x1

118 / 132

L-U Factorization

If in is upper or lower triangular, we can solve for recursively via

forward/backward substitution

Consider a lower triangular matrix

The first element is the only non-zero value in the first row so is easy to

solve for

The equation in row 2 contains and the already solved for

so we can easily solve for and then continue until we solve for all s

A Ax = b x

x1

x2 x1

x2 x

118 / 132

Forward substitution

Forward substitution gives us solutions

, for all xi = (bi −∑
i−1

j=1
aijxj)1

aii
i

119 / 132

Forward substitution

Forward substitution gives us solutions

, for all xi = (bi −∑
i−1

j=1
aijxj)1

aii
i

119 / 132

Forward substitution

Forward substitution gives us solutions

, for all

L-U factorization is an algorithm that decomposes into the product of lower

and upper triangular matrices

xi = (bi −∑
i−1

j=1
aijxj)1

aii
i

A

119 / 132

L-U Factorization has two steps

1. Factor into lower and upper triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

A L U

120 / 132

L-U Factorization has two steps

1. Factor into lower and upper triangular matrices using Gaussian

elimination

We can do this for any non-singular square matrix

2. Solve for

1.

2. Solve for using forward substitution

3. Using the solved , we know and can solve with backward

substitution

A L U

x

(LU)x = b

y : Ly = b

y Ux = y

120 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than O(n3)

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than

Cramer's rule is

O(n
3)

O(n! × n)

121 / 132

Why bother with this scheme?

Why not just use another method like Cramer's rule?

Speed

LU is less than

Cramer's rule is

For a 10x10 system this can really matter

O(n
3)

O(n! × n)

121 / 132

Example: LU vs Cramer

Julia description of the division operator \ :
If A is upper or lower triangular (or

diagonal), no factorization of A is required and the system is solved with either

forward or backward substitution. For non-triangular square matrices, an LU

factorization is used.

So we can do LU factorization approaches to solutions by just doing x = A\b ,

but we can write it ourselves as well

122 / 132

Example: LU vs Cramer

Cramer's Rule can be written as a simple loop:

function solve_cramer(A, b)

 dets = Vector(undef, length(b))

for index in eachindex(b)

 B = copy(A)

 B[:, index] = b

 dets[index] = det(B)

end

return dets ./ det(A)

end

 n = 100

 A = rand(n, n)

 b = rand(n)

123 / 132

Example: LU vs Cramer

Let's see the full results of the competition for a 10x10:

Cramer's rule solved in 0.01895975 seconds and used 16187200 kilobytes of memory.

LU solved in 0.000146834 seconds and used 81840 kilobytes of memory.

LU is 129.0 times faster and uses 198.0 times less memory.

using BenchmarkTools

 cramer_time = @elapsed solve_cramer(A, b);

 cramer_allocation = @allocated solve_cramer(A, b);

 lu_time = @elapsed A\b;

 lu_allocation = @allocated A\b;

 println("Cramer's rule solved in $cramer_time seconds and used $cramer_allocation kilobytes of m

 LU solved in $(lu_time) seconds and used $(lu_allocation) kilobytes of memory.

 LU is $(round(cramer_time/lu_time, digits = 0)) times faster and uses $(round(cramer_allocation/

124 / 132

Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

125 / 132

Mechanics of factorizing

Gaussian elimination is where we use row operations

1. swapping rows

2. multiplying by non-zero scalars

3. add a scalar multiple of one row to another

to turn a matrix into (IA) (LU)

125 / 132

Numerical error blow up

Small errors can have big effects, for example:

where is big

[
−M

−1
1

1 1
] [

x1

x2

] = [
1

2
]

M

126 / 132

Numerical error blow up

Small errors can have big effects, for example:

where is big

Lets use L-U Factorization to solve it:

[
−M

−1
1

1 1
] [

x1

x2

] = [
1

2
]

M

[
−M

−1
1

1 1
] = [

1 0

0 1
] [

−M
−1

1

1 1
]

126 / 132

Numerical error blow up

Subtract times the first row from the second to get the L-U factorization−M

[
1 0

0 1
] [

−M−1 1

1 1
] = [

1 0

−M 1
] [

−M−1 1

0 M + 1
]

127 / 132

Numerical error blow up

Subtract times the first row from the second to get the L-U factorization

We can get closed-form solutions by applying forward substitution:

−M

[
1 0

0 1
] [

−M
−1 1

1 1
] = [

1 0

−M 1
] [

−M
−1 1

0 M + 1
]

[
x1

x2
] = [

M/(M + 1)

(M + 2)/(M + 1)
]

127 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

M

128 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return is equal to

precisely , this isn't terribly wrong

M

M = 10000000000000000000 x2

1

128 / 132

Numerical issues

Both variables are approximately 1 for large , but remember adding small

numbers to big numbers causes problems numerically

If , the computer will return is equal to

precisely , this isn't terribly wrong

When we then perform the second step of backwards substitution, we solve

for , this is very wrong

Large errors like this often occur because diagonal elements are very small

M

M = 10000000000000000000 x2

1

x1 = −M(1 − x2) = 0

128 / 132

Julia example

function solve_lu(M)

 b = [1, 2]

 U = [-M^-1 1; 0 M+1]

 L = [1. 0; -M 1.]

 y = L\b

Round element-wise to 3 digits

 x = round.(U\y, digits = 5)

end;

 true_solution(M) = round.([M/(M+1), (M+2)/(M+1)], digits = 5);

129 / 132

Julia example

True solution for M=10 is approximately [0.90909, 1.09091], computed solution is [0.90909, 1.09091]

True solution for M=1e10 is approximately [1.0, 1.0], computed solution is [1.0, 1.0]

True solution for M=1e15 is approximately [1.0, 1.0], computed solution is [1.11022, 1.0]

True solution for M=1e20 is approximately [1.0, 1.0], computed solution is [-0.0, 1.0]

Julia's division operator is actually pretty smart though, true solution for M=1e20 is A\b = [1.0, 1

130 / 132

Ill-conditioning

A matrix is said to be ill-conditioned if a small perturbation in yields a large

change in

A b

x

131 / 132

Ill-conditioning

A matrix is said to be ill-conditioned if a small perturbation in yields a large

change in

One way to measure ill-conditioning in a matrix is the elasticity of the solution

with respect to ,

which yields the percent change in given

a percentage point change in the magnitude of

A b

x

b

sup
||δb||>0

||δx||/||x||

||δb||/||b||

x

b

131 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

132 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

κ = ||A|| ⋅ ||A−1||

132 / 132

Ill-conditioning

If this elasticity is large, then computer representations of the system of

equations can lead to large errors due to rounding

Approximate the elasticity by computing the condition number

 gives the least upper bound of the elasticity: it is always larger than one and

a rule of thumb is that for every order of magnitude, a significant digit is lost in

the computation of

 cond([1. 1.; 1. 1.00000001])

4.0000000623500454e8

κ = ||A|| ⋅ ||A−1||

κ

x

132 / 132

